Research Article
BibTex RIS Cite

Analysis of Lightning Energy Distribution in S-Domain

Year 2020, Volume: 9 Issue: 2, 816 - 834, 15.06.2020
https://doi.org/10.17798/bitlisfen.594231

Abstract

The trend towards renewable energy sources has increased
as fossil fuels are harmfull for enviroment and have started to run out and
therefore the idea of using a lightning current, which is a major source of
energy, has begun to be popular. The direct use of lightning energy has not
been possible until now, but there are many ideas about the indirect use of this
high energy. A method that is proposed for the use of lightning current
indirectly is to use the induced voltage around the strike location. As the
lightning current generates an energy at the point it drops, there is also a
voltage that this current induces in the conductors around it by coupling.
In this study, a new method was developed for
analyzing the voltage that is induced by a lightning strike on a conductive rod
and the energy distribution was simulated by the MATLAB simulation program..
Initially, common impedance of two conductors is
calculated and the distance between these conductors and the length of the
conductors are taken at four different values to simulate the induced voltage.
According to these simulation results, it is seen that
the induced voltage value is inversely proportional to the distance between the
conductors.
Furthermore as a result
of the simulation, the induced voltage increases directly proportional to the
height of the second conductor

References

  • 1. Tesla, N. (1905). The transmission of electrical energy without wires as a means for furthering peace. Electrical World and Engineer, 1, 21-21.
  • 2. Brown, W. C. (1984). The history of power transmission by radio waves. IEEE Transactions on microwave theory and techniques, 32(9), 1230-1242.
  • 3. Schlesak, J. J., Alden, A., & Ohno, T. (1985). Sharp (stationary high altitude relay platform)-rectenna and low altitude tests. In GLOBECOM'85-Global Telecommunications Conference (pp. 960-964).
  • 4. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljačić, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. science, 317(5834), 83-86.
  • 5. Özdemir, E., Özdemir, Ş., Erhan, K., & Aktaş, A. (2017). Akıllı şebekelerde enerji depolama uygulamalarının önündeki fırsatlar ve karşılaşılan zorluklar. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(2), 499-506.
  • 6. Li, S., & Mi, C. C. (2014). Wireless power transfer for electric vehicle applications. IEEE journal of emerging and selected topics in power electronics, 3(1), 4-17.
  • 7. Araneo, R., Celozzi, S., Tatematsu, A., & Rachidi, F. (2014). Time-domain analysis of building shielding against lightning electromagnetic fields. IEEE Transactions on Electromagnetic Compatibility, 57(3), 397-404.
  • 8. Rizk, M. E., Mahmood, F., Lehtonen, M., Badran, E. A., & Abdel-Rahman, M. H. (2015). Investigation of lightning electromagnetic fields on underground cables in wind farms. IEEE Transactions on Electromagnetic Compatibility, 58(1), 143-152.
  • 9. Sheshyekani, K., & Paknahad, J. (2014). Lightning electromagnetic fields and their induced voltages on overhead lines: The effect of a horizontally stratified ground. IEEE Transactions on Power Delivery, 30(1), 290-298.
  • 10. Wilson, C. T. R. (1921). Investigations On Lightning Discharges and On The Electric Field Of Thunderstorms. Monthly Weather Review, 49(4), 241-241.
  • 11. Zeng, R., Zhuang, C., Zhou, X., Chen, S., Wang, Z., Yu, Z., & He, J. (2016). Survey of recent progress on lightning and lightning protection research. High Voltage, 1(1), 2-10.
  • 12. Rakov, V. A., & Uman, M. A. (2003). Lightning: physics and effects. Cambridge University Press.
  • 13. Miki, M., Rakov, V. A., Rambo, K. J., Schnetzer, G. H., & Uman, M. A. (2002). Electric fields near triggered lightning channels measured with Pockels sensors. Journal of Geophysical Research: Atmospheres, 107(D16), ACL-2.
  • 14. Rakov, V. A., & Uman, M. A. (1998). Review and evaluation of lightning return stroke models including some aspects of their application. IEEE Transactions on electromagnetic compatibility, 40(4), 403-426.
  • 15. Pasek, M. A., & Hurst, M. (2016). A fossilized energy distribution of lightning. Scientific reports, 6, 30586.
  • 16. Zhou, H., Rakov, V. A., Diendorfer, G., Thottappillil, R., Pichler, H., & Mair, M. (2015). A study of different modes of charge transfer to ground in upward lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 125, 38-49.
  • 17. Yang, F., Du, L., Wang, D., Wang, C., & Wang, Y. (2017). A Novel Self-Powered Lightning Current Measurement System. IEEE Transactions on Industrial Electronics, 65(3), 2745-2754.
  • 18. Bruning, E. C., & Thomas, R. J. (2015). Lightning channel length and flash energy determined from moments of the flash area distribution. Journal of Geophysical Research: Atmospheres, 120(17), 8925-8940.
  • 19. Kaygusuz A., s-domain analysis of lightning overvoltages on nonuniform transmission lines, Doktora Tezi, İnönü Üniversitesi Fen Bilimleri Enstitüsü, Malatya, 2003.
  • 20. Hosono, T. (1981). Numerical inversion of Laplace transform and some applications to wave optics. Radio Science, 16(6), 1015-1019.
  • 21. Mamiş, M. S., & Köksal, M. (2001). Lightning surge analysis using nonuniform, single-phase line model. IEE Proceedings-Generation, Transmission and Distribution, 148(1), 85-90.
  • 22. Mamis, M. S., & Koksal, M. (1999). Transient analysis of nonuniform lossy transmission lines with frequency dependent parameters. Electric Power Systems Research, 52(3), 223-228.
  • 23. Ishimaru, A. (2017). Electromagnetic wave propagation, radiation, and scattering from fundamentals to applications. IEEE Press Wiley.
  • 24. Mamiş, M.S., Steady-state and transient analysis of transmission lines by using state-space techniques, A Master's Thesis, University of Gaziantep, Gaziantep, Turkiye, 1999.
  • 25. Tütüncü B., Yıldırım enerjisinin benzetim programı yardımıyla incelenmesi ve dikey bir iletkene yıldırım düşmesi durumunda alan dağılımlarının s-domeninde tahmini, Yüksek Lisans Tezi, İnönü Üniversitesi Fen Bilimleri Enstitüsü, Malatya, 2012.
  • 26. Dorfler, F., & Bullo, F. (2012). Kron reduction of graphs with applications to electrical networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1), 150-163.

Yıldırım Enerji Dağılımının S-Domeninde Analizi

Year 2020, Volume: 9 Issue: 2, 816 - 834, 15.06.2020
https://doi.org/10.17798/bitlisfen.594231

Abstract

Fosil yakıtlarının çevreye verdiği
zarar ve tükenmeye yüz tutmasıyla yenilenebilir enerji kaynaklarına yönelim
artmıştır ve dolayısıyla büyük bir enerji kaynağı olan yıldırım akımının
kullanılması fikri de rağbet görmeye başlamıştır. Yıldırım enerjisinin direk
olarak kullanılması şimdiye kadar mümkün olmamıştır fakat dolaylı olarak
kullanımıyla ilgili çok sayıda fikir yürütülmüştür. Yıldırım akımının dolaylı
olarak kullanımıyla ilgili olarak ileri sürülen bir yöntemde indüklenmeyle
çevresinde oluşan gerilimin kullanılmasıdır. Yıldırım akımı düştüğü noktada bir
enerji ürettiğinden, bu akımın kuplaj yoluyla çevresindeki iletkenlerde
indüklediği bir voltaj vardır. Bu çalışmada bir iletkene yıldırım düşmesiyle
yakınındaki yere dik duran başka bir iletkende indüklediği gerilimin analizi
için yeni bir yöntem geliştirilmiş ve MATLAB benzetim programı yardımıyla
enerji dağılımının benzetimi yapılmıştır. Öncelikle iki iletkenin ortak
empedans hesabı yapılmış ve daha sonra bu iletkenlerin arasındaki uzaklık ve
iletkenlerin boyu üç farklı değerde alınarak indüklenen gerilimin benzetimi
yapılmıştır. Bu benzetim sonuçlarına göre iletkenlerin birbirine olan mesafesi
ile ters orantılı olarak indüklenen gerilim değerinin değiştiği görülmüştür.
Ayrıca ikinci iletkenin yüksekliği ile doğru orantılı olarak indüklenen
gerilimin arttığı benzetim sonucunda görülmüştür. 

References

  • 1. Tesla, N. (1905). The transmission of electrical energy without wires as a means for furthering peace. Electrical World and Engineer, 1, 21-21.
  • 2. Brown, W. C. (1984). The history of power transmission by radio waves. IEEE Transactions on microwave theory and techniques, 32(9), 1230-1242.
  • 3. Schlesak, J. J., Alden, A., & Ohno, T. (1985). Sharp (stationary high altitude relay platform)-rectenna and low altitude tests. In GLOBECOM'85-Global Telecommunications Conference (pp. 960-964).
  • 4. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljačić, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. science, 317(5834), 83-86.
  • 5. Özdemir, E., Özdemir, Ş., Erhan, K., & Aktaş, A. (2017). Akıllı şebekelerde enerji depolama uygulamalarının önündeki fırsatlar ve karşılaşılan zorluklar. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(2), 499-506.
  • 6. Li, S., & Mi, C. C. (2014). Wireless power transfer for electric vehicle applications. IEEE journal of emerging and selected topics in power electronics, 3(1), 4-17.
  • 7. Araneo, R., Celozzi, S., Tatematsu, A., & Rachidi, F. (2014). Time-domain analysis of building shielding against lightning electromagnetic fields. IEEE Transactions on Electromagnetic Compatibility, 57(3), 397-404.
  • 8. Rizk, M. E., Mahmood, F., Lehtonen, M., Badran, E. A., & Abdel-Rahman, M. H. (2015). Investigation of lightning electromagnetic fields on underground cables in wind farms. IEEE Transactions on Electromagnetic Compatibility, 58(1), 143-152.
  • 9. Sheshyekani, K., & Paknahad, J. (2014). Lightning electromagnetic fields and their induced voltages on overhead lines: The effect of a horizontally stratified ground. IEEE Transactions on Power Delivery, 30(1), 290-298.
  • 10. Wilson, C. T. R. (1921). Investigations On Lightning Discharges and On The Electric Field Of Thunderstorms. Monthly Weather Review, 49(4), 241-241.
  • 11. Zeng, R., Zhuang, C., Zhou, X., Chen, S., Wang, Z., Yu, Z., & He, J. (2016). Survey of recent progress on lightning and lightning protection research. High Voltage, 1(1), 2-10.
  • 12. Rakov, V. A., & Uman, M. A. (2003). Lightning: physics and effects. Cambridge University Press.
  • 13. Miki, M., Rakov, V. A., Rambo, K. J., Schnetzer, G. H., & Uman, M. A. (2002). Electric fields near triggered lightning channels measured with Pockels sensors. Journal of Geophysical Research: Atmospheres, 107(D16), ACL-2.
  • 14. Rakov, V. A., & Uman, M. A. (1998). Review and evaluation of lightning return stroke models including some aspects of their application. IEEE Transactions on electromagnetic compatibility, 40(4), 403-426.
  • 15. Pasek, M. A., & Hurst, M. (2016). A fossilized energy distribution of lightning. Scientific reports, 6, 30586.
  • 16. Zhou, H., Rakov, V. A., Diendorfer, G., Thottappillil, R., Pichler, H., & Mair, M. (2015). A study of different modes of charge transfer to ground in upward lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 125, 38-49.
  • 17. Yang, F., Du, L., Wang, D., Wang, C., & Wang, Y. (2017). A Novel Self-Powered Lightning Current Measurement System. IEEE Transactions on Industrial Electronics, 65(3), 2745-2754.
  • 18. Bruning, E. C., & Thomas, R. J. (2015). Lightning channel length and flash energy determined from moments of the flash area distribution. Journal of Geophysical Research: Atmospheres, 120(17), 8925-8940.
  • 19. Kaygusuz A., s-domain analysis of lightning overvoltages on nonuniform transmission lines, Doktora Tezi, İnönü Üniversitesi Fen Bilimleri Enstitüsü, Malatya, 2003.
  • 20. Hosono, T. (1981). Numerical inversion of Laplace transform and some applications to wave optics. Radio Science, 16(6), 1015-1019.
  • 21. Mamiş, M. S., & Köksal, M. (2001). Lightning surge analysis using nonuniform, single-phase line model. IEE Proceedings-Generation, Transmission and Distribution, 148(1), 85-90.
  • 22. Mamis, M. S., & Koksal, M. (1999). Transient analysis of nonuniform lossy transmission lines with frequency dependent parameters. Electric Power Systems Research, 52(3), 223-228.
  • 23. Ishimaru, A. (2017). Electromagnetic wave propagation, radiation, and scattering from fundamentals to applications. IEEE Press Wiley.
  • 24. Mamiş, M.S., Steady-state and transient analysis of transmission lines by using state-space techniques, A Master's Thesis, University of Gaziantep, Gaziantep, Turkiye, 1999.
  • 25. Tütüncü B., Yıldırım enerjisinin benzetim programı yardımıyla incelenmesi ve dikey bir iletkene yıldırım düşmesi durumunda alan dağılımlarının s-domeninde tahmini, Yüksek Lisans Tezi, İnönü Üniversitesi Fen Bilimleri Enstitüsü, Malatya, 2012.
  • 26. Dorfler, F., & Bullo, F. (2012). Kron reduction of graphs with applications to electrical networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1), 150-163.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Bilal Tütüncü 0000-0002-7439-268X

Asım Kaygusuz 0000-0003-2905-1816

Bülent Urul 0000-0003-2656-2450

Publication Date June 15, 2020
Submission Date July 19, 2019
Acceptance Date March 22, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

IEEE B. Tütüncü, A. Kaygusuz, and B. Urul, “Yıldırım Enerji Dağılımının S-Domeninde Analizi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 2, pp. 816–834, 2020, doi: 10.17798/bitlisfen.594231.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS