Research Article
BibTex RIS Cite

Synthesis of hybrid nanoflowers using the purified bitter gourd (Momordica charantia Descourt.) peroxidase and its usability of direct blue 1 decolorization

Year 2020, Volume: 9 Issue: 2, 573 - 583, 15.06.2020
https://doi.org/10.17798/bitlisfen.603452

Abstract

Peroxidase enzymes are purified from different plant
sources are used efficiently for the removal of dyes in industrial wastes. The
fruit of bitter gourd (Momordica
charantia
), an inexpensive and easily accessible vegetable, is an important
source of peroxidase. In this study, total protein content was found to be
0.485 mg/mL and peroxidase activity was found to be 2360.9 EU/mg as a result of
50% protein precipitation made from green bitter gourd. However; total protein
amount was 0.232 mg/mL and free peroxidase activity was determined as 7719.30
EU/mg as a result of 60% protein precipitation made from ripe bitter gourd.
Peroxidase enzymes which were purified from bitter gourd in different growth
stages under optimum conditions showed higher enzymatic activity compared to
free forms when immobilized via enzyme-inorganic hybrid nanoflower synthesis
method. The highest peroxidase activity was seen in mature fruit and hybrid
nanoflower form (19661, 6 EU/mg). In addition, the usability of hybrid
nanoflowers was investigated compared to the free purified peroxidase for
removal of Direct Blue 1 dye widely used in textile industry. It was determined
that hybrid nanoflower form synthesized especially by using ripe bitter gourd
peroxidase had more dye removal.

References

  • 1. Husain Q., Jan U. 2000. Detoxification of phenols and aromatic amines from polluted wastewater by using phenol oxidases. J Sci Ind Res 59:286–293.2. Duran N., Esposito E. 2000. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B: Environ 28:83–99.3. Torres E., Bustos-Jaimes I., Le Bogne S. 2003. Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl. Catal. B: Environ. 46, 1–15.4. Oller I., Malato S., Sánchez-Pérez J. 2011. Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Science of the total environment, 409(20), 4141-4166.5. Ahmed S., Rasul M. G., Brown R., Hashib M. A. 2011. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of Environmental Management, 92(3), 311-330.6. Bhunia A, Durani S. Wangikar PP. 2001. Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol. Bioeng. 72:562–567.7. Bilal M., Iqbal H.M., Shah S.H., Hu H., Wang W., Zhang X. 2016. Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. Journal of Environmental Management, 183, 836-842.8. Altinkaynak C., Tavlasoglu S, Kalin R, Sadegihan N., Özdemir H., Ocsoy I., Özdemir N. 2017. A Hierarchical Assembly of Flower-Like Hybrid Turkish Black Radish Peroxidase-Cu2+ Nanobiocatalyst and Its Effective Use in Dye Decolorization, Chemosphere, 182, 122–128. 9. Sassolas A., Blum L.J., Leca-Bouvier B.D. 2012. Immobilization strategies to develop enzymatic biosensors, Biotechnology Advances, 30, 489–511.10. Kim J., Grate J.W., Wang P. 2006. Nanostructures For Enzyme Stabilization, Chemical Engineering Science, 61, 1017–1026.11. Altinkaynak C., Tavlasoglu S., Özdemir N., Ocsoy I. 2016. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol, 93–94:105–12.12. Ge J., Lei J., Zare R.N. 2012. Protein–inorganic hybrid nanoflowers, Nature Nanotechnology, 428-432.13. Altinkaynak C., Kocazorbaz E., Özdemir N., Zihnioglu F. 2018. Egg White Hybrid Nanoflower (EW-Hnf) With Biomimetic Polyphenol Oxidase Reactivity: Synthesis, Characterization And Potential Use in Decolorization Of Synthetic Dyes, Int. J. Biol. Macromol, 109:205–11.14. Zhu X., Huang J., Liu J., Zhang H., Jiang J., Yu R. 2017. A dual enzyme–inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose, Nanoscale, 9, 5658-5663.15. Jiao J., Xin X., Wang X., Xie Z., Xia C., Pan W. 2017. Self-assembly of biosurfactant-inorganic hybrid nanoflowers as efficient catalysts for degradation of cationic dyes, RSC Adv.,7, 43474-43482.16. Jun C., Shao M.Y., Peng Z. 2006. Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater, Water Research, 40, 283-290.17. Somtürk B., Kalın R., Özdemir N. 2014. Purification of peroxidase from red cabbage (Brassica oleracea var. capitata f. rubra) by affinity chromatography, Applied Biochemistry Biotechnology, 173, 1815-1828.18. ShaffIqu T. S., Roy J.J., Nair R.A., Abraham T. E. 2002. Degradation of textile dyes mediated by plant peroxidases, Applied Biochemistry and Biotechnology, 102–103, 315-326.19. Baldemir A., Ekinci K., İlgün S., Dalda A., Yetişir, H. 2018. Momordica charantia L.(kudret narı) meyvelerinin toplam fenolik madde içerikleri ve antioksidan kapasitelerinin değerlendirilmesi, Derim, 35(1):45-50.20. Nagarani G., Abirami A., Siddhuraju P. 2014. A comparative study on antioxidant potentials, inhibitory activities against key enzymes related to metabolic syndrome, and antiinflammatoryactivity of leaf extract from different Momordica species. Food Science and Human Wellness, 3: 36-46.21. Akhtar S., Ali Khan A., Husain, Q. 2005. Simultaneous purification and immobilization of bitter gourd (Momordica charantia) peroxidases on bioaffinity support. Journal of chemical technology and biotechnology, 80 (2), 198-205.22. Panadare Dhanashree C., Rathod Virendra K. 2017. Extraction of peroxidase from bitter gourd (Momordica charantia) by three phase partitioning with dimethyl carbonate (DMC) as organic phase, Process biochemistry, 61, 195-201.23. Altinkaynak C., Yilmaz I., Koksal Z., Özdemir H., Ocsoy I., Özdemir N. 2016. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability, Int. J. Biol. Macromolec. 84, 402-409.24. Altinkaynak C., Tavlasoglu S., Özdemir N., Ocsoy I. 2016. A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability, Enzyme Microb Technol, 93-94, 105-112.25. Zian L., Yun X., Yin Y., Hu W., Liu W., Yang H. 2014. Facile synthesis of Enzyme-inorganic hybrid nanoflowers and its application as colorimetric platform for visual detection of hydrogen perosixde and phenol, ACS Applied Materials&Interfaces, 6, 10775-10782.26. Akhtar S., Ali Khan A., Husain Q. 2005. Partially purified bitter gourd (Momordica charantia) peroxidase catalyzed decolorization of textile and other industrially important dyes. Bioresour Technol. 96(16):1804-11.27. Akhtar S., Khan A.A., Husain Q. 2005. Potential of immobilized bitter gourd (Momordica charantia) peroxidase in tge decolorization and removal of textile dyes from polluted wastewater and dyeing effluent, Chemosphere 60, 291-301.

Kudret Narı (Momordica charantia Descourt.) Meyvesinden Saflaştırılan Peroksidaz Enzimi Kullanılarak Hibrit Nano Çiçekler Sentezlenmesi ve Direct blue 1 Gideriminde Kullanılabilirlikleri

Year 2020, Volume: 9 Issue: 2, 573 - 583, 15.06.2020
https://doi.org/10.17798/bitlisfen.603452

Abstract

Farklı bitkisel kaynaklardan saflaştırılan peroksidaz
enzimleri verimli bir şekilde endüstriyel atıklarda yer alan boyar maddelerin
gideriminde kullanılmaktadır. Ucuz ve kolay ulaşılabilir bitkisel bir kaynak
olan kudret narı (Momordica charantia)
meyvesi önemli bir peroksidaz kaynağıdır. Bu çalışmada ham kudret narı
meyvesinden yapılan %50 oranında protein çöktürmesi sonucu toplam protein
miktarı 0,485 mg/mL bulunurken peroksidaz aktivitesi 2360,9 EU/mg olarak tespit
edilmiştir. Bunun yanında olgun kudret narı meyvesinden yapılan %60 oranında
protein çöktürmesi sonucu ise toplam protein miktarı 0,232 mg/mL iken serbest
peroksidaz aktivitesi 7719,30 EU/mg olarak tespit edilmiştir. Farklı büyüme
safhalarında yer alan meyvelerden optimum koşullarda saflaştırılmış peroksidaz
enzimleri enzim-inorganik hibrit nano çiçek sentez yöntemi ile immobilize
edildiğinde serbest formlarına göre daha yüksek enzimatik aktivite sergilemişlerdir.
En yüksek peroksidaz aktivitesi olgun meyvede ve hibrit nano çiçek formunda
(19661,6 EU/mg) görülmüştür. Ayrıca çalışmada tekstil endüstrisinde yaygın
olarak kullanılan Direct Blue 1 boyasının giderimi için hibrit nano çiçeklerin
serbest peroksidaz enzimleri ile karşılaştırmalı olarak kullanılabilirlikleri
araştırılmıştır. Özellikle ham meyve peroksidazı kullanılarak sentezlenen
hibrit nano çiçek formunun daha fazla boya giderimi yaptığı tespit edilmiştir.

Thanks

Ham ve olgunlaşmış kudret narı (M. charantia) temini için Erciyes Üniversitesi Seyrani Ziraat Fakültesi Prof. Dr. Öğretim Üyesi Halit Yetişir’e teşekkür ederiz.

References

  • 1. Husain Q., Jan U. 2000. Detoxification of phenols and aromatic amines from polluted wastewater by using phenol oxidases. J Sci Ind Res 59:286–293.2. Duran N., Esposito E. 2000. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B: Environ 28:83–99.3. Torres E., Bustos-Jaimes I., Le Bogne S. 2003. Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl. Catal. B: Environ. 46, 1–15.4. Oller I., Malato S., Sánchez-Pérez J. 2011. Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Science of the total environment, 409(20), 4141-4166.5. Ahmed S., Rasul M. G., Brown R., Hashib M. A. 2011. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of Environmental Management, 92(3), 311-330.6. Bhunia A, Durani S. Wangikar PP. 2001. Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol. Bioeng. 72:562–567.7. Bilal M., Iqbal H.M., Shah S.H., Hu H., Wang W., Zhang X. 2016. Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. Journal of Environmental Management, 183, 836-842.8. Altinkaynak C., Tavlasoglu S, Kalin R, Sadegihan N., Özdemir H., Ocsoy I., Özdemir N. 2017. A Hierarchical Assembly of Flower-Like Hybrid Turkish Black Radish Peroxidase-Cu2+ Nanobiocatalyst and Its Effective Use in Dye Decolorization, Chemosphere, 182, 122–128. 9. Sassolas A., Blum L.J., Leca-Bouvier B.D. 2012. Immobilization strategies to develop enzymatic biosensors, Biotechnology Advances, 30, 489–511.10. Kim J., Grate J.W., Wang P. 2006. Nanostructures For Enzyme Stabilization, Chemical Engineering Science, 61, 1017–1026.11. Altinkaynak C., Tavlasoglu S., Özdemir N., Ocsoy I. 2016. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol, 93–94:105–12.12. Ge J., Lei J., Zare R.N. 2012. Protein–inorganic hybrid nanoflowers, Nature Nanotechnology, 428-432.13. Altinkaynak C., Kocazorbaz E., Özdemir N., Zihnioglu F. 2018. Egg White Hybrid Nanoflower (EW-Hnf) With Biomimetic Polyphenol Oxidase Reactivity: Synthesis, Characterization And Potential Use in Decolorization Of Synthetic Dyes, Int. J. Biol. Macromol, 109:205–11.14. Zhu X., Huang J., Liu J., Zhang H., Jiang J., Yu R. 2017. A dual enzyme–inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose, Nanoscale, 9, 5658-5663.15. Jiao J., Xin X., Wang X., Xie Z., Xia C., Pan W. 2017. Self-assembly of biosurfactant-inorganic hybrid nanoflowers as efficient catalysts for degradation of cationic dyes, RSC Adv.,7, 43474-43482.16. Jun C., Shao M.Y., Peng Z. 2006. Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater, Water Research, 40, 283-290.17. Somtürk B., Kalın R., Özdemir N. 2014. Purification of peroxidase from red cabbage (Brassica oleracea var. capitata f. rubra) by affinity chromatography, Applied Biochemistry Biotechnology, 173, 1815-1828.18. ShaffIqu T. S., Roy J.J., Nair R.A., Abraham T. E. 2002. Degradation of textile dyes mediated by plant peroxidases, Applied Biochemistry and Biotechnology, 102–103, 315-326.19. Baldemir A., Ekinci K., İlgün S., Dalda A., Yetişir, H. 2018. Momordica charantia L.(kudret narı) meyvelerinin toplam fenolik madde içerikleri ve antioksidan kapasitelerinin değerlendirilmesi, Derim, 35(1):45-50.20. Nagarani G., Abirami A., Siddhuraju P. 2014. A comparative study on antioxidant potentials, inhibitory activities against key enzymes related to metabolic syndrome, and antiinflammatoryactivity of leaf extract from different Momordica species. Food Science and Human Wellness, 3: 36-46.21. Akhtar S., Ali Khan A., Husain, Q. 2005. Simultaneous purification and immobilization of bitter gourd (Momordica charantia) peroxidases on bioaffinity support. Journal of chemical technology and biotechnology, 80 (2), 198-205.22. Panadare Dhanashree C., Rathod Virendra K. 2017. Extraction of peroxidase from bitter gourd (Momordica charantia) by three phase partitioning with dimethyl carbonate (DMC) as organic phase, Process biochemistry, 61, 195-201.23. Altinkaynak C., Yilmaz I., Koksal Z., Özdemir H., Ocsoy I., Özdemir N. 2016. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability, Int. J. Biol. Macromolec. 84, 402-409.24. Altinkaynak C., Tavlasoglu S., Özdemir N., Ocsoy I. 2016. A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability, Enzyme Microb Technol, 93-94, 105-112.25. Zian L., Yun X., Yin Y., Hu W., Liu W., Yang H. 2014. Facile synthesis of Enzyme-inorganic hybrid nanoflowers and its application as colorimetric platform for visual detection of hydrogen perosixde and phenol, ACS Applied Materials&Interfaces, 6, 10775-10782.26. Akhtar S., Ali Khan A., Husain Q. 2005. Partially purified bitter gourd (Momordica charantia) peroxidase catalyzed decolorization of textile and other industrially important dyes. Bioresour Technol. 96(16):1804-11.27. Akhtar S., Khan A.A., Husain Q. 2005. Potential of immobilized bitter gourd (Momordica charantia) peroxidase in tge decolorization and removal of textile dyes from polluted wastewater and dyeing effluent, Chemosphere 60, 291-301.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Cevahir Altınkaynak

Ayşe Baldemir 0000-0003-2473-4837

Nalan Özdemir 0000-0002-8930-5198

Vedat Yılmaz This is me 0000-0002-1719-1638

İsmail Öçsoy 0000-0002-5991-3934

Publication Date June 15, 2020
Submission Date August 7, 2019
Acceptance Date March 20, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

IEEE C. Altınkaynak, A. Baldemir, N. Özdemir, V. Yılmaz, and İ. Öçsoy, “Kudret Narı (Momordica charantia Descourt.) Meyvesinden Saflaştırılan Peroksidaz Enzimi Kullanılarak Hibrit Nano Çiçekler Sentezlenmesi ve Direct blue 1 Gideriminde Kullanılabilirlikleri”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 2, pp. 573–583, 2020, doi: 10.17798/bitlisfen.603452.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS