Research Article
BibTex RIS Cite

Esnek Yol Kaplama Tabakalarında Kullanılan Geri Dönüştürülmüş Beton Agregalarının Ağır Trafik Yükleri Altında Doğrusal Olmayan Davranışının Deneysel ve Sayısal İncelenmesi

Year 2021, Volume: 10 Issue: 1, 217 - 234, 21.03.2021
https://doi.org/10.17798/bitlisfen.832609

Abstract

İnşaat yıkım atıklarından elde edilen geri dönüştürülmüş beton agregalarının (GDBA) yol dolgularında kullanımı, doğal agrega talebini azaltmakta, ekonomik ve çevre dostu tasarımlarla geleneksel esnek yol kaplamanın uzun dönem performansını iyileştirmektedir. Bu çalışmada, temel ve alt temel tabakalarında %100 GDBA kullanımının esnek yol kaplama tabakalarının mekanik davranışına etkileri araştırılmıştır. Bu amaçla önce GDBA'nın özelliklerinin belirlendiği bir laboratuvar çalışması yürütülmüş sonrasında ağır trafik yükleri altında bitümlü sıcak karışım tabaka kalınlığının da etkisi dikkate alınarak GDBA'nın uzun dönem performansını değerlendiren 3 boyutlu doğrusal olmayan sayısal analizler yapılmıştır. Laboratuvar çalışması kapsamında, hazırlanan temel ve alt temel numunelerinin geoteknik özellikleri ile birlikte, esneklik modülü ve kalıcı deformasyon deneyleri uygulanarak esneklik özellikleri belirlenmiştir. Esneklik modülünün tahmin edildiği üç farklı model kullanılarak elde edilen sonuçlar karşılaştırılmış ve en uygun model sayısal analizlerde kullanılmıştır. Sonlu farklar yöntemine dayanan sayısal analizlerle, geleneksel esnek yol kaplama tabakalarının ağır trafik yükleri altında birikmiş plastik deformasyonları (tekerlek izi) belirlenmiştir. Deney sonuçlarından, GDBA'nın doğal agregalara kıyasla daha yüksek esneklik modülü ve daha düşük plastik deformasyon değerlerine sahip olduğu belirlenmiştir. Sayısal analiz sonuçları ise %100 GDBA kullanılarak inşa edilen temel ve alt temel tabakalarının mekanik performansının ve tekerlek izi değerlerinin ilgili şartnamelerde belirtilen gereksinimleri karşıladığını göstermektedir. Görece daha ince seçilen bitümlü sıcak karışım tabakası altında, tandem yükleme sırasında asal gerilmelerin dönmesi ve kenarlardaki düşük kayma gerilmeleri nedeniyle deplasmanların yol merkezine doğru arttığı, bu tabaka kalınlığının artmasıyla kalıcı deformasyonların yaklaşık %50 azaldığı ve çoklu tekerlekler altındaki deplasmanların birbirine yaklaştığı belirlenmiştir. Deneysel ve sayısal inceleme sonucunda, GDBA'nın temel ve alt temel tabakalarında dolgu malzemesi olarak kullanımının uygun olduğu anlaşılmaktadır.

Supporting Institution

İTÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

MYL-2018-41813

Thanks

Bu çalışmada laboratuvar deneylerinin gerçekleştirilmesi için İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından verilen desteğe yazarlar teşekkür ederler.

References

  • Cabalar A.F., Zardikawi O.A.A., Abdulnafaa M.D. 2017. Utilisation of Construction and Demolition Materials with Clay for Road Pavement Subgrade. Road Materials and Pavement Design, 20 (3): 702-714.
  • Jayakody S., Gallage C., Ramanujam J. 2019. Performance Characteristics of Recycled Concrete Aggregate as an Unbound Pavement Material. Heliyon, 5 (9): e02494.
  • Mohammadinia A., Arulrajah A., Sanjayan J., Disfani M. M. 2016. Stabilization of Demolition Materials for Pavement Base/Subbase Applications Using Fly-Ash and Slag Geopolymers: Laboratory Investigation. Journal of Materials in Civil Engineering, 28 (7): 1-9.
  • Kawalec J., Kwiecien S., Pilipenko A., Rybak J. 2017. Application of Crushed Concrete in Geotechnical Engineering–Selected Issues. World Multidisciplinary Earth Sciences Symposium (WMESS 2017), 11-15 September, Prague-Czech Republic, 022057.
  • Jiménez J. R., Ayuso J., Agrela F., López M., Galvín A.P. 2012. Utilisation of Unbound Recycled Aggregates from Selected CDW in Unpaved Rural Roads. Resources, Conservation and Recycling, 58: 88-97.
  • Jayakody A., Gallage C., Kumar A. 2014. Assessment of Recycled Concrete Aggregates as a Pavement Material. Geomechanics and Engineering, 6 (3): 235-248.
  • Mohammadinia A., Arulrajah A., Sanjayan J., Disfani M.M., Bo M.W., Darmawan S. 2015. Geotechnical Properties of Lightly Stabilized Recycled Demolition Materials in Base/Sub-Base Applications. International Foundations Congress and Equipmen, Expo, Reston, V.A., USA.
  • López-Alonso M., Martinez-Echevarria M.J., Garach L., Galán A., Ordoñez J., Agrela F. 2019. Feasible Use of Recycled Alumina Combined with Recycled Aggregates in Road Construction. Construction and Building Materials, 195: 249-257.
  • Beja I.A., Motta R., Bernucci L.B. 2020. Application of Recycled Aggregates from Construction and Demolition Waste with Portland Cement and Hydrated Lime as Pavement Subbase in Brazil. Construction and Building Materials, 258: 119520.
  • Han Z., Zou W., Wang X. 2020. Predicting Water Retention Curve and Resilient Modulus of Compacted Natural and Recycled Pavement Unbound Granular Materials. International Journal of Pavement Engineering, 1477-268X (Online).
  • Oskooei P.R., Mohammadinia A., Arulrajah A., Horpibulsuk S. 2020. Application of Artificial Neural Network Models for Predicting the Resilient Modulus of Recycled Aggregates. International Journal of Pavement Engineering, (Online).
  • Ghorbani B., Arulrajah A., Narsilio G., Horpibulsuk S. 2020. Experimental Investigation and Modelling the Deformation Properties of Demolition Wastes Subjected to Freeze–Thaw Cycles Using ANN and SVR. Construction and Building Materials, 258: 119688.
  • Arulrajah A., Piratheepan J., Disfani M.M., Bo M.W. 2013. Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications. Journal of Materials in Civil Engineering, 25 (8): 1077-1088.
  • Pourtahmasb M.S., Karim M.R., Shamshirband S. 2015. Resilient Modulus Prediction of Asphalt Mixtures Containing Recycled Concrete Aggregate Using an Adaptive Neuro-Fuzzy Methodology. Construction and Building Materials, 82: 257-263.
  • Kaloop M.R., Gabr A.R., El-Badawy S.M., Arisha A., Shwally S., Hu J.W. 2019. Predicting Resilient Modulus of Recycled Concrete and Clay Masonry Blends for Pavement Applications Using Soft Computing Techniques. Frontiers of Structural and Civil Engineering, 13: 1379-1392.
  • Saberian M., Li J. 2019. Long-term Permanent Deformation Behaviour of Recycled Concrete Aggregate with Addition of Crumb Rubber in Base and Sub-Base Applications. Soil Dynamics and Earthquake Engineering, 121: 436-441.
  • Pérez I., Medina L., Gómez-Meijide B., Costa P.A., Cardoso A.S. 2020. Numerical Simulation of Bitumen Emulsion-Stabilised Base Course Mixtures with C&D Waste Aggregates Considering Nonlinear Elastic Behaviour. Construction and Building Materials, 249: 118696.
  • Kim D., Norouzi A., Kass S., Liske T., Kim Y.R. 2017. Mechanistic Performance Evaluation of Pavement Sections Containing RAP and WMA Additives in Manitoba. Construction and Building Materials, 133: 39-50.
  • Moazami D., Sahaf A., Moghaddam A.M. 2019. Investigating the Rutting Behavior of Modified Asphalt Mixtures with Waste Materials. Numerical Methods in Civil Engineering, 3 (4): 53-65.
  • Hu X., Zhong S., Walubita L. F. 2015. Three-dimensional Modelling of Multilayered Asphalt Concrete Pavement Structures: Strain Responses and Permanent Deformation. Road Materials and Pavement Design, 71 (3): 1-14.
  • American Association of State Highway and Transportation Officials. 1993. AASHTO Guide for Design of Pavement Structures. Washington D.C., USA.
  • American Association of State Highway and Transportation Officials. 2017. AASHTO T-307, Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials. Washington D.C., USA.
  • Hicks R.G., Monismith C.L. 1971. Factors Influencing the Resilient Properties of Granular Materials. Transportation Research Record, 345: 15-31.
  • Uzan J. 1985. Granular Material Characterization. Transportation Research Record, 1022: 52-59.
  • Transportation Research Board National Research Council. 2004. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Report 01-37A, Washington, D.C., USA.
  • Transportation Research Board National Research Council. 2003. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Report 01-28A, Washington, D.C., USA.
  • Khogali W.E.I., Mohamed E.H.H. 2007. Novel Approach for Characterization of Unbound Material. Journal of the Transportation Research Board, 1874: 38-46.
  • Haider I., Kaya Z., Cetin A., Hatipoglu M., Cetin B., Aydilek A.H. 2014. Drainage and Mechanical Behavior of Highway Base Materials. Journal of Irrigation and Drainage Engineering, 140 (6): 04014012.
  • Bestgen J.O., Hatipoglu M., Cetin B., Aydilek A.H. 2016. Mechanical and Environmental Suitability of Recycled Concrete Aggregate as a Highway Base Material. Journal of Materials in Civil Engineering, 28 (9): 04016067.
  • Stolle D., Guo P., Liu Y. 2009. Resilient Modulus Properties of Granular Highway Materials. Canadian Journal of Civil Engineering, 36 (4): 639-654.
  • Rosa M.G., Cetin B., Edil T.B., Benson C.H. 2017. Freeze-Thaw Performance of Fly Ash-Stabilized Materials and Recycled Pavement Materials. Journal of Materials in Civil Engineering, 29 (6): 04017015.
  • Türk Standardları Enstitüsü. 2010. TS 3720-Bitümlü Karışımlar-Asfalt Betonu-Karışım Tasarımı Hesap Esasları-Marshall Yöntemi. Bakanlıklar, Ankara.
  • Ishibashi I., Zhang X. 1993. Unified Dynamic Shear Moduli and Damping Ratios of Sand and Clay. Soils and Foundations, 33 (1): 182-191.
  • Wen H., Edil T.B. 2009. Sustainable Reconstruction of Highways with In-Situ Reclamation of Materials Stabilized for Heavier Loads. BCR2A Conference, Champaign, Illinois, USA.
  • Bozyurt O., Tinjum J.M., Son Y.H., Edil T.B., Benson C.H. 2012. Resilient Modulus of Recycled Asphalt Pavement and Recycled Concrete Aggregate. Geo-Congress, USA.
  • Akbas M., Dayioglu A., Hatipoglu, M., Iyisan R. 2020. Beneficial Use of Recycled Concrete Aggregate as Base and Subbase Material in Turkey. American Society of Civil Engineers International Conference on Transportation and Development, May 26-29, Seattle, Washington, USA.
  • Sanger M., Natarajan B.M., Wang B., Edil T., Ginder-Vogel M. 2019. Recycled Concrete Aggregate in Base Course Applications: Review of Field and Laboratory Investigations of Leachate Ph. Journal of Hazardous Materials, 121562.
  • Tuladhar R. Marshall A., Sivakugan N. 2020. Use of Recycled Concrete Aggregate for Pavement Construction. Advances in Construction and Demolition Waste Recycling, 181-197.
  • Werkmeister S. 2006. Shakedown Analysis of Unbound Granular Materials using Accelerated Pavement Test Results from New Zealand’s CAPTIF Facility. Geotechnical Special Publication, ASCE, Reston, VA.
  • Erlingsson S., Rahman M. 2013. Evaluation of Permanent Deformation Characteristics of Unbound Granular Materials by means of Multistage Repeated-Load Triaxial Tests. Journal of the Transportation Research Board, 2369 (1): 11-19.
  • Werkmeister S. 2003. Permanent Deformation Behavior of Unbound Granular Materials. Ph.D. Dissertation, Dresden University of Technology, Dresden, Germany.
  • Mohammadinia A., Naeini M., Arulrajah A., Horpibulsuk S., Leong M. 2020. Shakedown Analysis of Recycled Materials as Railway Capping Layer under Cyclic Loading. Soil Dynamics and Earthquake Engineering, 139.
  • Saberian M., Li J. 2019. Long-term Permanent Deformation Behaviour of Recycled Concrete Aggregate with Addition of Crumb Rubber in Base and Sub-Base Applications. Soil Dynamics and Earthquake Engineering, 121: 436-441.
  • T.C Ulaştırma Bakanlığı Karayolları Genel Müdürlüğü. 2013. Karayolları Teknik Şartnamesi-2013. https://www.tamyol.com.tr/ UserFiles/Content/KGM_Teknik_Sartnamesi_2013.pdf. Yayın tarihi (Erişim Tarihi: 23.11.2020).
Year 2021, Volume: 10 Issue: 1, 217 - 234, 21.03.2021
https://doi.org/10.17798/bitlisfen.832609

Abstract

Project Number

MYL-2018-41813

References

  • Cabalar A.F., Zardikawi O.A.A., Abdulnafaa M.D. 2017. Utilisation of Construction and Demolition Materials with Clay for Road Pavement Subgrade. Road Materials and Pavement Design, 20 (3): 702-714.
  • Jayakody S., Gallage C., Ramanujam J. 2019. Performance Characteristics of Recycled Concrete Aggregate as an Unbound Pavement Material. Heliyon, 5 (9): e02494.
  • Mohammadinia A., Arulrajah A., Sanjayan J., Disfani M. M. 2016. Stabilization of Demolition Materials for Pavement Base/Subbase Applications Using Fly-Ash and Slag Geopolymers: Laboratory Investigation. Journal of Materials in Civil Engineering, 28 (7): 1-9.
  • Kawalec J., Kwiecien S., Pilipenko A., Rybak J. 2017. Application of Crushed Concrete in Geotechnical Engineering–Selected Issues. World Multidisciplinary Earth Sciences Symposium (WMESS 2017), 11-15 September, Prague-Czech Republic, 022057.
  • Jiménez J. R., Ayuso J., Agrela F., López M., Galvín A.P. 2012. Utilisation of Unbound Recycled Aggregates from Selected CDW in Unpaved Rural Roads. Resources, Conservation and Recycling, 58: 88-97.
  • Jayakody A., Gallage C., Kumar A. 2014. Assessment of Recycled Concrete Aggregates as a Pavement Material. Geomechanics and Engineering, 6 (3): 235-248.
  • Mohammadinia A., Arulrajah A., Sanjayan J., Disfani M.M., Bo M.W., Darmawan S. 2015. Geotechnical Properties of Lightly Stabilized Recycled Demolition Materials in Base/Sub-Base Applications. International Foundations Congress and Equipmen, Expo, Reston, V.A., USA.
  • López-Alonso M., Martinez-Echevarria M.J., Garach L., Galán A., Ordoñez J., Agrela F. 2019. Feasible Use of Recycled Alumina Combined with Recycled Aggregates in Road Construction. Construction and Building Materials, 195: 249-257.
  • Beja I.A., Motta R., Bernucci L.B. 2020. Application of Recycled Aggregates from Construction and Demolition Waste with Portland Cement and Hydrated Lime as Pavement Subbase in Brazil. Construction and Building Materials, 258: 119520.
  • Han Z., Zou W., Wang X. 2020. Predicting Water Retention Curve and Resilient Modulus of Compacted Natural and Recycled Pavement Unbound Granular Materials. International Journal of Pavement Engineering, 1477-268X (Online).
  • Oskooei P.R., Mohammadinia A., Arulrajah A., Horpibulsuk S. 2020. Application of Artificial Neural Network Models for Predicting the Resilient Modulus of Recycled Aggregates. International Journal of Pavement Engineering, (Online).
  • Ghorbani B., Arulrajah A., Narsilio G., Horpibulsuk S. 2020. Experimental Investigation and Modelling the Deformation Properties of Demolition Wastes Subjected to Freeze–Thaw Cycles Using ANN and SVR. Construction and Building Materials, 258: 119688.
  • Arulrajah A., Piratheepan J., Disfani M.M., Bo M.W. 2013. Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications. Journal of Materials in Civil Engineering, 25 (8): 1077-1088.
  • Pourtahmasb M.S., Karim M.R., Shamshirband S. 2015. Resilient Modulus Prediction of Asphalt Mixtures Containing Recycled Concrete Aggregate Using an Adaptive Neuro-Fuzzy Methodology. Construction and Building Materials, 82: 257-263.
  • Kaloop M.R., Gabr A.R., El-Badawy S.M., Arisha A., Shwally S., Hu J.W. 2019. Predicting Resilient Modulus of Recycled Concrete and Clay Masonry Blends for Pavement Applications Using Soft Computing Techniques. Frontiers of Structural and Civil Engineering, 13: 1379-1392.
  • Saberian M., Li J. 2019. Long-term Permanent Deformation Behaviour of Recycled Concrete Aggregate with Addition of Crumb Rubber in Base and Sub-Base Applications. Soil Dynamics and Earthquake Engineering, 121: 436-441.
  • Pérez I., Medina L., Gómez-Meijide B., Costa P.A., Cardoso A.S. 2020. Numerical Simulation of Bitumen Emulsion-Stabilised Base Course Mixtures with C&D Waste Aggregates Considering Nonlinear Elastic Behaviour. Construction and Building Materials, 249: 118696.
  • Kim D., Norouzi A., Kass S., Liske T., Kim Y.R. 2017. Mechanistic Performance Evaluation of Pavement Sections Containing RAP and WMA Additives in Manitoba. Construction and Building Materials, 133: 39-50.
  • Moazami D., Sahaf A., Moghaddam A.M. 2019. Investigating the Rutting Behavior of Modified Asphalt Mixtures with Waste Materials. Numerical Methods in Civil Engineering, 3 (4): 53-65.
  • Hu X., Zhong S., Walubita L. F. 2015. Three-dimensional Modelling of Multilayered Asphalt Concrete Pavement Structures: Strain Responses and Permanent Deformation. Road Materials and Pavement Design, 71 (3): 1-14.
  • American Association of State Highway and Transportation Officials. 1993. AASHTO Guide for Design of Pavement Structures. Washington D.C., USA.
  • American Association of State Highway and Transportation Officials. 2017. AASHTO T-307, Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials. Washington D.C., USA.
  • Hicks R.G., Monismith C.L. 1971. Factors Influencing the Resilient Properties of Granular Materials. Transportation Research Record, 345: 15-31.
  • Uzan J. 1985. Granular Material Characterization. Transportation Research Record, 1022: 52-59.
  • Transportation Research Board National Research Council. 2004. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Report 01-37A, Washington, D.C., USA.
  • Transportation Research Board National Research Council. 2003. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Report 01-28A, Washington, D.C., USA.
  • Khogali W.E.I., Mohamed E.H.H. 2007. Novel Approach for Characterization of Unbound Material. Journal of the Transportation Research Board, 1874: 38-46.
  • Haider I., Kaya Z., Cetin A., Hatipoglu M., Cetin B., Aydilek A.H. 2014. Drainage and Mechanical Behavior of Highway Base Materials. Journal of Irrigation and Drainage Engineering, 140 (6): 04014012.
  • Bestgen J.O., Hatipoglu M., Cetin B., Aydilek A.H. 2016. Mechanical and Environmental Suitability of Recycled Concrete Aggregate as a Highway Base Material. Journal of Materials in Civil Engineering, 28 (9): 04016067.
  • Stolle D., Guo P., Liu Y. 2009. Resilient Modulus Properties of Granular Highway Materials. Canadian Journal of Civil Engineering, 36 (4): 639-654.
  • Rosa M.G., Cetin B., Edil T.B., Benson C.H. 2017. Freeze-Thaw Performance of Fly Ash-Stabilized Materials and Recycled Pavement Materials. Journal of Materials in Civil Engineering, 29 (6): 04017015.
  • Türk Standardları Enstitüsü. 2010. TS 3720-Bitümlü Karışımlar-Asfalt Betonu-Karışım Tasarımı Hesap Esasları-Marshall Yöntemi. Bakanlıklar, Ankara.
  • Ishibashi I., Zhang X. 1993. Unified Dynamic Shear Moduli and Damping Ratios of Sand and Clay. Soils and Foundations, 33 (1): 182-191.
  • Wen H., Edil T.B. 2009. Sustainable Reconstruction of Highways with In-Situ Reclamation of Materials Stabilized for Heavier Loads. BCR2A Conference, Champaign, Illinois, USA.
  • Bozyurt O., Tinjum J.M., Son Y.H., Edil T.B., Benson C.H. 2012. Resilient Modulus of Recycled Asphalt Pavement and Recycled Concrete Aggregate. Geo-Congress, USA.
  • Akbas M., Dayioglu A., Hatipoglu, M., Iyisan R. 2020. Beneficial Use of Recycled Concrete Aggregate as Base and Subbase Material in Turkey. American Society of Civil Engineers International Conference on Transportation and Development, May 26-29, Seattle, Washington, USA.
  • Sanger M., Natarajan B.M., Wang B., Edil T., Ginder-Vogel M. 2019. Recycled Concrete Aggregate in Base Course Applications: Review of Field and Laboratory Investigations of Leachate Ph. Journal of Hazardous Materials, 121562.
  • Tuladhar R. Marshall A., Sivakugan N. 2020. Use of Recycled Concrete Aggregate for Pavement Construction. Advances in Construction and Demolition Waste Recycling, 181-197.
  • Werkmeister S. 2006. Shakedown Analysis of Unbound Granular Materials using Accelerated Pavement Test Results from New Zealand’s CAPTIF Facility. Geotechnical Special Publication, ASCE, Reston, VA.
  • Erlingsson S., Rahman M. 2013. Evaluation of Permanent Deformation Characteristics of Unbound Granular Materials by means of Multistage Repeated-Load Triaxial Tests. Journal of the Transportation Research Board, 2369 (1): 11-19.
  • Werkmeister S. 2003. Permanent Deformation Behavior of Unbound Granular Materials. Ph.D. Dissertation, Dresden University of Technology, Dresden, Germany.
  • Mohammadinia A., Naeini M., Arulrajah A., Horpibulsuk S., Leong M. 2020. Shakedown Analysis of Recycled Materials as Railway Capping Layer under Cyclic Loading. Soil Dynamics and Earthquake Engineering, 139.
  • Saberian M., Li J. 2019. Long-term Permanent Deformation Behaviour of Recycled Concrete Aggregate with Addition of Crumb Rubber in Base and Sub-Base Applications. Soil Dynamics and Earthquake Engineering, 121: 436-441.
  • T.C Ulaştırma Bakanlığı Karayolları Genel Müdürlüğü. 2013. Karayolları Teknik Şartnamesi-2013. https://www.tamyol.com.tr/ UserFiles/Content/KGM_Teknik_Sartnamesi_2013.pdf. Yayın tarihi (Erişim Tarihi: 23.11.2020).
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Merve Akbaş 0000-0001-8466-2463

Bilal Özaslan 0000-0001-7951-1759

Hadi Khanbabazadeh 0000-0001-9764-7799

Recep İyisan 0000-0002-0887-9983

Project Number MYL-2018-41813
Publication Date March 21, 2021
Submission Date November 27, 2020
Acceptance Date February 13, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

IEEE M. Akbaş, B. Özaslan, H. Khanbabazadeh, and R. İyisan, “Esnek Yol Kaplama Tabakalarında Kullanılan Geri Dönüştürülmüş Beton Agregalarının Ağır Trafik Yükleri Altında Doğrusal Olmayan Davranışının Deneysel ve Sayısal İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 1, pp. 217–234, 2021, doi: 10.17798/bitlisfen.832609.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS