Research Article
BibTex RIS Cite

Characterization of Waste Tire Pyrolysis Products by GC, ICP-MS, TGA and DSC

Year 2021, Volume: 10 Issue: 3, 930 - 942, 17.09.2021
https://doi.org/10.17798/bitlisfen.840108

Abstract

The huge amount of waste tires (WTs) have been disposed to surroundings which cause dangerous effect on nature. Owing to recycled WTs, the pyrolysis is a good technique to dismiss harmful effect of the WTs, by converting into gas, liquid and solid. The present study has two steps of liquefaction at a batch reactor. Firstly, conversion of the WTs into gas, waste tire oil (WTO) and char. Then the WTO were blended with calcium oxide (CaO) or natural zeolite (NZ) at different ratio and pyrolyzed to obtain high quality oil, similar to gasoline fuel (GF) or diesel fuel (DF). The distillation curve is a good key to define fuel quaility. Thus, 10% CaO-WTO blend curve near to the DF. Unfortunately, the mixture was distillated at 54 oC, lower than the DF. Therefore, the blend was separated into two fractions due to intial-final boiling points as 150 oC to 360 oC, named as Diesel like fuel (DLF); between 54 oC to 150 oC, called as gasoline like fuel (GLF). Finally, samples were analyzed to characterizate by GC, ICP-MS, TGA and DSC for similarities of conventional fuels. Based on GLF and DLF results, they can be burned in engine.

References

  • 1. Chorazy, T., Čáslavský, J., Žvaková, V., Raček, J., Hlavínek, P.: Characteristics of Pyrolysis Oil as Renewable Source of Chemical Materials and Alternative Fuel from the Sewage Sludge Treatment. Waste and Biomass Valorization. (2019). https://doi.org/10.1007/s12649-019-00735-5
  • 2. Lira, H.N.F., Rangel, E.T., Suarez, P.A.Z.: Diesel-Like Fuels and Lubricating Grease Preparation from an Industrial Oily Waste. Waste and Biomass Valorization. 9, 2459–2470 (2018). https://doi.org/10.1007/s12649-018-0200-6
  • 3. Galvagno, S., Casciaro, G., Casu, S., Martino, M., Mingazzini, C., Russo, A., Portofino, S.: Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis. Waste Manag. 29, 678–689 (2009). https://doi.org/10.1016/j.wasman.2008.06.003
  • 4. Vounatsos, P., Atsonios, K., Itskos, G., Agraniotis, M., Grammelis, P., Kakaras, E.: Classification of Refuse Derived Fuel (RDF) and Model Development of a Novel Thermal Utilization Concept Through Air-Gasification. Waste and Biomass Valorization. 7, 1297–1308 (2016). https://doi.org/10.1007/s12649-016-9520-6 5. Cheng, X., Song, P., Zhao, X., Peng, Z., Wang, S.: Liquefaction of ground tire rubber at low temperature. Waste Manag. (2018). https://doi.org/10.1016/j.wasman.2017.10.004
  • 6. Li, Q., Li, F., Meng, A., Tan, Z., Zhang, Y.: Thermolysis of scrap tire and rubber in sub/super-critical water. Waste Manag. (2018). https://doi.org/10.1016/j.wasman.2017.10.017
  • 7. Kyari, M., Cunliffe, A., Williams, P.T.: Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires. Energy and Fuels. (2005). https://doi.org/10.1021/ef049686x
  • 8. Lam, S.S., Chase, H.A.: A review on waste to energy processes using microwave pyrolysis, (2012)
  • 9. Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., Balas, A.: Progress in used tyres management in the European Union: A review. Waste Manag. 32, 1742–1751 (2012). https://doi.org/10.1016/j.wasman.2012.05.010
  • 10. Williams, P.T.: Pyrolysis of waste tyres: A review. Waste Manag. (2013). https://doi.org/10.1016/j.wasman.2013.05.003
  • 11. Xu, S., Lai, D., Zeng, X., Zhang, L., Han, Z., Cheng, J., Wu, R., Mašek, O., Xu, G.: Pyrolysis characteristics of waste tire particles in fixed-bed reactor with internals. Carbon Resour. Convers. (2018). https://doi.org/10.1016/j.crcon.2018.10.001
  • 12. Gauthier-Maradei, P., Tavera Ruiz, C.P., Capron, M.: Oil and Aromatic Yield Maximization During Pyrolysis of Scrap Tire Rubber. Waste and Biomass Valorization. 10, 3723–3733 (2019). https://doi.org/10.1007/s12649-019-00695-w
  • 13. Ayanoğlu, A., Yumrutaş, R.: Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis. Energy. 103, 456–468 (2016). https://doi.org/10.1016/j.energy.2016.02.155
  • 14. Alkhatib, R., Loubar, K., Awad, S., Mounif, E., Tazerout, M.: Effect of heating power on the scrap tires pyrolysis derived oil. J. Anal. Appl. Pyrolysis. (2015). https://doi.org/10.1016/j.jaap.2015.10.014
  • 15. Islam, M.R., Parveen, M., HANIU, H., Sarker, M.R.I.: Innovation in Pyrolysis Technology for Management of Scrap Tire: a Solution of Energyand Environment. Int. J. Environ. Sci. Dev. (2010). https://doi.org/10.7763/ijesd.2010.v1.18
  • 16. Ayanoglu, A., Yumrutaş, R.: Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels. Energy Convers. Manag. 111, 261–270 (2016). https://doi.org/10.1016/j.enconman.2015.12.070
  • 17. Wang, W.C., Bai, C.J., Lin, C.T., Prakash, S.: Alternative fuel produced from thermal pyrolysis of waste tires and its use in a di diesel engine. Appl. Therm. Eng. 93, 330–338 (2016). https://doi.org/10.1016/j.applthermaleng.2015.09.056
  • 18. Pedroso, D.T., Kaltschmitt, M.: Dichrostachys cinerea as a possible energy crop-facts and figures. Biomass Convers. Biorefinery. 2, 41–51 (2012). https://doi.org/10.1007/s13399-011-0026-y
  • 19. Martínez, J.D., Murillo, R., García, T., Veses, A.: Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor. J. Hazard. Mater. 261, 637–645 (2013). https://doi.org/10.1016/j.jhazmat.2013.07.077
  • 20. Quek, A., Balasubramanian, R.: Liquefaction of waste tires by pyrolysis for oil and chemicals - A review. J. Anal. Appl. Pyrolysis. 101, 1–16 (2013). https://doi.org/10.1016/j.jaap.2013.02.016
  • 21. Ilkiliç, C., Aydin, H.: Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine. Fuel Process. Technol. 92, 1129–1135 (2011). https://doi.org/10.1016/j.fuproc.2011.01.009
  • 22. Arpa, O., Yumrutas, R., Demirbas, A.: Production of diesel-like fuel from waste engine oil by pyrolitic distillation. Appl. Energy. 87, 122–127 (2010). https://doi.org/10.1016/j.apenergy.2009.05.042
  • 23. Arpa, O., Yumrutaş, R., Argunhan, Z.: Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission. Fuel Process. Technol. 91, 1241–1249 (2010). https://doi.org/10.1016/j.fuproc.2010.04.004
  • 24. Başgel, S.: Petrol kökenli yakıtlarda önemli ağır metallerin analizi ve porfirine bağlı vanadyum türünün tayini, (2012)
  • 25. Tyler, G.: ICP Optical Emission Specroscopy Technical Note 05: ICP-OES , ICP-MS and AAS Techniques Compared. 1–11 (2012)
  • 26. Boryaev, A.A.: Development of advanced methods of determining the chemical stability of hydrocarbon fuels. Thermochim. Acta. 685, 178508 (2020). https://doi.org/10.1016/j.tca.2020.178508
  • 27. Kandala, H.: The Study of Variations in the Properties of Biodiesel on Addition of Antioxidants. (2009)
  • 28. Topa, E.H.: Thermal characterization and kinetics of diesel, methanol route biodiesel, canola oil and diesel-biodiesel blends at different blending rates by TGA and DSC
  • 29. Dwivedi, G., Sharma, M.P.: Experimental investigation on thermal stability of Pongamia Biodiesel by thermogravimetric analysis. Egypt. J. Pet. (2016). https://doi.org/10.1016/j.ejpe.2015.06.008
  • 30. Cabral, M.R.P., dos Santos, S.A.L., Stropa, J.M., da Silva, R.C. d. L., Cardoso, C.A.L., de Oliveira, L.C.S., Scharf, D.R., Simionatto, E.L., Santiago, E.F., Simionatto, E.: Chemical composition and thermal properties of methyl and ethyl esters prepared from Aleurites moluccanus (L.) Willd (Euphorbiaceae) nut oil. Ind. Crops Prod. (2016). https://doi.org/10.1016/j.indcrop.2016.02.058
  • 31. Zanier, A., Jäckle, H.W.: Heat capacity measurements of petroleum fuels by modulated DSC. Thermochim. Acta. 287, 203–212 (1996). https://doi.org/10.1016/S0040-6031(96)02995-4
  • 32. NonaChem GmbH: Nonachem.pdf, https://www.nonachem.com/turkish/hizmetlerimiz/akaryakitlar/dizel-mazot/index.php
  • 33. Taheri-Shakib, J., Rajabi-Kochi, M., Kazemzadeh, E., Naderi, H., Shekarifard, A.: A comprehensive study of the impact of wax compositions on the wax appearance temperature (WAT) of some Iranian crude oils: An experimental investigation. J. Pet. Sci. Eng. 165, 67–80 (2018). https://doi.org/10.1016/j.petrol.2018.02.002
  • 34. Coutinho, J.A.P., Dauphin, C., Daridon, J.L.: Measurements and modelling of wax formation in diesel fuels. Fuel. 79, 607–616 (2000). https://doi.org/10.1016/S0016-2361(99)00188-X
  • 35. Miller, S.J., Shah, N., Huffman, G.P.: Conversion of waste plastic to lubricating base oil. Energy and Fuels. (2005). https://doi.org/10.1021/ef049696y
  • 36. Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M.: Current state and future prospects of plastic waste as source of fuel: A review, (2015)
  • 37. Kaimal, V.K., Vijayabalan, P.: A detailed study of combustion characteristics of a DI diesel engine using waste plastic oil and its blends. Energy Convers. Manag. (2015). https://doi.org/10.1016/j.enconman.2015.08.043
  • 38. Lee, S., Yoshida, K., Yoshikawa, K.: Application of Waste Plastic Pyrolysis Oil in a Direct Injection Diesel Engine: For a Small Scale Non-Grid Electrification. Energy Environ. Res. (2015). https://doi.org/10.5539/eer.v5n1p18
  • 39. Scheirs, J.: Overview of Commercial Pyrolysis Processes for Waste Plastics. In: Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels (2006)
  • 40. Veksha, A., Giannis, A., Chang, V.W.C.: Conversion of non-condensable pyrolysis gases from plastics into carbon nanomaterials: Effects of feedstock and temperature. J. Anal. Appl. Pyrolysis. (2017). https://doi.org/10.1016/j.jaap.2017.03.005
  • 41. Boutekedjiret, C., Bentahar, F., Belabbes, R., Bessiere, J.M.: Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flavour Fragr. J. (2003). https://doi.org/10.1002/ffj.1226
  • 42. Guo, Z., Wang, S., Gu, Y., Xu, G., Li, X., Luo, Z.: Separation characteristics of biomass pyrolysis oil in molecular distillation. Sep. Purif. Technol. (2010). https://doi.org/10.1016/j.seppur.2010.09.019
  • 43. De Oliveira, F.S., Teixeira, L.S.G., Araujo, M.C.U., Korn, M.: Screening analysis to detect adulterations in Brazilian gasoline samples using distillation curves. Fuel. (2004). https://doi.org/10.1016/j.fuel.2003.09.018
  • 44. Sanchez-Minero, F., Ancheyta, J., Silva-Oliver, G., Flores-Valle, S.: Predicting SARA composition of crude oil by means of NMR. Fuel. (2013). https://doi.org/10.1016/j.fuel.2012.10.027
  • 45. Banar, M., Akyildiz, V., Özkan, A., Çokaygil, Z., Onay, Ö.: Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel). Energy Convers. Manag. (2012). https://doi.org/10.1016/j.enconman.2012.03.019
  • 46. Takahashi, J.: Analysis of trace metallic impurities in hydrocarbon fuels by ICP-MS Application note, https://www.agilent.com/cs/library/applications/5991-3264EN.pdf
  • 47. Forest, Ministry of Environment and, Regulation on Control of Waste Oils. , Ankara, Turkey (2008)
  • 48. Atabani, A.E., Mekaoussi, M., Uguz, G., Arpa, O., Ayanoglu, A., Shobana, S.: Evaluation, characterization, and engine performance of complementary fuel blends of butanol–biodiesel–diesel from Aleurites moluccanus as potential alternative fuels for CI engines. Energy Environ. (2018). https://doi.org/10.1177/0958305X18790953
  • 49. Gouveia, L., Oliveira, A., Congestri, R., Bruno, L., Soares, A.T., Menezes, R.S., Antoniosi Filho, N., Tzovenis, I.: Biodiesel from microalgae. In: Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products. pp. 235–258 (2017)
  • 50. Bennett, J.: Advanced fuel additives for modern internal combustion engines. Altern. Fuels Adv. Veh. Technol. Improv. Environ. Perform. Towar. Zero Carbon Transp. 165–194 (2014). https://doi.org/10.1533/9780857097422.1.165
  • 51. Chen, J., Li, T., Han, S.: Impact on Diesel Fuel Crystallization of Alkyl-Methacrylate—Maleic-Anhydride—Methacrylamide Terpolymers Used as Cold-Flow Improvers. Chem. Technol. Fuels Oils. 53, 436–443 (2017). https://doi.org/10.1007/s10553-017-0821-7
  • 52. Gonnet C., Morel, D., Ramamonjinirina, E., Serpinet, J., Claudy, P., Letoffé J.M Insertion of various long alkyl chain molecules in brush-type grafted monolayers : Chromatographic study of the resulting materials. Journal of Chromatography A. 330, 227-241 (1985).

Characterization of Waste Tire Pyrolysis Products by GC, ICP-MS, TGA and DSC

Year 2021, Volume: 10 Issue: 3, 930 - 942, 17.09.2021
https://doi.org/10.17798/bitlisfen.840108

Abstract

Büyük miktarda atık lastik (AL) çevreye atılmakta ve doğa üzerinde tehlikeli etkilere sebep olmaktadır. AL’in geri donuşumu için, piroliz kullanılarak atık lastiklerin gaz, sıvı ve katı ürünlere dönüştürülerek AL’nin zararlı etkilerini bertaraf etmek amacıyla kullanılan etkili bir tekniktir. Bu çalışmada, bir kesikli reaktör kullanılarak iki adımda sıvılaştırma yapılmıştır. İlk olarak, atık lastik gaza, atık lastik yağına (ALY) ve karbon siyahına dönüştürülmüştür. İkinci adımda ise ALY, farklı oranda Kalsiyum Oksit (CaO) veya Doğal Zeolit (NZ) ile karıştırılarak; benzine veya dizel benzeyen yakıt yüksek kaliteli yakıt elde etmek için piroliz edilmiştir. Distilasyon eğrisi, yakıt kalitesini tanımlamak için iyi bir referanstır. % 10CaO-ALY karışımının distilasyon eğrisi dizel yakıta benzerlik gösterdiği tespit edilmiştir. Fakat, karışımın dizel yakıttan daha düşük olan 54 oC'de distile edilmiştir. Bu nedenle karışım, ilk-son kaynama noktalarına göre ayrıştırılarak iki fraksiyon elde edilmiştir. 54 oC ile 150 oC arasında, benzin benzeri yakıt (BBY); 150 oC ile 360 oC arasında dizel benzeri yakıt (DBY)) elde edilmiştir. Elde edilen bu iki fraksiyon, geleneksel yakıtlara benzerliklerini değerlendirmek amacıyla GC, ICP-MS, TGA ve DSC teknikleri kullanılarak analiz edilmiştir. Elde edilen sonuçlar BBY ve DBY numunelerin motorlarda kullanılabileceğini göstermiştir.

References

  • 1. Chorazy, T., Čáslavský, J., Žvaková, V., Raček, J., Hlavínek, P.: Characteristics of Pyrolysis Oil as Renewable Source of Chemical Materials and Alternative Fuel from the Sewage Sludge Treatment. Waste and Biomass Valorization. (2019). https://doi.org/10.1007/s12649-019-00735-5
  • 2. Lira, H.N.F., Rangel, E.T., Suarez, P.A.Z.: Diesel-Like Fuels and Lubricating Grease Preparation from an Industrial Oily Waste. Waste and Biomass Valorization. 9, 2459–2470 (2018). https://doi.org/10.1007/s12649-018-0200-6
  • 3. Galvagno, S., Casciaro, G., Casu, S., Martino, M., Mingazzini, C., Russo, A., Portofino, S.: Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis. Waste Manag. 29, 678–689 (2009). https://doi.org/10.1016/j.wasman.2008.06.003
  • 4. Vounatsos, P., Atsonios, K., Itskos, G., Agraniotis, M., Grammelis, P., Kakaras, E.: Classification of Refuse Derived Fuel (RDF) and Model Development of a Novel Thermal Utilization Concept Through Air-Gasification. Waste and Biomass Valorization. 7, 1297–1308 (2016). https://doi.org/10.1007/s12649-016-9520-6 5. Cheng, X., Song, P., Zhao, X., Peng, Z., Wang, S.: Liquefaction of ground tire rubber at low temperature. Waste Manag. (2018). https://doi.org/10.1016/j.wasman.2017.10.004
  • 6. Li, Q., Li, F., Meng, A., Tan, Z., Zhang, Y.: Thermolysis of scrap tire and rubber in sub/super-critical water. Waste Manag. (2018). https://doi.org/10.1016/j.wasman.2017.10.017
  • 7. Kyari, M., Cunliffe, A., Williams, P.T.: Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires. Energy and Fuels. (2005). https://doi.org/10.1021/ef049686x
  • 8. Lam, S.S., Chase, H.A.: A review on waste to energy processes using microwave pyrolysis, (2012)
  • 9. Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., Balas, A.: Progress in used tyres management in the European Union: A review. Waste Manag. 32, 1742–1751 (2012). https://doi.org/10.1016/j.wasman.2012.05.010
  • 10. Williams, P.T.: Pyrolysis of waste tyres: A review. Waste Manag. (2013). https://doi.org/10.1016/j.wasman.2013.05.003
  • 11. Xu, S., Lai, D., Zeng, X., Zhang, L., Han, Z., Cheng, J., Wu, R., Mašek, O., Xu, G.: Pyrolysis characteristics of waste tire particles in fixed-bed reactor with internals. Carbon Resour. Convers. (2018). https://doi.org/10.1016/j.crcon.2018.10.001
  • 12. Gauthier-Maradei, P., Tavera Ruiz, C.P., Capron, M.: Oil and Aromatic Yield Maximization During Pyrolysis of Scrap Tire Rubber. Waste and Biomass Valorization. 10, 3723–3733 (2019). https://doi.org/10.1007/s12649-019-00695-w
  • 13. Ayanoğlu, A., Yumrutaş, R.: Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis. Energy. 103, 456–468 (2016). https://doi.org/10.1016/j.energy.2016.02.155
  • 14. Alkhatib, R., Loubar, K., Awad, S., Mounif, E., Tazerout, M.: Effect of heating power on the scrap tires pyrolysis derived oil. J. Anal. Appl. Pyrolysis. (2015). https://doi.org/10.1016/j.jaap.2015.10.014
  • 15. Islam, M.R., Parveen, M., HANIU, H., Sarker, M.R.I.: Innovation in Pyrolysis Technology for Management of Scrap Tire: a Solution of Energyand Environment. Int. J. Environ. Sci. Dev. (2010). https://doi.org/10.7763/ijesd.2010.v1.18
  • 16. Ayanoglu, A., Yumrutaş, R.: Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels. Energy Convers. Manag. 111, 261–270 (2016). https://doi.org/10.1016/j.enconman.2015.12.070
  • 17. Wang, W.C., Bai, C.J., Lin, C.T., Prakash, S.: Alternative fuel produced from thermal pyrolysis of waste tires and its use in a di diesel engine. Appl. Therm. Eng. 93, 330–338 (2016). https://doi.org/10.1016/j.applthermaleng.2015.09.056
  • 18. Pedroso, D.T., Kaltschmitt, M.: Dichrostachys cinerea as a possible energy crop-facts and figures. Biomass Convers. Biorefinery. 2, 41–51 (2012). https://doi.org/10.1007/s13399-011-0026-y
  • 19. Martínez, J.D., Murillo, R., García, T., Veses, A.: Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor. J. Hazard. Mater. 261, 637–645 (2013). https://doi.org/10.1016/j.jhazmat.2013.07.077
  • 20. Quek, A., Balasubramanian, R.: Liquefaction of waste tires by pyrolysis for oil and chemicals - A review. J. Anal. Appl. Pyrolysis. 101, 1–16 (2013). https://doi.org/10.1016/j.jaap.2013.02.016
  • 21. Ilkiliç, C., Aydin, H.: Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine. Fuel Process. Technol. 92, 1129–1135 (2011). https://doi.org/10.1016/j.fuproc.2011.01.009
  • 22. Arpa, O., Yumrutas, R., Demirbas, A.: Production of diesel-like fuel from waste engine oil by pyrolitic distillation. Appl. Energy. 87, 122–127 (2010). https://doi.org/10.1016/j.apenergy.2009.05.042
  • 23. Arpa, O., Yumrutaş, R., Argunhan, Z.: Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission. Fuel Process. Technol. 91, 1241–1249 (2010). https://doi.org/10.1016/j.fuproc.2010.04.004
  • 24. Başgel, S.: Petrol kökenli yakıtlarda önemli ağır metallerin analizi ve porfirine bağlı vanadyum türünün tayini, (2012)
  • 25. Tyler, G.: ICP Optical Emission Specroscopy Technical Note 05: ICP-OES , ICP-MS and AAS Techniques Compared. 1–11 (2012)
  • 26. Boryaev, A.A.: Development of advanced methods of determining the chemical stability of hydrocarbon fuels. Thermochim. Acta. 685, 178508 (2020). https://doi.org/10.1016/j.tca.2020.178508
  • 27. Kandala, H.: The Study of Variations in the Properties of Biodiesel on Addition of Antioxidants. (2009)
  • 28. Topa, E.H.: Thermal characterization and kinetics of diesel, methanol route biodiesel, canola oil and diesel-biodiesel blends at different blending rates by TGA and DSC
  • 29. Dwivedi, G., Sharma, M.P.: Experimental investigation on thermal stability of Pongamia Biodiesel by thermogravimetric analysis. Egypt. J. Pet. (2016). https://doi.org/10.1016/j.ejpe.2015.06.008
  • 30. Cabral, M.R.P., dos Santos, S.A.L., Stropa, J.M., da Silva, R.C. d. L., Cardoso, C.A.L., de Oliveira, L.C.S., Scharf, D.R., Simionatto, E.L., Santiago, E.F., Simionatto, E.: Chemical composition and thermal properties of methyl and ethyl esters prepared from Aleurites moluccanus (L.) Willd (Euphorbiaceae) nut oil. Ind. Crops Prod. (2016). https://doi.org/10.1016/j.indcrop.2016.02.058
  • 31. Zanier, A., Jäckle, H.W.: Heat capacity measurements of petroleum fuels by modulated DSC. Thermochim. Acta. 287, 203–212 (1996). https://doi.org/10.1016/S0040-6031(96)02995-4
  • 32. NonaChem GmbH: Nonachem.pdf, https://www.nonachem.com/turkish/hizmetlerimiz/akaryakitlar/dizel-mazot/index.php
  • 33. Taheri-Shakib, J., Rajabi-Kochi, M., Kazemzadeh, E., Naderi, H., Shekarifard, A.: A comprehensive study of the impact of wax compositions on the wax appearance temperature (WAT) of some Iranian crude oils: An experimental investigation. J. Pet. Sci. Eng. 165, 67–80 (2018). https://doi.org/10.1016/j.petrol.2018.02.002
  • 34. Coutinho, J.A.P., Dauphin, C., Daridon, J.L.: Measurements and modelling of wax formation in diesel fuels. Fuel. 79, 607–616 (2000). https://doi.org/10.1016/S0016-2361(99)00188-X
  • 35. Miller, S.J., Shah, N., Huffman, G.P.: Conversion of waste plastic to lubricating base oil. Energy and Fuels. (2005). https://doi.org/10.1021/ef049696y
  • 36. Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M.: Current state and future prospects of plastic waste as source of fuel: A review, (2015)
  • 37. Kaimal, V.K., Vijayabalan, P.: A detailed study of combustion characteristics of a DI diesel engine using waste plastic oil and its blends. Energy Convers. Manag. (2015). https://doi.org/10.1016/j.enconman.2015.08.043
  • 38. Lee, S., Yoshida, K., Yoshikawa, K.: Application of Waste Plastic Pyrolysis Oil in a Direct Injection Diesel Engine: For a Small Scale Non-Grid Electrification. Energy Environ. Res. (2015). https://doi.org/10.5539/eer.v5n1p18
  • 39. Scheirs, J.: Overview of Commercial Pyrolysis Processes for Waste Plastics. In: Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels (2006)
  • 40. Veksha, A., Giannis, A., Chang, V.W.C.: Conversion of non-condensable pyrolysis gases from plastics into carbon nanomaterials: Effects of feedstock and temperature. J. Anal. Appl. Pyrolysis. (2017). https://doi.org/10.1016/j.jaap.2017.03.005
  • 41. Boutekedjiret, C., Bentahar, F., Belabbes, R., Bessiere, J.M.: Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flavour Fragr. J. (2003). https://doi.org/10.1002/ffj.1226
  • 42. Guo, Z., Wang, S., Gu, Y., Xu, G., Li, X., Luo, Z.: Separation characteristics of biomass pyrolysis oil in molecular distillation. Sep. Purif. Technol. (2010). https://doi.org/10.1016/j.seppur.2010.09.019
  • 43. De Oliveira, F.S., Teixeira, L.S.G., Araujo, M.C.U., Korn, M.: Screening analysis to detect adulterations in Brazilian gasoline samples using distillation curves. Fuel. (2004). https://doi.org/10.1016/j.fuel.2003.09.018
  • 44. Sanchez-Minero, F., Ancheyta, J., Silva-Oliver, G., Flores-Valle, S.: Predicting SARA composition of crude oil by means of NMR. Fuel. (2013). https://doi.org/10.1016/j.fuel.2012.10.027
  • 45. Banar, M., Akyildiz, V., Özkan, A., Çokaygil, Z., Onay, Ö.: Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel). Energy Convers. Manag. (2012). https://doi.org/10.1016/j.enconman.2012.03.019
  • 46. Takahashi, J.: Analysis of trace metallic impurities in hydrocarbon fuels by ICP-MS Application note, https://www.agilent.com/cs/library/applications/5991-3264EN.pdf
  • 47. Forest, Ministry of Environment and, Regulation on Control of Waste Oils. , Ankara, Turkey (2008)
  • 48. Atabani, A.E., Mekaoussi, M., Uguz, G., Arpa, O., Ayanoglu, A., Shobana, S.: Evaluation, characterization, and engine performance of complementary fuel blends of butanol–biodiesel–diesel from Aleurites moluccanus as potential alternative fuels for CI engines. Energy Environ. (2018). https://doi.org/10.1177/0958305X18790953
  • 49. Gouveia, L., Oliveira, A., Congestri, R., Bruno, L., Soares, A.T., Menezes, R.S., Antoniosi Filho, N., Tzovenis, I.: Biodiesel from microalgae. In: Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products. pp. 235–258 (2017)
  • 50. Bennett, J.: Advanced fuel additives for modern internal combustion engines. Altern. Fuels Adv. Veh. Technol. Improv. Environ. Perform. Towar. Zero Carbon Transp. 165–194 (2014). https://doi.org/10.1533/9780857097422.1.165
  • 51. Chen, J., Li, T., Han, S.: Impact on Diesel Fuel Crystallization of Alkyl-Methacrylate—Maleic-Anhydride—Methacrylamide Terpolymers Used as Cold-Flow Improvers. Chem. Technol. Fuels Oils. 53, 436–443 (2017). https://doi.org/10.1007/s10553-017-0821-7
  • 52. Gonnet C., Morel, D., Ramamonjinirina, E., Serpinet, J., Claudy, P., Letoffé J.M Insertion of various long alkyl chain molecules in brush-type grafted monolayers : Chromatographic study of the resulting materials. Journal of Chromatography A. 330, 227-241 (1985).
There are 51 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Gediz Uğuz 0000-0002-6796-6067

Abdülkadir Ayanoğlu 0000-0002-5835-558X

Publication Date September 17, 2021
Submission Date December 13, 2020
Acceptance Date September 1, 2021
Published in Issue Year 2021 Volume: 10 Issue: 3

Cite

IEEE G. Uğuz and A. Ayanoğlu, “Characterization of Waste Tire Pyrolysis Products by GC, ICP-MS, TGA and DSC”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 3, pp. 930–942, 2021, doi: 10.17798/bitlisfen.840108.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS