Research Article
BibTex RIS Cite

Endosülfan ve Metabolitlerinin Su Örneklerinde Vorteks Destekli Sıvı-Sıvı Mikro Ekstraksiyon ve Yüksek Performanslı Sıvı Kromatografi Kullanılarak Analizi

Year 2021, Volume: 10 Issue: 4, 1404 - 1415, 31.12.2021
https://doi.org/10.17798/bitlisfen.959233

Abstract

Endosülfan ve metabolitlerinin doğada bozunmaya karşı mukavemetinin yüksek oluşu, canlılarda biyobirikim özelliği ve çevresel taşınımı nedeniyle, yasal kullanımlarının sınırlandırılması/durdurulması sonrasında bile çevresel örneklerde tayin edilebilmekte, çevre ve halk sağlığı açısından risk oluşturmaktadır. Bununla birlikte endosülfan, izomerlerine benzer toksik özelliklere sahip farklı metabolitlere parçalanabilmektedir. Bu nedenle endosülfan kaynakları ve uzaklaştırma yöntemlerinin belirlenmesinde endosülfan ve metabolitlerinin birlikte analiz edilmesi ve bozunmalarının izlenmesi önemlidir. Bu çalışmada endosülfan ve metabolitlerinin birlikte analizlerinin yapılmasında vorteks destekli sıvı-sıvı mikroekstraksiyon (VALLME) ve sıvı kromatografi analizi yöntemi uygulanarak geri kazanım çalışmalarının optimizasyonu yapılmıştır. Endosülfan izomerlerinin ve metabolitlerinin ayrılması ve saptanması için GL science C18 reversed phase kolon ve UV/VIS/PDA ikili absorbans detektörü içeren Shimatzu Prominence-i 2030- 3d sıvı kromatograf cihazı kullanılmıştır. 1 mL/dk akış hızında asetonitril:su karışımı (70:30, v:v) mobil faz olarak kullanılmıştır. Endosülfan lakton, endosülfan sülfat, endosülfan eter, β-endosülfan ve α-endosülfan, sırasıyla 214 nm'de kolonda tutulma sürelerine göre belirlenmiştir. HPLC analizinden sonra en iyi kromatogram n-hekzan solventi ile elde edilmiş; bu nedenle bu solvent için en yüksek geri kazanım değerlerinin elde edilmesinde numune hacminin, solvent hacminin ve ekstraksiyon süresinin etkileri deneysel olarak araştırılmış ve değişkenler için optimal koşullar sırasıyla 10 mL, 200 µL ve 3 dakika olarak elde edilmiştir. Optimum koşullar altında, endosülfan lakton, endosülfan sülfat, endosülfan eter, β-endosülfan ve α-endosülfan için geri kazanım oranları sırasıyla %115.31, %91.1, %96.79, %103.06 ve %99.06 olarak belirlenmiştir.

Supporting Institution

Yüksek Öğretim Kurumu

Project Number

2014-ÖYP-106

Thanks

Yüksek Öğretim Kurumuna “2014-ÖYP-106” no.lu proje ile vermiş olduğu destekten ötürü teşekkürlerimi sunarım.

References

  • [1] Bajpayee M, Pandey AK, Zaidi S, Musarrat J, Parmar D, Mathur N, 2006. DNA damage and mutagenicity induced by endosulfan and its metabolites. Environmental and Molecular Mutagenesis, 47(9):682-92.
  • [2] Goebel H, Gorbach S, Knauf W, Rimpau R, Huttenbach H., 1982. Properties, effects, residues, and analytics of the insecticide endosulfan,.1-165.
  • [3] Li Y, Macdonald R., 2005. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. Science of the total environment, 342(1-3):87-106.
  • [4] Janssen M., 2011. Endosulfan: A closer look at the arguments against a worldwide phase out.
  • [5] Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, 2010. Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Science of the Total Environment, 408(15):2966-84.
  • [6] Hwang J-I, Lee S-E, Kim J-E., 2015. Plant uptake and distribution of endosulfan and its sulfate metabolite persisted in soil. PloS one, 10(11):e0141728.
  • [7] Shah NS, He X, Khan HM, Khan JA, O'Shea KE, Boccelli DL, 2013. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study. Journal of Hazardous Materials, 263:584-92.
  • [8] Vidal JM, Plaza-Bolanos P, Romero-González R, Frenich AG. , 2009. Determination of pesticide transformation products: a review of extraction and detection methods. Journal of Chromatography A, 1216(40):6767-88.
  • [9] Ahmad W, Al-Sibaai A, Bashammakh A, Alwael H, El-Shahawi M., 2015. Recent advances in dispersive liquid-liquid microextraction for pesticide analysis. TrAC Trends in Analytical Chemistry, 72:181-92.
  • [10] Płotka-Wasylka J, Owczarek K, Namieśnik J., 2016. Modern solutions in the field of microextraction using liquid as a medium of extraction. TrAC Trends in Analytical Chemistry, 85:46-64.
  • [11] Yiantzi E, Psillakis E, Tyrovola K, Kalogerakis N., 2010. Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta, 80(5):2057-62.
  • [12] Ojeda CB, Rojas FS. , 2018. Vortex-assisted liquid–liquid microextraction (VALLME): The latest applications. Chromatographia, 81(1):89-103.
  • [13] Karadaş C, Kara D., 2017. Dispersive liquid–liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry. Food chemistry, 220:242-8.
  • [14] Çabuk H, Yılmaz Y, Yıldız E., 2019. A vortex-assisted deep eutectic solvent-based liquid-liquid microextraction for the analysis of alkyl ggallates in vegetable oils. Acta Chimica Slovenica, 66(2):385-94.
  • [15] Jia C, Zhu X, Wang J, Zhao E, He M, Chen L., 2010. Extraction of pesticides in water samples using vortex-assisted liquid–liquid microextraction. Journal of Chromatography A, 1217(37):5868-71.
  • [16] Li T, Song Y, Li J, Zhang M, Shi Y, Fan J., 2020. New low viscous hydrophobic deep eutectic solvents in vortex-assisted liquid-liquid microextraction for the determination of phthalate esters from food-contacted plastics. Food chemistry, 309:125752.
  • [17] Liu X, Liu C, Qian H, Qu Y, Zhang S, Lu R., 2019. Ultrasound-assisted dispersive liquid-liquid microextraction based on a hydrophobic deep eutectic solvent for the preconcentration of pyrethroid insecticides prior to determination by high-performance liquid chromatography. Microchemical Journal, 146:614-21.
  • [18] Vidal L, Canals A, Kalogerakis N, Psillakis E., 2005. Headspace single-drop microextraction for the analysis of chlorobenzenes in water samples. Journal of chromatography A, 1089(1-2):25-30.
  • [19] Papadopoulou A, Román IP, Canals A, Tyrovola K, Psillakis E., 2011. Fast screening of perfluorooctane sulfonate in water using vortex-assisted liquid–liquid microextraction coupled to liquid chromatography–mass spectrometry. Analytica chimica acta, 691(1-2):56-61.
  • [20] Zaruba S, Vishnikin AB, Andruch V., 2016. A novel vortex-assisted liquid–liquid microextraction approach using auxiliary solvent: determination of iodide in mineral water samples. Talanta, 149:110-6.
  • [21] Lian Y, Qiu X, Yang Y., 2014. Vortex-assisted liquid–liquid microextraction combined with HPLC for the simultaneous determination of five phthalate esters in liquor samples. Food analytical methods, 7(3):636-44.
  • [22] Shalash M, Makahleh A, Salhimi SM, Saad B., 2017. Vortex-assisted liquid-liquid–liquid microextraction followed by high performance liquid chromatography for the simultaneous determination of fourteen phenolic acids in honey, iced tea and canned coffee drinks. Talanta, 174:428-35.
Year 2021, Volume: 10 Issue: 4, 1404 - 1415, 31.12.2021
https://doi.org/10.17798/bitlisfen.959233

Abstract

Project Number

2014-ÖYP-106

References

  • [1] Bajpayee M, Pandey AK, Zaidi S, Musarrat J, Parmar D, Mathur N, 2006. DNA damage and mutagenicity induced by endosulfan and its metabolites. Environmental and Molecular Mutagenesis, 47(9):682-92.
  • [2] Goebel H, Gorbach S, Knauf W, Rimpau R, Huttenbach H., 1982. Properties, effects, residues, and analytics of the insecticide endosulfan,.1-165.
  • [3] Li Y, Macdonald R., 2005. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. Science of the total environment, 342(1-3):87-106.
  • [4] Janssen M., 2011. Endosulfan: A closer look at the arguments against a worldwide phase out.
  • [5] Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, 2010. Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Science of the Total Environment, 408(15):2966-84.
  • [6] Hwang J-I, Lee S-E, Kim J-E., 2015. Plant uptake and distribution of endosulfan and its sulfate metabolite persisted in soil. PloS one, 10(11):e0141728.
  • [7] Shah NS, He X, Khan HM, Khan JA, O'Shea KE, Boccelli DL, 2013. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study. Journal of Hazardous Materials, 263:584-92.
  • [8] Vidal JM, Plaza-Bolanos P, Romero-González R, Frenich AG. , 2009. Determination of pesticide transformation products: a review of extraction and detection methods. Journal of Chromatography A, 1216(40):6767-88.
  • [9] Ahmad W, Al-Sibaai A, Bashammakh A, Alwael H, El-Shahawi M., 2015. Recent advances in dispersive liquid-liquid microextraction for pesticide analysis. TrAC Trends in Analytical Chemistry, 72:181-92.
  • [10] Płotka-Wasylka J, Owczarek K, Namieśnik J., 2016. Modern solutions in the field of microextraction using liquid as a medium of extraction. TrAC Trends in Analytical Chemistry, 85:46-64.
  • [11] Yiantzi E, Psillakis E, Tyrovola K, Kalogerakis N., 2010. Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta, 80(5):2057-62.
  • [12] Ojeda CB, Rojas FS. , 2018. Vortex-assisted liquid–liquid microextraction (VALLME): The latest applications. Chromatographia, 81(1):89-103.
  • [13] Karadaş C, Kara D., 2017. Dispersive liquid–liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry. Food chemistry, 220:242-8.
  • [14] Çabuk H, Yılmaz Y, Yıldız E., 2019. A vortex-assisted deep eutectic solvent-based liquid-liquid microextraction for the analysis of alkyl ggallates in vegetable oils. Acta Chimica Slovenica, 66(2):385-94.
  • [15] Jia C, Zhu X, Wang J, Zhao E, He M, Chen L., 2010. Extraction of pesticides in water samples using vortex-assisted liquid–liquid microextraction. Journal of Chromatography A, 1217(37):5868-71.
  • [16] Li T, Song Y, Li J, Zhang M, Shi Y, Fan J., 2020. New low viscous hydrophobic deep eutectic solvents in vortex-assisted liquid-liquid microextraction for the determination of phthalate esters from food-contacted plastics. Food chemistry, 309:125752.
  • [17] Liu X, Liu C, Qian H, Qu Y, Zhang S, Lu R., 2019. Ultrasound-assisted dispersive liquid-liquid microextraction based on a hydrophobic deep eutectic solvent for the preconcentration of pyrethroid insecticides prior to determination by high-performance liquid chromatography. Microchemical Journal, 146:614-21.
  • [18] Vidal L, Canals A, Kalogerakis N, Psillakis E., 2005. Headspace single-drop microextraction for the analysis of chlorobenzenes in water samples. Journal of chromatography A, 1089(1-2):25-30.
  • [19] Papadopoulou A, Román IP, Canals A, Tyrovola K, Psillakis E., 2011. Fast screening of perfluorooctane sulfonate in water using vortex-assisted liquid–liquid microextraction coupled to liquid chromatography–mass spectrometry. Analytica chimica acta, 691(1-2):56-61.
  • [20] Zaruba S, Vishnikin AB, Andruch V., 2016. A novel vortex-assisted liquid–liquid microextraction approach using auxiliary solvent: determination of iodide in mineral water samples. Talanta, 149:110-6.
  • [21] Lian Y, Qiu X, Yang Y., 2014. Vortex-assisted liquid–liquid microextraction combined with HPLC for the simultaneous determination of five phthalate esters in liquor samples. Food analytical methods, 7(3):636-44.
  • [22] Shalash M, Makahleh A, Salhimi SM, Saad B., 2017. Vortex-assisted liquid-liquid–liquid microextraction followed by high performance liquid chromatography for the simultaneous determination of fourteen phenolic acids in honey, iced tea and canned coffee drinks. Talanta, 174:428-35.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Mehmet Türkyılmaz 0000-0001-5484-571X

Sezen Küçükçongar 0000-0001-6444-4397

Project Number 2014-ÖYP-106
Publication Date December 31, 2021
Submission Date June 29, 2021
Acceptance Date October 18, 2021
Published in Issue Year 2021 Volume: 10 Issue: 4

Cite

IEEE M. Türkyılmaz and S. Küçükçongar, “Endosülfan ve Metabolitlerinin Su Örneklerinde Vorteks Destekli Sıvı-Sıvı Mikro Ekstraksiyon ve Yüksek Performanslı Sıvı Kromatografi Kullanılarak Analizi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 4, pp. 1404–1415, 2021, doi: 10.17798/bitlisfen.959233.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS