Research Article
BibTex RIS Cite

Kiral Amit Bileşiğinin Jelleşme Özelliklerinin İncelenmesi

Year 2022, Volume: 11 Issue: 1, 185 - 193, 24.03.2022
https://doi.org/10.17798/bitlisfen.1009644

Abstract

Bu çalışmada L-izolösin temelli C2-simetrik kiral tetraamit bileşiği organojelatör olarak seçilmiş olup çeşitli çözücülerle jel verip vermediği araştırılmıştır. Oluşan jellerin minimum jelleşme konsantrasyonu ve jelin erime sıcaklığı olan Tg değeri tespit edilmiştir. Ayrıca jelleşme entalpisi değeri olan ΔHg, Van’t Hoff denkleminden bulunmuştur. Bunun yanı sıra jelin ağ yapısı SEM cihazıyla çekilen görüntülerle tespit edilmiştir. Çalışmada jelleştirme çözücüsü olarak ilaç ve kozmetik alanında kullanılan ve biyouyumlu olan yağ asit esterleri (etil laurat, izopropil laurat, etil miristat, izopropil miristat, etil palmitat, izopropil palmitat) ve de yaygın olarak kullanılan anisol, ksilen, likit parafin, toluen, dietilen glikol, 1-dekanol, n-dodekan ve kloroform seçilmiştir. Buna göre organojelatör, seçilen çözücülerle yağ asidi esterlerinden izopropil miristat hariç tümüyle çok düşük konsantrasyon değerlerinde jel oluşturmuştur. Yaygın organik çözücülerden ise ksilen, dietilen glikol, 1-dekanol ve kloroform hariç diğer çözücülerle jel vermiştir. Ayrıca yağ asidi esterleri ile hazırlanan jellerin Tg değerlerinin, yaygın çözücüler içinde hazırlanan jellerin Tg değerlerine göre daha fazla olduğu belirlenmiştir. Bu sonuca göre en yüksek Tg değerlerine sahip organojel, çözücüsü LEE olan jeldir. Bunun yanı sıra jelleşme entalpisi olan ΔHg sonuçlarına baktığımızda ise en yüksek değerin yine LEE ile hazırlanan jelle elde edildiği görülmektedir.

Supporting Institution

Batman Üniversitesi

Project Number

BTÜBAP-2018-FED-3

References

  • [1] Vintiloiu A, Leroux JC, 2008. Organogels and their use in drug delivery–A review. Journal of Controlled Release, 125: 179-192.
  • [2] Çolak M, Baris D, Pirinççioğlu N, Hoşgören H, 2017. Novel bis(aminoalcohol)oxalamide organogelators and their diglycolyamide analogs: evaluation of gelation efficiency in various organic fluids. Turkish Journal of Chemistry, 41: 658-671.
  • [3] Sangeetha N, Maitra U, 2005. Supramolecular Gels: Functions And Uses. Chemical Society Reviews, 34: 821-836.
  • [4] De Loos M, Feringa BL, Van Esch JH, 2005. Design and application of self-assembled low molecular weight hydrogels. European Journal of Organic Chemistry, 17: 3615-3631.
  • [5] Fages F, Vogtle F, Zinic M, 2005. Systematic design of amide- and urea-type gelators with tailored properties. Topics in Current Chemistry, 256: 77-131.
  • [6] Tachibana T, Mori T, Hori K, 1980. Long chain fatty acid gelator. Bulletin of the Chemical Society of Japan, 53: 1714-1720.
  • [7] Uzan S, Barış D, Çolak M, Aydın H, Hoşgören H, 2016. Organogels as novel carriers for dermal and topical drug delivery vehicles. Tetrahedron, 72: 7517-7525.
  • [8] Zhang Y, Gu H, Yang Z, Xu B, 2003. Supramolecular Hydrogels Respond to Ligand−Receptor Interaction. Journal of the American Chemical Society, 125(45): 13680-13681.
  • [9] Zhou SL, Matsumoto S, Tian HD, Yamane H, Ojida A, Kiyonaka S, Hamachi I, 2005. pH-Responsive Shrinkage/Swelling of a Supramolecular Hydrogel Composed of Two Small Amphiphilic Molecules. Chemistry A European Journal, 11: 1130-1136.
  • [10] Gupta SK, Bansal P, Bhardwaj RK, Jaiswal J, Velpandian T, 2002. Comparison of analgesic and anti-inflammatory activity of meloxicam gel with diclofenac and piroxicam gels in animal models: Pharmacokinetic parameters after dermal application. Skin Pharmacology and Applied Skin Physiology, 15: 105-111.
  • [11] Tarun G, Ajay B, Bhawana K, Sunil K, Ravi J, 2011. Organogels: Advanced and novel drug delivery system. Internatinal Research Journal of Pharmacy, 2(12): 15-21.
  • [12] White BD, Mallen J, Arnold KA, Fronczek FR, Gandour RD, Gehrig LMB, Gokel GW, 1989. Peptide side-arm derivatives of lariat ethers and bibracchial lariat ethers: syntheses, cation binding properties, and solid state structural data. The Journal of Organic Chemistry, 54: 937-947.
  • [13] Sanna V, Mariani A, Caria G, Sechi M, 2009. Synthesis and evaluation of different fatty acid esters formulated into Precirol ATO-based lipid nanoparticles as vehicles for topical delivery. Chemical and Pharmaceutical Bulletin, 57: 680-684.
  • [14] Sunkur M, Aydın S, Aral T, Dağ B, Erenler R, 2021. Preparation of new mono- and bis-amide derivatives of L-isoleucine via amidation of carboxyl and amino groups. Organic Communications, 14(3): 294-299.
  • [15] Hanabusa K, Yamada M, Kimura M, Shirai H, 1996. Prominent gelation and chiral aggregation of alkylamides derived from trans-1,2-diaminocyclohexane. Angewandte Chemie International Edition, 35: 1949-1951.
  • [16] Gronwald O, Shinkai S, 2001. Sugar-integrated gelators of organic solvents. Chemistry A European Journal, 7: 4328-4334.
  • [17] Xudong Y, Li Y, Yin Y, Yu D, 2012. A simple and colorimetric fluoride receptor and its fluoride-responsive organogel. Materials Science Engineering: C, 32: 1695-1698.
  • [18] Seo SH, Chang JY, 2005. Organogels from 1H-imidazole amphiphiles: Entrapment of a hydrophilic drug into strands of the self-assembled amphiphiles. Chemistry of Materials, 17: 3249-325.
  • [19] Suzuki M, Yumoto M, Shirai H, Hanabusa K, 2008. Supramolecular gels formed by amphiphilic low-molecular-weight gelators of N-alpha,N-epsilon-diacyl-L-lysine derivatives. Chemistry A European Journal, 14: 2133-2144.
  • [20] Suzuki M, Saito H, Hanabusa K, 2009. Two-component organogelators based on two L-amino acids: Effect of combination of L-amino acids on organogelation behavior. Langmuir, 25: 8579-8585.

Investigation of the Gelation Properties of Chiral Amide

Year 2022, Volume: 11 Issue: 1, 185 - 193, 24.03.2022
https://doi.org/10.17798/bitlisfen.1009644

Abstract

In this study, L-isoleucine based C2-symmetric chiral tetraamide compound was chosen as an organogelator and it was investigated whether it gave gel with various solvents. The minimum gelation concentration of the formed gels and the Tg value, which is the melting temperature of the gel, were determined. In addition, the gelation enthalpy value, ΔHg, was found from the Van't Hoff equation. In addition, the network structure of the gel was determined by the images taken with the SEM device. In the study, biocompatible fatty acid esters (ethyl laurate, isopropyl laurate, ethyl myristate, isopropyl myristate, ethyl palmitate, isopropyl palmitate) and commonly used anisole, xylene, liquid paraffin, toluene, diethylene glycol, which are used in the field of medicine and cosmetics as gelling solvents. , 1-decanol, n-dodecane and chloroform were selected. Accordingly, the organogelator formed a gel at very low concentrations with the selected solvents, except for isopropyl myristate from fatty acid esters. Among common organic solvents, it gave gel with other solvents except xylene, diethylene glycol, 1-decanol and chloroform. In addition, it was determined that the Tg values of the gels prepared with fatty acid esters were higher than the Tg values of the gels prepared in common solvents. According to this result, the organogel with the highest Tg values is the one whose solvent is LEE. In addition, when we look at the results of ΔHg, which is the enthalpy of gelation, it is seen that the highest value is obtained with the gel prepared with LEE.

Project Number

BTÜBAP-2018-FED-3

References

  • [1] Vintiloiu A, Leroux JC, 2008. Organogels and their use in drug delivery–A review. Journal of Controlled Release, 125: 179-192.
  • [2] Çolak M, Baris D, Pirinççioğlu N, Hoşgören H, 2017. Novel bis(aminoalcohol)oxalamide organogelators and their diglycolyamide analogs: evaluation of gelation efficiency in various organic fluids. Turkish Journal of Chemistry, 41: 658-671.
  • [3] Sangeetha N, Maitra U, 2005. Supramolecular Gels: Functions And Uses. Chemical Society Reviews, 34: 821-836.
  • [4] De Loos M, Feringa BL, Van Esch JH, 2005. Design and application of self-assembled low molecular weight hydrogels. European Journal of Organic Chemistry, 17: 3615-3631.
  • [5] Fages F, Vogtle F, Zinic M, 2005. Systematic design of amide- and urea-type gelators with tailored properties. Topics in Current Chemistry, 256: 77-131.
  • [6] Tachibana T, Mori T, Hori K, 1980. Long chain fatty acid gelator. Bulletin of the Chemical Society of Japan, 53: 1714-1720.
  • [7] Uzan S, Barış D, Çolak M, Aydın H, Hoşgören H, 2016. Organogels as novel carriers for dermal and topical drug delivery vehicles. Tetrahedron, 72: 7517-7525.
  • [8] Zhang Y, Gu H, Yang Z, Xu B, 2003. Supramolecular Hydrogels Respond to Ligand−Receptor Interaction. Journal of the American Chemical Society, 125(45): 13680-13681.
  • [9] Zhou SL, Matsumoto S, Tian HD, Yamane H, Ojida A, Kiyonaka S, Hamachi I, 2005. pH-Responsive Shrinkage/Swelling of a Supramolecular Hydrogel Composed of Two Small Amphiphilic Molecules. Chemistry A European Journal, 11: 1130-1136.
  • [10] Gupta SK, Bansal P, Bhardwaj RK, Jaiswal J, Velpandian T, 2002. Comparison of analgesic and anti-inflammatory activity of meloxicam gel with diclofenac and piroxicam gels in animal models: Pharmacokinetic parameters after dermal application. Skin Pharmacology and Applied Skin Physiology, 15: 105-111.
  • [11] Tarun G, Ajay B, Bhawana K, Sunil K, Ravi J, 2011. Organogels: Advanced and novel drug delivery system. Internatinal Research Journal of Pharmacy, 2(12): 15-21.
  • [12] White BD, Mallen J, Arnold KA, Fronczek FR, Gandour RD, Gehrig LMB, Gokel GW, 1989. Peptide side-arm derivatives of lariat ethers and bibracchial lariat ethers: syntheses, cation binding properties, and solid state structural data. The Journal of Organic Chemistry, 54: 937-947.
  • [13] Sanna V, Mariani A, Caria G, Sechi M, 2009. Synthesis and evaluation of different fatty acid esters formulated into Precirol ATO-based lipid nanoparticles as vehicles for topical delivery. Chemical and Pharmaceutical Bulletin, 57: 680-684.
  • [14] Sunkur M, Aydın S, Aral T, Dağ B, Erenler R, 2021. Preparation of new mono- and bis-amide derivatives of L-isoleucine via amidation of carboxyl and amino groups. Organic Communications, 14(3): 294-299.
  • [15] Hanabusa K, Yamada M, Kimura M, Shirai H, 1996. Prominent gelation and chiral aggregation of alkylamides derived from trans-1,2-diaminocyclohexane. Angewandte Chemie International Edition, 35: 1949-1951.
  • [16] Gronwald O, Shinkai S, 2001. Sugar-integrated gelators of organic solvents. Chemistry A European Journal, 7: 4328-4334.
  • [17] Xudong Y, Li Y, Yin Y, Yu D, 2012. A simple and colorimetric fluoride receptor and its fluoride-responsive organogel. Materials Science Engineering: C, 32: 1695-1698.
  • [18] Seo SH, Chang JY, 2005. Organogels from 1H-imidazole amphiphiles: Entrapment of a hydrophilic drug into strands of the self-assembled amphiphiles. Chemistry of Materials, 17: 3249-325.
  • [19] Suzuki M, Yumoto M, Shirai H, Hanabusa K, 2008. Supramolecular gels formed by amphiphilic low-molecular-weight gelators of N-alpha,N-epsilon-diacyl-L-lysine derivatives. Chemistry A European Journal, 14: 2133-2144.
  • [20] Suzuki M, Saito H, Hanabusa K, 2009. Two-component organogelators based on two L-amino acids: Effect of combination of L-amino acids on organogelation behavior. Langmuir, 25: 8579-8585.
There are 20 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Deniz Barış Cebe 0000-0001-5860-2133

Project Number BTÜBAP-2018-FED-3
Publication Date March 24, 2022
Submission Date October 14, 2021
Acceptance Date January 27, 2022
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

IEEE D. Barış Cebe, “Kiral Amit Bileşiğinin Jelleşme Özelliklerinin İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 1, pp. 185–193, 2022, doi: 10.17798/bitlisfen.1009644.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS