Development of Oleuropein Incorporated Chitosan Films for Antioxidant Active Food Packaging Applications
Year 2023,
Volume: 12 Issue: 1, 158 - 165, 22.03.2023
Ayça Aydoğdu
,
Fatmagül Kaya
Abstract
Oleuropein is the major phenolic component of olive leaf extract. In the present study, oleuropein was incorporated into chitosan films and the physical properties and antioxidant activity of films were determined. Chitosan to oleuropein ratio was arranged as 1:1, 1:0.5, 2:1, 2:0.5. Physical properties including moisture content, density, solubility, water vapor permeability, color and opacity were measured. The results showed the addition of oleuropein improved water vapor barrier and decreased solubility of chitosan films. The density and moisture content of the oleuropein added films were found similar with chitosan films. Oleuropein incorporation resulted in higher opacity and b* values whereas a* and L* values decreased. Chitosan films with oleuropein showed strong antioxidant activity. Films at chitosan/oleuropein ratio as 1:1 could be good candidate for active packaging material due to exhibiting good water vapor barrier, opacity and antioxidant property.
Supporting Institution
Scientific and Technological Research Council of Turkey (TÜBİTAK)
Project Number
2209A- Research Project Support Programme for Undergraduate Students]
Thanks
This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) [2209A- Research Project Support Programme for Undergraduate Students].
References
- [1] H. B. Malayoğlu and B. Aktaş, “Zeytin Yağı İşleme Yan Ürünlerinden Zeytin Yaprağı ile Zeytin Karasuyunun Antimikrobiyal ve Antioksidan Etkileri,” Hayvansal Üretim, vol. 52, no. 1, pp. 49–58, 2011.
- [2] S. Şahin and M. Bilgin, “Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review,” J. Sci. Food Agric., vol. 98, no. 4, pp. 1271–1279, 2018, doi: 10.1002/jsfa.8619.
- [3] I. Mourtzinos, F. Salta, K. Yannakopoulou, A. Chiou, and V. T. Karathanos, “Encapsulation of olive leaf extract in β-cyclodextrin,” J. Agric. Food Chem., vol. 55, no. 20, pp. 8088–8094, 2007, doi: 10.1021/jf0709698.
- [4] R. González-Ortega, M. Faieta, C. D. Di Mattia, L. Valbonetti, and P. Pittia, “Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders,” J. Food Eng., vol. 285, 2020, doi: 10.1016/j.jfoodeng.2020.110089.
- [5] A. N. Sudjana et al., “Antimicrobial activity of commercial Olea europaea (olive) leaf extract,” Int. J. Antimicrob. Agents, vol. 33, no. 5, pp. 461–463, May 2009, doi: 10.1016/j.ijantimicag.2008.10.026.
- [6] A. T. Serra et al., “In vitro evaluation of olive- and grape-based natural extracts as potential preservatives for food,” Innov. Food Sci. Emerg. Technol., vol. 9, no. 3, pp. 311–319, 2008, doi: 10.1016/j.ifset.2007.07.011.
- [7] L. Sun, J. Sun, L. Chen, P. Niu, X. Yang, and Y. Guo, “Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material,” Carbohydr. Polym., vol. 163, pp. 81–91, 2017, doi: 10.1016/j.carbpol.2017.01.016.
- [8] Y. Peng, Y. Wu, and Y. Li, “Development of tea extracts and chitosan composite films for active packaging materials,” Int. J. Biol. Macromol., vol. 59, pp. 282–289, 2013, doi: 10.1016/j.ijbiomac.2013.04.019.
- [9] A. Mojaddar, L. Amene, and N. Mehran, “Chitosan coating incorporated with grape seed extract and Origanum vulgare essential oil : an active packaging for turkey meat preservation,” J. Food Meas. Charact., vol. 15, no. 3, pp. 2790–2804, 2021, doi: 10.1007/s11694-021-00867-0.
- [10] C. Wang et al., “Preparation and characterization of chitosan-based antioxidant composite films containing onion skin ethanolic extracts,” J. Food Meas. Charact., vol. 16, no. 1, pp. 598–609, 2022, doi: 10.1007/s11694-021-01187-z.
- [11] X. Yao, H. Hu, Y. Qin, and J. Liu, “Development of antioxidant, antimicrobial and ammonia-sensitive films based on quaternary ammonium chitosan, polyvinyl alcohol and betalains-rich cactus pears (Opuntia ficus-indica) extract,” Food Hydrocoll., vol. 106, no. March, 2020, doi: 10.1016/j.foodhyd.2020.105896.
- [12] L. Sánchez-gonzález, C. González-martínez, A. Chiralt, and M. Cháfer, “Physical and antimicrobial properties of chitosan – tea tree essential oil composite films,” J. Food Eng., vol. 98, no. 4, pp. 443–452, 2010, doi: 10.1016/j.jfoodeng.2010.01.026.
- [13] Y. Peng and Y. Li, “Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films,” Food Hydrocoll., vol. 36, pp. 287–293, 2014, doi: 10.1016/j.foodhyd.2013.10.013.
- [14] S. C. Lourenço, M. Mold, and V. D. Alves, “Antioxidants of Natural Plant Origins : From Sources to Food Industry Applications,” Molecules, vol. 24, no. 22, p. 4132, 2019.
- [15] A. A. Kadam, S. Singh, and K. K. Gaikwad, “Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications,” Food Control, vol. 124, no. June 2020, p. 107877, 2021, doi: 10.1016/j.foodcont.2021.107877.
- [16] M. Kurek, I. Elez, M. Tran, M. Šč, V. Dragovi, and K. Gali, “Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants,” Food Hydrocoll., vol. 84, pp. 238–246, 2018, doi: 10.1016/j.foodhyd.2018.05.050.
- [17] A. Aydogdu, E. Kirtil, G. Sumnu, M. H. Oztop, and Y. Aydogdu, “Utilization of lentil flour as a biopolymer source for the development of edible films,” J. Appl. Polym. Sci., vol. 135, no. 23, p. 46356, Jun. 2018, doi: 10.1002/app.46356.
- [18] A. Aydogdu, E. Yildiz, Y. Aydogdu, G. Sumnu, S. Sahin, and Z. Ayhan, “Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material,” Food Hydrocoll., vol. 95, no. April, pp. 245–255, 2019, doi: 10.1016/j.foodhyd.2019.04.020.
- [19] H. Wang, L. Hao, P. Wang, M. Chen, S. Jiang, and S. Jiang, “Release kinetics and antibacterial activity of curcumin loaded zein fibers,” Food Hydrocoll., vol. 63, pp. 437–446, Feb. 2017, doi: 10.1016/J.FOODHYD.2016.09.028.
- [20] K. Rambabu, G. Bharath, F. Banat, P. Loke, and H. Hernández, “Mango leaf extract incorporated chitosan antioxidant fi lm for active food packaging,” Int. J. Biol. Macromol., vol. 126, pp. 1234–1243, 2019, doi: 10.1016/j.ijbiomac.2018.12.196.
- [21] U. Siripatrawan and B. R. Harte, “Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract,” Food Hydrocoll., vol. 24, no. 8, pp. 770–775, 2010, doi: 10.1016/j.foodhyd.2010.04.003.
- [22] U. Siripatrawan and W. Vitchayakitti, “Improving functional properties of chitosan films as active food packaging by incorporating with propolis,” Food Hydrocoll., vol. 61, pp. 695–702, 2016, doi: 10.1016/j.foodhyd.2016.06.001.
- [23] C. K. da Silva, D. J. da S. Mastrantonio, J. A. V. Costa, and M. G. de Morais, “Innovative pH sensors developed from ultrafine fibers containing açaí (Euterpe oleracea) extract,” Food Chem., vol. 294, pp. 397–404, Oct. 2019, doi: 10.1016/J.FOODCHEM.2019.05.059.
- [24] G. Yuan, H. Lv, B. Yang, X. Chen, and H. Sun, “Physical Properties, Antioxidant and Antimicrobial Activity of Chitosan Films Containing Carvacrol and Pomegranate Peel Extract,” Molecules, vol. 20, pp. 11034–11045, 2015, doi: 10.3390/molecules200611034.
- [25] X. Wang, H. Yong, L. Gao, L. Li, M. Jin, and J. Liu, “Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract,” Food Hydrocoll., vol. 89, no. October 2018, pp. 56–66, 2019, doi: 10.1016/j.foodhyd.2018.10.019.
- [26] A. Riaz et al., “Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols,” Int. J. Biol. Macromol., vol. 114, pp. 547–555, 2018, doi: 10.1016/j.ijbiomac.2018.03.126.
- [27] J. Thielmann, S. Kohnen, and C. Hauser, “Antimicrobial activity of Olea europaea Linné extracts and their applicability as natural food preservative agents,” Int. J. Food Microbiol., vol. 251, pp. 48–66, 2017, doi: 10.1016/j.ijfoodmicro.2017.03.019.
Antioksidan Aktif Gıda Paketleme Uygulamaları için Oleuropein Yüklü Kitosan Filmlerinin Geliştirilmesi
Year 2023,
Volume: 12 Issue: 1, 158 - 165, 22.03.2023
Ayça Aydoğdu
,
Fatmagül Kaya
Abstract
Oleuropein, zeytin yaprağı ekstraktının ana fenolik bileşenidir. Bu çalışmada, oleuropein kitosan filmlere eklenmiş ve filmlerin fiziksel özellikleri ve antioksidan aktiviteleri belirlenmiştir. Kitosanın oleuropeine oranı 1:1, 1:0.5, 2:1, 2:0.5 olarak düzenlenmiştir. Nem içeriği, yoğunluk, çözünürlük, su buharı geçirgenliği, renk ve opaklık gibi fiziksel özellikler ölçülmüştür. Sonuçlar, oleuropein ilavesinin su buharı bariyerini iyileştirdiğini ve kitosan filmlerin çözünürlüğünü azalttığını göstermiştir. Oleuropein katkılı filmlerin yoğunluk ve nem içerikleri kitosan filmlerle benzer bulunmuştur. Oleuropein eklenmesi daha yüksek opaklık ve b* değerleri ile sonuçlanırken a* ve L* değerleri azalmıştır. Oleuropein içeren kitosan filmler güçlü antioksidan aktivite göstermiştir. 1:1 kitosan/oleuropein oranındaki filmler, iyi su buharı bariyeri, opaklık ve antioksidan özelliği göstermeleri nedeniyle aktif ambalaj malzemesi olarak iyi bir aday olabilir.
Project Number
2209A- Research Project Support Programme for Undergraduate Students]
References
- [1] H. B. Malayoğlu and B. Aktaş, “Zeytin Yağı İşleme Yan Ürünlerinden Zeytin Yaprağı ile Zeytin Karasuyunun Antimikrobiyal ve Antioksidan Etkileri,” Hayvansal Üretim, vol. 52, no. 1, pp. 49–58, 2011.
- [2] S. Şahin and M. Bilgin, “Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review,” J. Sci. Food Agric., vol. 98, no. 4, pp. 1271–1279, 2018, doi: 10.1002/jsfa.8619.
- [3] I. Mourtzinos, F. Salta, K. Yannakopoulou, A. Chiou, and V. T. Karathanos, “Encapsulation of olive leaf extract in β-cyclodextrin,” J. Agric. Food Chem., vol. 55, no. 20, pp. 8088–8094, 2007, doi: 10.1021/jf0709698.
- [4] R. González-Ortega, M. Faieta, C. D. Di Mattia, L. Valbonetti, and P. Pittia, “Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders,” J. Food Eng., vol. 285, 2020, doi: 10.1016/j.jfoodeng.2020.110089.
- [5] A. N. Sudjana et al., “Antimicrobial activity of commercial Olea europaea (olive) leaf extract,” Int. J. Antimicrob. Agents, vol. 33, no. 5, pp. 461–463, May 2009, doi: 10.1016/j.ijantimicag.2008.10.026.
- [6] A. T. Serra et al., “In vitro evaluation of olive- and grape-based natural extracts as potential preservatives for food,” Innov. Food Sci. Emerg. Technol., vol. 9, no. 3, pp. 311–319, 2008, doi: 10.1016/j.ifset.2007.07.011.
- [7] L. Sun, J. Sun, L. Chen, P. Niu, X. Yang, and Y. Guo, “Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material,” Carbohydr. Polym., vol. 163, pp. 81–91, 2017, doi: 10.1016/j.carbpol.2017.01.016.
- [8] Y. Peng, Y. Wu, and Y. Li, “Development of tea extracts and chitosan composite films for active packaging materials,” Int. J. Biol. Macromol., vol. 59, pp. 282–289, 2013, doi: 10.1016/j.ijbiomac.2013.04.019.
- [9] A. Mojaddar, L. Amene, and N. Mehran, “Chitosan coating incorporated with grape seed extract and Origanum vulgare essential oil : an active packaging for turkey meat preservation,” J. Food Meas. Charact., vol. 15, no. 3, pp. 2790–2804, 2021, doi: 10.1007/s11694-021-00867-0.
- [10] C. Wang et al., “Preparation and characterization of chitosan-based antioxidant composite films containing onion skin ethanolic extracts,” J. Food Meas. Charact., vol. 16, no. 1, pp. 598–609, 2022, doi: 10.1007/s11694-021-01187-z.
- [11] X. Yao, H. Hu, Y. Qin, and J. Liu, “Development of antioxidant, antimicrobial and ammonia-sensitive films based on quaternary ammonium chitosan, polyvinyl alcohol and betalains-rich cactus pears (Opuntia ficus-indica) extract,” Food Hydrocoll., vol. 106, no. March, 2020, doi: 10.1016/j.foodhyd.2020.105896.
- [12] L. Sánchez-gonzález, C. González-martínez, A. Chiralt, and M. Cháfer, “Physical and antimicrobial properties of chitosan – tea tree essential oil composite films,” J. Food Eng., vol. 98, no. 4, pp. 443–452, 2010, doi: 10.1016/j.jfoodeng.2010.01.026.
- [13] Y. Peng and Y. Li, “Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films,” Food Hydrocoll., vol. 36, pp. 287–293, 2014, doi: 10.1016/j.foodhyd.2013.10.013.
- [14] S. C. Lourenço, M. Mold, and V. D. Alves, “Antioxidants of Natural Plant Origins : From Sources to Food Industry Applications,” Molecules, vol. 24, no. 22, p. 4132, 2019.
- [15] A. A. Kadam, S. Singh, and K. K. Gaikwad, “Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications,” Food Control, vol. 124, no. June 2020, p. 107877, 2021, doi: 10.1016/j.foodcont.2021.107877.
- [16] M. Kurek, I. Elez, M. Tran, M. Šč, V. Dragovi, and K. Gali, “Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants,” Food Hydrocoll., vol. 84, pp. 238–246, 2018, doi: 10.1016/j.foodhyd.2018.05.050.
- [17] A. Aydogdu, E. Kirtil, G. Sumnu, M. H. Oztop, and Y. Aydogdu, “Utilization of lentil flour as a biopolymer source for the development of edible films,” J. Appl. Polym. Sci., vol. 135, no. 23, p. 46356, Jun. 2018, doi: 10.1002/app.46356.
- [18] A. Aydogdu, E. Yildiz, Y. Aydogdu, G. Sumnu, S. Sahin, and Z. Ayhan, “Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material,” Food Hydrocoll., vol. 95, no. April, pp. 245–255, 2019, doi: 10.1016/j.foodhyd.2019.04.020.
- [19] H. Wang, L. Hao, P. Wang, M. Chen, S. Jiang, and S. Jiang, “Release kinetics and antibacterial activity of curcumin loaded zein fibers,” Food Hydrocoll., vol. 63, pp. 437–446, Feb. 2017, doi: 10.1016/J.FOODHYD.2016.09.028.
- [20] K. Rambabu, G. Bharath, F. Banat, P. Loke, and H. Hernández, “Mango leaf extract incorporated chitosan antioxidant fi lm for active food packaging,” Int. J. Biol. Macromol., vol. 126, pp. 1234–1243, 2019, doi: 10.1016/j.ijbiomac.2018.12.196.
- [21] U. Siripatrawan and B. R. Harte, “Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract,” Food Hydrocoll., vol. 24, no. 8, pp. 770–775, 2010, doi: 10.1016/j.foodhyd.2010.04.003.
- [22] U. Siripatrawan and W. Vitchayakitti, “Improving functional properties of chitosan films as active food packaging by incorporating with propolis,” Food Hydrocoll., vol. 61, pp. 695–702, 2016, doi: 10.1016/j.foodhyd.2016.06.001.
- [23] C. K. da Silva, D. J. da S. Mastrantonio, J. A. V. Costa, and M. G. de Morais, “Innovative pH sensors developed from ultrafine fibers containing açaí (Euterpe oleracea) extract,” Food Chem., vol. 294, pp. 397–404, Oct. 2019, doi: 10.1016/J.FOODCHEM.2019.05.059.
- [24] G. Yuan, H. Lv, B. Yang, X. Chen, and H. Sun, “Physical Properties, Antioxidant and Antimicrobial Activity of Chitosan Films Containing Carvacrol and Pomegranate Peel Extract,” Molecules, vol. 20, pp. 11034–11045, 2015, doi: 10.3390/molecules200611034.
- [25] X. Wang, H. Yong, L. Gao, L. Li, M. Jin, and J. Liu, “Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract,” Food Hydrocoll., vol. 89, no. October 2018, pp. 56–66, 2019, doi: 10.1016/j.foodhyd.2018.10.019.
- [26] A. Riaz et al., “Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols,” Int. J. Biol. Macromol., vol. 114, pp. 547–555, 2018, doi: 10.1016/j.ijbiomac.2018.03.126.
- [27] J. Thielmann, S. Kohnen, and C. Hauser, “Antimicrobial activity of Olea europaea Linné extracts and their applicability as natural food preservative agents,” Int. J. Food Microbiol., vol. 251, pp. 48–66, 2017, doi: 10.1016/j.ijfoodmicro.2017.03.019.