Research Article
BibTex RIS Cite

Application of the Taguchi and ANOVA Methods to Optimize Ventilation Parameters for Infection Risk Based on the Wells-Riley Model

Year 2023, Volume: 12 Issue: 1, 199 - 206, 22.03.2023
https://doi.org/10.17798/bitlisfen.1222870

Abstract

The coronavirus pandemic has caused many deaths and affected societies with social and economic problems as a consequence of its effect. Many different measures were taken to stop or reduce the spread of the virus like wearing a face mask and reorganizing school activities, transportation, and meetings. As an alternative to these measures, ventilation is a critical engineering solution that can help reduce the infection risk in the indoor environment. In this study, the effects of ventilation parameters (volume, ACH) and breathing rates on the Wells-Riley method-based infection risk probability were investigated by the Taguchi method. The orthogonal array was used to create the experimental design. Then, each parameter was analyzed according to the performance criterion (infection risk probability) using signal-to-noise (S/N) ratios and the order of importance of the parameters was calculated. Consequently, these data were used to identify worst-case and best-case scenarios to minimize the risk of infection in the indoor environment.

Thanks

This study was presented at 2. International Rahva Technical and Social Research Congress on 04 December 2022 and then it was submitted by being expanded for publishing to Bitlis Eren University Journal of Science.

References

  • [1] W. H. Organization, “Coronavirus disease (COVID-19) advice for the public: Mythbusters,” 2022. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters (accessed Dec. 21, 2022).
  • [2] J. Burkett, “Defining Viruses And Droplet Release: Virus Transmission Modes and Mitigation Strategies, Part 1,” ASHRAE J., vol. 63, no. 3, pp. 24–29, 2021.
  • [3] G. N. Sze To and C. Y. H. H. Chao, “Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases.,” Indoor Air, vol. 20, no. 1, pp. 2–16, Feb. 2010, doi: 10.1111/j.1600-0668.2009.00621.x.
  • [4] M. Z. Bazant and J. W. M. Bush, “A guideline to limit indoor airborne transmission of COVID-19,” Proc. Natl. Acad. Sci., vol. 118, no. 17, Apr. 2021, doi: 10.1073/pnas.2018995118.
  • [5] W. W. Nazaroff, M. Nicas, and S. L. Miller, “Framework for Evaluating Measures to Control Nosocomial Tuberculosis Transmission,” Indoor Air, vol. 8, no. 4, pp. 205–218, Dec. 1998, doi: 10.1111/j.1600-0668.1998.00002.x.
  • [6] Z. Liu et al., “Potential infection risk assessment of improper bioaerosol experiment operation in one BSL-3 laboratory based on the improved Wells-Riley method,” Build. Environ., vol. 201, p. 107974, Aug. 2021, doi: 10.1016/j.buildenv.2021.107974.
  • [7] Y. Yan, X. Li, Y. Shang, and J. Tu, “Evaluation of airborne disease infection risks in an airliner cabin using the Lagrangian-based Wells-Riley approach,” Build. Environ., vol. 121, pp. 79–92, Aug. 2017, doi: 10.1016/j.buildenv.2017.05.013.
  • [8] Z. Wang, E. R. Galea, A. Grandison, J. Ewer, and F. Jia, “A coupled Computational Fluid Dynamics and Wells-Riley model to predict COVID-19 infection probability for passengers on long-distance trains,” Saf. Sci., vol. 147, p. 105572, Mar. 2022, doi: 10.1016/j.ssci.2021.105572.
  • [9] G. Taguchi, Introduction to Quality Engineering. Tokyo: Asian Productivity Organization, 1990.
  • [10] REHVA, “REHVA COVID-19 guidance document, How to Operate HVAC and Other Building Service Systems to Prevent the Spread of the Coronavirus (SARS-CoV-2) Disease (COVID-19) in Workplaces,” Fed. Eur. Heating, Vent. Air Cond. Assoc., 2020.
  • [11] W. F. Wells, Airborne Contagion and Air Hygiene. An Ecological Study of Droplet Infections. Cambridge, MA: Cambridge University Press, 1955.
  • [12] E. C. Riley, G. Murphy, and R. L. Riley, “Airborne spread of measles in a suburban elementary school,” Am. J. Epidemiol., vol. 107, no. 5, 1978, doi: 10.1093/oxfordjournals.aje.a112560.
  • [13] T. L. Thatcher, A. C. K. Lai, R. Moreno-Jackson, R. G. Sextro, and W. W. Nazaroff, “Effects of room furnishings and air speed on particle deposition rates indoors,” Atmos. Environ., vol. 36, no. 11, pp. 1811–1819, Apr. 2002, doi: 10.1016/S1352-2310(02)00157-7.
  • [14] E. Diapouli, A. Chaloulakou, and P. Koutrakis, “Estimating the concentration of indoor particles of outdoor origin: A review,” J. Air Waste Manage. Assoc., vol. 63, no. 10, pp. 1113–1129, Oct. 2013, doi: 10.1080/10962247.2013.791649.
  • [15] A. C. Fears et al., “Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions.,” medRxiv Prepr. Serv. Heal. Sci., Apr. 2020, doi: 10.1101/2020.04.13.20063784.
  • [16] N. van Doremalen et al., “Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1,” N. Engl. J. Med., vol. 382, no. 16, pp. 1564–1567, Apr. 2020, doi: 10.1056/NEJMc2004973.
  • [17] N. Arslanoglu and A. Yigit, “Experimental investigation of radiation effect on human thermal comfort by Taguchi method,” Appl. Therm. Eng., vol. 92, pp. 18–23, Jan. 2016, doi: 10.1016/j.applthermaleng.2015.09.070.
  • [18] C.-W. Chang and C.-P. Kuo, “Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method,” Int. J. Mach. Tools Manuf., vol. 47, no. 1, pp. 141–147, 2007, doi: 10.1016/j.ijmachtools.2006.02.009.
  • [19] A. M. Pinar, O. Uluer, and V. Kırmaci, “Optimization of counter flow Ranque–Hilsch vortex tube performance using Taguchi method,” Int. J. Refrig., vol. 32, no. 6, pp. 1487–1494, Sep. 2009, doi: 10.1016/j.ijrefrig.2009.02.018.
  • [20] S. Özel, E. Vural, and M. Binici, “Optimization of the effect of thermal barrier coating (TBC) on diesel engine performance by Taguchi method,” Fuel, vol. 263, p. 116537, Mar. 2020, doi: 10.1016/j.fuel.2019.116537.
  • [21] M. Tutar, H. Aydin, C. Yuce, N. Yavuz, and A. Bayram, “The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array,” Mater. Des., vol. 63, pp. 789–797, Nov. 2014, doi: 10.1016/j.matdes.2014.07.003.
  • [22] N. Arslanoglu and A. Yigit, “Investigation of efficient parameters on optimum insulation thickness based on theoretical-Taguchi combined method,” Environ. Prog. Sustain. Energy, vol. 36, no. 6, pp. 1824–1831, Nov. 2017, doi: 10.1002/ep.12628.
  • [23] B. E. Yuce, P. V. Nielsen, and P. Wargocki, “The use of Taguchi, ANOVA, and GRA methods to optimize CFD analyses of ventilation performance in buildings,” Build. Environ., vol. 225, p. 109587, Nov. 2022, doi: 10.1016/j.buildenv.2022.109587.
  • [24] C. Vidal, V. Infante, P. Peças, and P. Vilaça, “Application of Taguchi Method in the Optimization of Friction Stir Welding Parameters of an Aeronautic Aluminium Alloy,” Int. J. Adv. Mater. Manuf. Charact., vol. 3, no. 1, pp. 21–26, Mar. 2013, doi: 10.11127/ijammc.2013.02.005.
Year 2023, Volume: 12 Issue: 1, 199 - 206, 22.03.2023
https://doi.org/10.17798/bitlisfen.1222870

Abstract

References

  • [1] W. H. Organization, “Coronavirus disease (COVID-19) advice for the public: Mythbusters,” 2022. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters (accessed Dec. 21, 2022).
  • [2] J. Burkett, “Defining Viruses And Droplet Release: Virus Transmission Modes and Mitigation Strategies, Part 1,” ASHRAE J., vol. 63, no. 3, pp. 24–29, 2021.
  • [3] G. N. Sze To and C. Y. H. H. Chao, “Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases.,” Indoor Air, vol. 20, no. 1, pp. 2–16, Feb. 2010, doi: 10.1111/j.1600-0668.2009.00621.x.
  • [4] M. Z. Bazant and J. W. M. Bush, “A guideline to limit indoor airborne transmission of COVID-19,” Proc. Natl. Acad. Sci., vol. 118, no. 17, Apr. 2021, doi: 10.1073/pnas.2018995118.
  • [5] W. W. Nazaroff, M. Nicas, and S. L. Miller, “Framework for Evaluating Measures to Control Nosocomial Tuberculosis Transmission,” Indoor Air, vol. 8, no. 4, pp. 205–218, Dec. 1998, doi: 10.1111/j.1600-0668.1998.00002.x.
  • [6] Z. Liu et al., “Potential infection risk assessment of improper bioaerosol experiment operation in one BSL-3 laboratory based on the improved Wells-Riley method,” Build. Environ., vol. 201, p. 107974, Aug. 2021, doi: 10.1016/j.buildenv.2021.107974.
  • [7] Y. Yan, X. Li, Y. Shang, and J. Tu, “Evaluation of airborne disease infection risks in an airliner cabin using the Lagrangian-based Wells-Riley approach,” Build. Environ., vol. 121, pp. 79–92, Aug. 2017, doi: 10.1016/j.buildenv.2017.05.013.
  • [8] Z. Wang, E. R. Galea, A. Grandison, J. Ewer, and F. Jia, “A coupled Computational Fluid Dynamics and Wells-Riley model to predict COVID-19 infection probability for passengers on long-distance trains,” Saf. Sci., vol. 147, p. 105572, Mar. 2022, doi: 10.1016/j.ssci.2021.105572.
  • [9] G. Taguchi, Introduction to Quality Engineering. Tokyo: Asian Productivity Organization, 1990.
  • [10] REHVA, “REHVA COVID-19 guidance document, How to Operate HVAC and Other Building Service Systems to Prevent the Spread of the Coronavirus (SARS-CoV-2) Disease (COVID-19) in Workplaces,” Fed. Eur. Heating, Vent. Air Cond. Assoc., 2020.
  • [11] W. F. Wells, Airborne Contagion and Air Hygiene. An Ecological Study of Droplet Infections. Cambridge, MA: Cambridge University Press, 1955.
  • [12] E. C. Riley, G. Murphy, and R. L. Riley, “Airborne spread of measles in a suburban elementary school,” Am. J. Epidemiol., vol. 107, no. 5, 1978, doi: 10.1093/oxfordjournals.aje.a112560.
  • [13] T. L. Thatcher, A. C. K. Lai, R. Moreno-Jackson, R. G. Sextro, and W. W. Nazaroff, “Effects of room furnishings and air speed on particle deposition rates indoors,” Atmos. Environ., vol. 36, no. 11, pp. 1811–1819, Apr. 2002, doi: 10.1016/S1352-2310(02)00157-7.
  • [14] E. Diapouli, A. Chaloulakou, and P. Koutrakis, “Estimating the concentration of indoor particles of outdoor origin: A review,” J. Air Waste Manage. Assoc., vol. 63, no. 10, pp. 1113–1129, Oct. 2013, doi: 10.1080/10962247.2013.791649.
  • [15] A. C. Fears et al., “Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions.,” medRxiv Prepr. Serv. Heal. Sci., Apr. 2020, doi: 10.1101/2020.04.13.20063784.
  • [16] N. van Doremalen et al., “Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1,” N. Engl. J. Med., vol. 382, no. 16, pp. 1564–1567, Apr. 2020, doi: 10.1056/NEJMc2004973.
  • [17] N. Arslanoglu and A. Yigit, “Experimental investigation of radiation effect on human thermal comfort by Taguchi method,” Appl. Therm. Eng., vol. 92, pp. 18–23, Jan. 2016, doi: 10.1016/j.applthermaleng.2015.09.070.
  • [18] C.-W. Chang and C.-P. Kuo, “Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method,” Int. J. Mach. Tools Manuf., vol. 47, no. 1, pp. 141–147, 2007, doi: 10.1016/j.ijmachtools.2006.02.009.
  • [19] A. M. Pinar, O. Uluer, and V. Kırmaci, “Optimization of counter flow Ranque–Hilsch vortex tube performance using Taguchi method,” Int. J. Refrig., vol. 32, no. 6, pp. 1487–1494, Sep. 2009, doi: 10.1016/j.ijrefrig.2009.02.018.
  • [20] S. Özel, E. Vural, and M. Binici, “Optimization of the effect of thermal barrier coating (TBC) on diesel engine performance by Taguchi method,” Fuel, vol. 263, p. 116537, Mar. 2020, doi: 10.1016/j.fuel.2019.116537.
  • [21] M. Tutar, H. Aydin, C. Yuce, N. Yavuz, and A. Bayram, “The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array,” Mater. Des., vol. 63, pp. 789–797, Nov. 2014, doi: 10.1016/j.matdes.2014.07.003.
  • [22] N. Arslanoglu and A. Yigit, “Investigation of efficient parameters on optimum insulation thickness based on theoretical-Taguchi combined method,” Environ. Prog. Sustain. Energy, vol. 36, no. 6, pp. 1824–1831, Nov. 2017, doi: 10.1002/ep.12628.
  • [23] B. E. Yuce, P. V. Nielsen, and P. Wargocki, “The use of Taguchi, ANOVA, and GRA methods to optimize CFD analyses of ventilation performance in buildings,” Build. Environ., vol. 225, p. 109587, Nov. 2022, doi: 10.1016/j.buildenv.2022.109587.
  • [24] C. Vidal, V. Infante, P. Peças, and P. Vilaça, “Application of Taguchi Method in the Optimization of Friction Stir Welding Parameters of an Aeronautic Aluminium Alloy,” Int. J. Adv. Mater. Manuf. Charact., vol. 3, no. 1, pp. 21–26, Mar. 2013, doi: 10.11127/ijammc.2013.02.005.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Bahadır Erman Yüce 0000-0002-2432-964X

Early Pub Date March 23, 2023
Publication Date March 22, 2023
Submission Date December 22, 2022
Acceptance Date March 1, 2023
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

IEEE B. E. Yüce, “Application of the Taguchi and ANOVA Methods to Optimize Ventilation Parameters for Infection Risk Based on the Wells-Riley Model”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 12, no. 1, pp. 199–206, 2023, doi: 10.17798/bitlisfen.1222870.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS