Research Article
BibTex RIS Cite

LED Aydınlatma Sistemlerinde Derin Öğrenme Tabanlı Harmonik Tahminleme

Year 2022, Volume: 4 Issue: 2, 328 - 334, 26.10.2022
https://doi.org/10.46387/bjesr.1174771

Abstract

LED aydınlatma sistemleri, hem iç hem de dış aydınlatmada sıklıkla kullanılmakta olup, bu elemanlar özellikle enerji verimliliği bakımından büyük avantajlar sunmaktadır. Ancak söz konusu sistemler, çalışmaları için gerekli olan sürücü devrelerinin içerdiği anahtarlama elemanları nedeniyle, enerji kalitesi açısından sorunlara neden olmaktadır. Bu çalışmanın temel motivasyonunu, ilgili sistemler tarafından üretilen ve harmonik adı verilen güç kalitesi bozulmalarının tahminlenmesi oluşturmaktadır. Bu kapsamda, deneysel olarak tasarlanan bir LED aydınlatma sisteminden elektriksel veriler ölçülerek gerekli hesaplamalar sonucunda ilgili sistemin neden olduğu güç kalitesi problemleri ortaya çıkarılmıştır. Ancak sistem boyutunun büyümesinin hesaplama karmaşasını artıracağından yola çıkılarak, bahse konu problemlerin tespiti için derin öğrenme tabanlı bir algoritma geliştirilmiştir. Kalite bozulmaları, temel elektriksel parametreler kullanılmış ve hesaplama karmaşasından arındırılarak tahminlenmiş, gerçek veriler ile karşılaştırıldığında, GRU ve BiGRU modellerinde en düşük MAE değeri 0,031 ve en düşük RMSE değeri ise 0,099 olarak elde edilmiştir. Aynı değerler LSTM ve BiLSTM modellerinde sırasıyla 0,028 ve 0,097 olarak gerçekleşmiştir.

Supporting Institution

Bandırma Onyedi Eylül Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

BAP-20-1004-004

References

  • O. Akalp, H. Ozbay, and S. B. Efe, “Design and Analysis of High-Efficient Driver Model for LED Luminaires,” Light Eng., vol. 29, no. 2, pp. 96–106, 2021.
  • S. B. Efe and D. Varhan, “Interior Lighting of a Historical Building by using LED Luminaires: A Case Study of Fatih Paşa Mosque,” Light Eng., vol. 28, no. 4, pp. 77–83, 2020.
  • M. S. Cengiz, “The relationship between maintenance factor and lighting level in Tunel lighting,” Light Eng., vol. 27, no. 3, pp. 75–84, 2019, doi: 10.33383/2018-115.
  • M. S. Cengiz and Ç. Cengiz, “Numerical analysis of tunnel LED Lighting maintenance factor,” IIUM Eng. J., vol. 19, no. 2, pp. 154–163, 2018, doi: 10.31436/iiumej.v19i2.1007.
  • M. S. Cengiz and S. Yetkin, “Thermal Analysis in Fixed, Flowed and Airless Environment for Cooling in LED Luminaires,” Light Eng., vol. 28, no. 6, pp. 28–35, 2020.
  • S. Rüstemli and M. S. Cengiz, “Active filter solutions in energy systems,” Turkish J. Electr. Eng. Comput. Sci., vol. 23, pp. 1587–1607, 2015, doi: 10.3906/elk-1402-212.
  • S. B. Efe, H. Özbay, and İ. Özer, “Dynamic Voltage Restorer Application to Eliminate Power System Harmonics,” in International Engineering and Natural Sciences Conference (IENSC 2019), 2019, no. November, pp. 705–709.
  • International Electrotechnical Commission (IEC). IEC 61000-3-2:2018., “Electromagnetic Compatibility (EMC)—Part 3-2: Limits—Limits for Harmonic Current Emissions (Equipment Input Current _16 A per Phase).” https://webstore.iec.ch/publication/62553
  • J. Valenzuela and J. Pontt, “Real-time interharmonics detection and measurement based on FFT algorithm,” 2009 Appl. Electron. Int. Conf. AE 2009, no. 1, pp. 259–264, 2009.
  • N. Severoglu and O. Salor, “Statistical Models of EAF Harmonics Developed for Harmonic Estimation Directly from Waveform Samples Using Deep Learning Framework,” IEEE Trans. Ind. Appl., vol. 57, no. 6, pp. 6730–6740, 2021, doi: 10.1109/TIA.2021.3114127.
  • N. Severoglu and O. Salor, “Amplitude and phase estimations of power system harmonics using deep learning framework,” IET Gener. Transm. Distrib., vol. 14, no. 19, pp. 4089–4096, 2020, doi: 10.1049/iet-gtd.2019.1491.
  • İ. Özer, S. B. Efe, and H. Özbay, “CNN / Bi-LSTM-based deep learning algorithm for classification of power quality disturbances by using spectrogram images,” Int. Trans. Electr. Energy Syst., vol. 31, no. 12, pp. 1–16, 2021, doi: 10.1002/2050-7038.13204.
  • H. Özbay and A. Dalcali, “Effects of COVID-19 on electric energy consumption in Turkey and ANN-based short-term forecasting,” Turkish J. Electr. Eng. Comput. Sci., vol. 29, no. 1, pp. 78–97, 2021, doi: 10.3906/ELK-2006-29.
  • I. Ozer, S. B. Efe, and H. Ozbay, “A combined deep learning application for short term load forecasting,” Alexandria Eng. J., vol. 60, no. 4, pp. 3807–3818, 2021, doi: 10.1016/j.aej.2021.02.050.
  • I. Ozer, Z. Ozer, and O. Findik, “Noise robust sound event classification with convolutional neural network,” Neurocomputing, vol. 272, pp. 505–512, 2018, doi: 10.1016/j.neucom.2017.07.021.
  • Z. Ozer, I. Ozer, and O. Findik, “Diacritic restoration of Turkish tweets with word2vec,” Eng. Sci. Technol. an Int. J., vol. 21, no. 6, pp. 1120–1127, 2018, doi: 10.1016/j.jestch.2018.09.002.
  • I. Ozer, Z. Ozer, and O. Findik, “Lanczos kernel based spectrogram image features for sound classification,” Procedia Comput. Sci., vol. 111, no. 2015, pp. 137–144, 2017, doi: 10.1016/j.procs.2017.06.020.
  • J. Bedi and D. Toshniwal, “Deep learning framework to forecast electricity demand,” Appl. Energy, vol. 238, no. July 2018, pp. 1312–1326, 2019, doi: 10.1016/j.apenergy.2019.01.113.
  • K. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” EMNLP 2014 - 2014 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf., pp. 1724–1734, 2014, doi: 10.3115/v1/d14-1179.
  • R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of Recurrent Network architectures,” in 32nd International Conference on Machine Learning, ICML 2015, 2015, vol. 3, pp. 2332–2340.
  • D. Amodei and Et.al, “Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin,” in International Conference on Machine Learning, 2016, vol. 48, pp. 1–10. doi: 10.1002/jhet.5570320220.
  • S. B. Efe, H. Ozbay, and I. Ozer, “Experimental Design and Analysis of Adaptive LED Illumination System,” Light Eng., vol. 30, no. 4, pp. 63–70, 2022.
  • S. K. Jain and S. N. Singh, “Harmonics estimation in emerging power system: Key issues and challenges,” Electr. Power Syst. Res., vol. 81, no. 9, pp. 1754–1766, 2011, doi: 10.1016/j.epsr.2011.05.004.
Year 2022, Volume: 4 Issue: 2, 328 - 334, 26.10.2022
https://doi.org/10.46387/bjesr.1174771

Abstract

Project Number

BAP-20-1004-004

References

  • O. Akalp, H. Ozbay, and S. B. Efe, “Design and Analysis of High-Efficient Driver Model for LED Luminaires,” Light Eng., vol. 29, no. 2, pp. 96–106, 2021.
  • S. B. Efe and D. Varhan, “Interior Lighting of a Historical Building by using LED Luminaires: A Case Study of Fatih Paşa Mosque,” Light Eng., vol. 28, no. 4, pp. 77–83, 2020.
  • M. S. Cengiz, “The relationship between maintenance factor and lighting level in Tunel lighting,” Light Eng., vol. 27, no. 3, pp. 75–84, 2019, doi: 10.33383/2018-115.
  • M. S. Cengiz and Ç. Cengiz, “Numerical analysis of tunnel LED Lighting maintenance factor,” IIUM Eng. J., vol. 19, no. 2, pp. 154–163, 2018, doi: 10.31436/iiumej.v19i2.1007.
  • M. S. Cengiz and S. Yetkin, “Thermal Analysis in Fixed, Flowed and Airless Environment for Cooling in LED Luminaires,” Light Eng., vol. 28, no. 6, pp. 28–35, 2020.
  • S. Rüstemli and M. S. Cengiz, “Active filter solutions in energy systems,” Turkish J. Electr. Eng. Comput. Sci., vol. 23, pp. 1587–1607, 2015, doi: 10.3906/elk-1402-212.
  • S. B. Efe, H. Özbay, and İ. Özer, “Dynamic Voltage Restorer Application to Eliminate Power System Harmonics,” in International Engineering and Natural Sciences Conference (IENSC 2019), 2019, no. November, pp. 705–709.
  • International Electrotechnical Commission (IEC). IEC 61000-3-2:2018., “Electromagnetic Compatibility (EMC)—Part 3-2: Limits—Limits for Harmonic Current Emissions (Equipment Input Current _16 A per Phase).” https://webstore.iec.ch/publication/62553
  • J. Valenzuela and J. Pontt, “Real-time interharmonics detection and measurement based on FFT algorithm,” 2009 Appl. Electron. Int. Conf. AE 2009, no. 1, pp. 259–264, 2009.
  • N. Severoglu and O. Salor, “Statistical Models of EAF Harmonics Developed for Harmonic Estimation Directly from Waveform Samples Using Deep Learning Framework,” IEEE Trans. Ind. Appl., vol. 57, no. 6, pp. 6730–6740, 2021, doi: 10.1109/TIA.2021.3114127.
  • N. Severoglu and O. Salor, “Amplitude and phase estimations of power system harmonics using deep learning framework,” IET Gener. Transm. Distrib., vol. 14, no. 19, pp. 4089–4096, 2020, doi: 10.1049/iet-gtd.2019.1491.
  • İ. Özer, S. B. Efe, and H. Özbay, “CNN / Bi-LSTM-based deep learning algorithm for classification of power quality disturbances by using spectrogram images,” Int. Trans. Electr. Energy Syst., vol. 31, no. 12, pp. 1–16, 2021, doi: 10.1002/2050-7038.13204.
  • H. Özbay and A. Dalcali, “Effects of COVID-19 on electric energy consumption in Turkey and ANN-based short-term forecasting,” Turkish J. Electr. Eng. Comput. Sci., vol. 29, no. 1, pp. 78–97, 2021, doi: 10.3906/ELK-2006-29.
  • I. Ozer, S. B. Efe, and H. Ozbay, “A combined deep learning application for short term load forecasting,” Alexandria Eng. J., vol. 60, no. 4, pp. 3807–3818, 2021, doi: 10.1016/j.aej.2021.02.050.
  • I. Ozer, Z. Ozer, and O. Findik, “Noise robust sound event classification with convolutional neural network,” Neurocomputing, vol. 272, pp. 505–512, 2018, doi: 10.1016/j.neucom.2017.07.021.
  • Z. Ozer, I. Ozer, and O. Findik, “Diacritic restoration of Turkish tweets with word2vec,” Eng. Sci. Technol. an Int. J., vol. 21, no. 6, pp. 1120–1127, 2018, doi: 10.1016/j.jestch.2018.09.002.
  • I. Ozer, Z. Ozer, and O. Findik, “Lanczos kernel based spectrogram image features for sound classification,” Procedia Comput. Sci., vol. 111, no. 2015, pp. 137–144, 2017, doi: 10.1016/j.procs.2017.06.020.
  • J. Bedi and D. Toshniwal, “Deep learning framework to forecast electricity demand,” Appl. Energy, vol. 238, no. July 2018, pp. 1312–1326, 2019, doi: 10.1016/j.apenergy.2019.01.113.
  • K. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” EMNLP 2014 - 2014 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf., pp. 1724–1734, 2014, doi: 10.3115/v1/d14-1179.
  • R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of Recurrent Network architectures,” in 32nd International Conference on Machine Learning, ICML 2015, 2015, vol. 3, pp. 2332–2340.
  • D. Amodei and Et.al, “Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin,” in International Conference on Machine Learning, 2016, vol. 48, pp. 1–10. doi: 10.1002/jhet.5570320220.
  • S. B. Efe, H. Ozbay, and I. Ozer, “Experimental Design and Analysis of Adaptive LED Illumination System,” Light Eng., vol. 30, no. 4, pp. 63–70, 2022.
  • S. K. Jain and S. N. Singh, “Harmonics estimation in emerging power system: Key issues and challenges,” Electr. Power Syst. Res., vol. 81, no. 9, pp. 1754–1766, 2011, doi: 10.1016/j.epsr.2011.05.004.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

İlyas Özer 0000-0003-2112-5497

Harun Özbay 0000-0003-1068-244X

Serhat Berat Efe 0000-0001-6076-4166

Project Number BAP-20-1004-004
Publication Date October 26, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

APA Özer, İ., Özbay, H., & Efe, S. B. (2022). LED Aydınlatma Sistemlerinde Derin Öğrenme Tabanlı Harmonik Tahminleme. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 4(2), 328-334. https://doi.org/10.46387/bjesr.1174771
AMA Özer İ, Özbay H, Efe SB. LED Aydınlatma Sistemlerinde Derin Öğrenme Tabanlı Harmonik Tahminleme. BJESR. October 2022;4(2):328-334. doi:10.46387/bjesr.1174771
Chicago Özer, İlyas, Harun Özbay, and Serhat Berat Efe. “LED Aydınlatma Sistemlerinde Derin Öğrenme Tabanlı Harmonik Tahminleme”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 4, no. 2 (October 2022): 328-34. https://doi.org/10.46387/bjesr.1174771.
EndNote Özer İ, Özbay H, Efe SB (October 1, 2022) LED Aydınlatma Sistemlerinde Derin Öğrenme Tabanlı Harmonik Tahminleme. Mühendislik Bilimleri ve Araştırmaları Dergisi 4 2 328–334.
IEEE İ. Özer, H. Özbay, and S. B. Efe, “LED Aydınlatma Sistemlerinde Derin Öğrenme Tabanlı Harmonik Tahminleme”, BJESR, vol. 4, no. 2, pp. 328–334, 2022, doi: 10.46387/bjesr.1174771.
ISNAD Özer, İlyas et al. “LED Aydınlatma Sistemlerinde Derin Öğrenme Tabanlı Harmonik Tahminleme”. Mühendislik Bilimleri ve Araştırmaları Dergisi 4/2 (October 2022), 328-334. https://doi.org/10.46387/bjesr.1174771.
JAMA Özer İ, Özbay H, Efe SB. LED Aydınlatma Sistemlerinde Derin Öğrenme Tabanlı Harmonik Tahminleme. BJESR. 2022;4:328–334.
MLA Özer, İlyas et al. “LED Aydınlatma Sistemlerinde Derin Öğrenme Tabanlı Harmonik Tahminleme”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, vol. 4, no. 2, 2022, pp. 328-34, doi:10.46387/bjesr.1174771.
Vancouver Özer İ, Özbay H, Efe SB. LED Aydınlatma Sistemlerinde Derin Öğrenme Tabanlı Harmonik Tahminleme. BJESR. 2022;4(2):328-34.