This study, first, focuses on understanding two important ideas in ideal topological spaces: I-sequential openness and I-sequential closedness. We start by explaining what these sets are like and how they behave. Then, we talk about their interiors and closures. After that, we look at how these sets relate to the idea of connectedness, which is a key concept in topology. We call this connection I-sequentially connectedness. This helps us understand how sets are connected in ideal topological spaces.
Primary Language | English |
---|---|
Subjects | Topology |
Journal Section | Research Articles |
Authors | |
Publication Date | May 31, 2024 |
Submission Date | March 26, 2024 |
Acceptance Date | May 30, 2024 |
Published in Issue | Year 2024 Volume: 2 Issue: 1 |