Review
BibTex RIS Cite

SELECTİVE AUTOPHAGY AND SUBTYPES

Year 2018, Volume: 2 Issue: 1, 9 - 17, 11.02.2018

Abstract

Autophagy
plays a key role in physiological processes such as regulation of cellular
metabolism, aging, morphogenesis, development of many diseases and regulation
of immunity. It is known that the key triggers of autophagy are known to be low
nutrients as well as controlled by different triggers and regulators in
different disease processes. Molecular effects of Atg proteins, regulation of
autophagosome / lysosomal fusion and understanding of age-related and
disease-specific defects in autophage activation and their mechanisms need to
be addressed. As a result, classification of autophagia to cells and diseases
and their special mechanisms are necessary for illuminating and resolving
disease processes. We have organized a brief review of the autophagy types that
have been privatized under the title of selective autophagy and what are the
implications of these triggers, proteins and mechanisms in this process.

References

  • 10) Okamoto, K., 2014. Organellophagy: eliminating cellular building blocks via selective autophagy. J. Cell Biol. 205, 435–445.
  • 11) Birgisdottir, A.B., Lamark, T., Johansen, T., 2013. The LIR motif—crucial for selective autophagy. J. Cell Sci. 126, 3237–3247.
  • 12) Gyllenstein, U., Wharton, D., Joseffson, A., et al., 1991. Paternal inheritance of mitochondrial DNA in mice. Nature 352, 255–257.
  • 13) Al Rawi, S., Louvet-Vallee, S., Djeddi, A., et al., 2012. Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles. Autophagy 8, 421–423.
  • 14) Sato, M., Sato, K., 2013. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta 1833, 1979–1984.
  • 15) Rubinszstein, D.C., DiFiglia, M., Heintz, N., et al., 2005. Autophagy and its possible roles in nervous system diseases, damage, and repair. Autophagy 1, 11–22.
  • 16) Yue, Z., 2007. Regulation of neuronal autophagy in axon. Autophagy 3 (2), 139–141.
  • 17) Knöferle, J., Koch, J.C., Ostendorf, T., et al., 2010. Mechanisms of acute axonal degeneration in the optic nerve in vivo. PNAS 107, 6064–6069.
  • 18) Changou, C.A., Chen, Y.-R., Li, X., et al., 2014. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc. Natl. Acad. Sci. U. S. A. 111, 14147–14152.
  • 19) Orhon, I., Dupont, N., Pampliega, O., et al., 2015. Autophagy and regulation of cilia function and assembly. Cell Death Differ. 22, 389–397.
  • 1) Singh SS, Vats S, Chia AY, Tan TZ, Deng S, Ong MS, Arfuso F, Yap CT, Goh BC, Sethi G, Huang RY, Shen HM, Manjithaya R, Kumar AP. Dual role of autophagy in hallmarks of cancer. Oncogene. 2017 Dec 19.
  • 20) Cloonan, S.M., Lam, H.C., Ryter, S.W., et al., 2014. Ciliophagy: the consumption of cilia components by autophagy. Autophagy 10 (3), 532–534.
  • 21) Sandberg, M., Borg, L.A.H., 2006. Intracellular degradation of insulin and crinophagy are maintained by nitric oxide and cyclo-oxygenase 2 activity in isolated pancreatic islets. Biol. Cell 98 (5), 307–315.
  • 22) Abrahamsen, H., and Stenmark, H., 2010. Protein secretion: unconventional exit by exophagy. Curr. Biol. 20, 415–418.
  • 23) Jiang, S., Wells, C.D., Roach, P.J., 2011. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biol. Chem. Res. Commun. 413, 420–425.
  • 24) Singh, R., Cuervo, A.M., 2012. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012, 282041.
  • 25) Christian, P., Sacco, J., Adeli, K., 2013. Autophagy: emerging roles in lipid homeostasis and metabolic control. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831, 819–824.
  • 26) Hung, Y.H., Chen, L.M., Yang, J.Y., et al., 2013. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4, 2111.
  • 27) Maejima, I.A., Takahashi, H., Omori, T., et al., 2013. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347.
  • 28) Mercer, T.R., Neph, S., Dinger, M.E., et al., 2011. The human mitochondrial transcriptome. Cell 146, 645–658.
  • 29) Novak, I., 2012. Mitophagy: a complex mechanism of mitochondrial removal. Antioxid. Redox Signal. 17, 794–802.
  • 2) Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, Verovskaya EV, Figueroa ME, Passegué E. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017 Mar 9;543(7644):205-210
  • 30) Erenpreisa, J., Huna, A., Salmina, K., et al., 2012. Macroautophagy-aided elimination of chromatin: sorting of waste, sorting of fate? Autophagy 8, 1877–1881.
  • 31) Mijaljica, D., Prescott, M., Devenish, R.J., 2012. A late form of nucleophagy in Saccharomyces cerevisiae. PLoS One 7 (6), e40013.
  • 32) Deosaran, E., Larsen, K.B., Hua, R., et al., 2013. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939–952.
  • 33) Cebollero, E., Reggiori, F., Kraft, C., 2012. Reticulophagy and ribophagy: regulated degradation of protein production factories. Int. J. Cell Biol. 2012, 182834.
  • 34) Bakowska-Zywicka, K., Tyczewska, A., Twardowski, T., 2006. Mechanism of peptide bond formation on the ribosome – controversions. In Polish. Postepy Biochem. 52, 166–172.
  • 35) Macintosh, G.C., Bassham, D.C., 2011. The connection between ribophagy and ribosomal RNA decay. Autophagy 7 (6), 662–663.
  • 36) Dupont, N., Temime-Smaali, N., Lafont, F., 2010. How ubiquitination and autophagy participate in the regulation of the response to bacterial infection. Cell 102, 621–634.
  • 37) Grasso, D., Ropolo, A., Lo, Re, A., et al., 2011. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p 62, prevents pancreatic cell death. J. Biol. Chem. 286, 8308–8324.
  • 38) Vaccaro, M.I., 2012. Zymophagy: selective autophagy of secretory granules. Int. J. Cell Biol. 2012, 396705.
  • 3) Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008 Feb 28;451(7182):1069-75.
  • 4) Xia, H.G., Zhang, L., Chen, G., et al., 2010. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 6 (1), 61–66.
  • 5) Ohsumi, Y., Mizushima, N., 2004. Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Develop. Biol. 15, 231–236.
  • 6) Cuervo, A.M., 2009. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol. Metab. 21, 142–150.
  • 7) Uttenweiler, A., Schwarz, H., Neumann, H., et al., 2007. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol. Biol. Cell 18, 166–175.
  • 8) Hoffman, W.H., Shacka, J.J., Andjelkovic, A.V., 2012. Autophagy in the brains of young patients with poorly controlled TIDM and fatal diabetic ketoacidosis. Exp. Mol. Pathol. 93, 273–280.
  • 9) Dice, J., 1990. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 15, 305–309.

SELEKTİF OTOFAJİ VE ALT TİPLERİ

Year 2018, Volume: 2 Issue: 1, 9 - 17, 11.02.2018

Abstract

Otofaji
hücresel metabolizmanın düzenlenmesi, yaşlanma, morfogenez, pek çok hastalığın
gelişmesi ve bağışıklığın düzenlenmesi gibi fizyolojik süreçlerde anahtar rol
üstlenmektedir. Otofajinin temel tetikleyicisinin besin azlığı olduğunun
bilinmesinin yanında, farklı hastalık süreçlerinde, çeşitli tetikleyiciler ve
düzenleyiciler tarafından kontrol edildiği de bilinmektedir. Otofajinin sinyal
kontrolünün sağlanması, Atg proteinlerinin moleküler etkileri,
otofagozom/lizozom füzyonunun düzenlenmesi ve otofaji aktivasyonunda yaşla
ilgili ve hastalığa özel kusurların anlaşılması ve mekanizmalarının
çözümlenmesi gerekmektedir. Sonuç olarak otofajinin hücrelere ve hastalıklara
özel sınıflandırılması ve özel mekanizmalarının bilinmesi hastalık süreçlerinin
aydınlatılması ve çözümlenebilmesi için gereklidir. Selektif otofaji başlığı
altında özelleştirilmiş otofaji tipleri ve bu süreçte etkili tetikleyiciler,
proteinler ve mekanizmaların neler olduğuna dair kısa bir derleme düzenledik

References

  • 10) Okamoto, K., 2014. Organellophagy: eliminating cellular building blocks via selective autophagy. J. Cell Biol. 205, 435–445.
  • 11) Birgisdottir, A.B., Lamark, T., Johansen, T., 2013. The LIR motif—crucial for selective autophagy. J. Cell Sci. 126, 3237–3247.
  • 12) Gyllenstein, U., Wharton, D., Joseffson, A., et al., 1991. Paternal inheritance of mitochondrial DNA in mice. Nature 352, 255–257.
  • 13) Al Rawi, S., Louvet-Vallee, S., Djeddi, A., et al., 2012. Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles. Autophagy 8, 421–423.
  • 14) Sato, M., Sato, K., 2013. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta 1833, 1979–1984.
  • 15) Rubinszstein, D.C., DiFiglia, M., Heintz, N., et al., 2005. Autophagy and its possible roles in nervous system diseases, damage, and repair. Autophagy 1, 11–22.
  • 16) Yue, Z., 2007. Regulation of neuronal autophagy in axon. Autophagy 3 (2), 139–141.
  • 17) Knöferle, J., Koch, J.C., Ostendorf, T., et al., 2010. Mechanisms of acute axonal degeneration in the optic nerve in vivo. PNAS 107, 6064–6069.
  • 18) Changou, C.A., Chen, Y.-R., Li, X., et al., 2014. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc. Natl. Acad. Sci. U. S. A. 111, 14147–14152.
  • 19) Orhon, I., Dupont, N., Pampliega, O., et al., 2015. Autophagy and regulation of cilia function and assembly. Cell Death Differ. 22, 389–397.
  • 1) Singh SS, Vats S, Chia AY, Tan TZ, Deng S, Ong MS, Arfuso F, Yap CT, Goh BC, Sethi G, Huang RY, Shen HM, Manjithaya R, Kumar AP. Dual role of autophagy in hallmarks of cancer. Oncogene. 2017 Dec 19.
  • 20) Cloonan, S.M., Lam, H.C., Ryter, S.W., et al., 2014. Ciliophagy: the consumption of cilia components by autophagy. Autophagy 10 (3), 532–534.
  • 21) Sandberg, M., Borg, L.A.H., 2006. Intracellular degradation of insulin and crinophagy are maintained by nitric oxide and cyclo-oxygenase 2 activity in isolated pancreatic islets. Biol. Cell 98 (5), 307–315.
  • 22) Abrahamsen, H., and Stenmark, H., 2010. Protein secretion: unconventional exit by exophagy. Curr. Biol. 20, 415–418.
  • 23) Jiang, S., Wells, C.D., Roach, P.J., 2011. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biol. Chem. Res. Commun. 413, 420–425.
  • 24) Singh, R., Cuervo, A.M., 2012. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012, 282041.
  • 25) Christian, P., Sacco, J., Adeli, K., 2013. Autophagy: emerging roles in lipid homeostasis and metabolic control. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831, 819–824.
  • 26) Hung, Y.H., Chen, L.M., Yang, J.Y., et al., 2013. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4, 2111.
  • 27) Maejima, I.A., Takahashi, H., Omori, T., et al., 2013. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347.
  • 28) Mercer, T.R., Neph, S., Dinger, M.E., et al., 2011. The human mitochondrial transcriptome. Cell 146, 645–658.
  • 29) Novak, I., 2012. Mitophagy: a complex mechanism of mitochondrial removal. Antioxid. Redox Signal. 17, 794–802.
  • 2) Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, Verovskaya EV, Figueroa ME, Passegué E. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017 Mar 9;543(7644):205-210
  • 30) Erenpreisa, J., Huna, A., Salmina, K., et al., 2012. Macroautophagy-aided elimination of chromatin: sorting of waste, sorting of fate? Autophagy 8, 1877–1881.
  • 31) Mijaljica, D., Prescott, M., Devenish, R.J., 2012. A late form of nucleophagy in Saccharomyces cerevisiae. PLoS One 7 (6), e40013.
  • 32) Deosaran, E., Larsen, K.B., Hua, R., et al., 2013. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939–952.
  • 33) Cebollero, E., Reggiori, F., Kraft, C., 2012. Reticulophagy and ribophagy: regulated degradation of protein production factories. Int. J. Cell Biol. 2012, 182834.
  • 34) Bakowska-Zywicka, K., Tyczewska, A., Twardowski, T., 2006. Mechanism of peptide bond formation on the ribosome – controversions. In Polish. Postepy Biochem. 52, 166–172.
  • 35) Macintosh, G.C., Bassham, D.C., 2011. The connection between ribophagy and ribosomal RNA decay. Autophagy 7 (6), 662–663.
  • 36) Dupont, N., Temime-Smaali, N., Lafont, F., 2010. How ubiquitination and autophagy participate in the regulation of the response to bacterial infection. Cell 102, 621–634.
  • 37) Grasso, D., Ropolo, A., Lo, Re, A., et al., 2011. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p 62, prevents pancreatic cell death. J. Biol. Chem. 286, 8308–8324.
  • 38) Vaccaro, M.I., 2012. Zymophagy: selective autophagy of secretory granules. Int. J. Cell Biol. 2012, 396705.
  • 3) Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008 Feb 28;451(7182):1069-75.
  • 4) Xia, H.G., Zhang, L., Chen, G., et al., 2010. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 6 (1), 61–66.
  • 5) Ohsumi, Y., Mizushima, N., 2004. Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Develop. Biol. 15, 231–236.
  • 6) Cuervo, A.M., 2009. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol. Metab. 21, 142–150.
  • 7) Uttenweiler, A., Schwarz, H., Neumann, H., et al., 2007. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol. Biol. Cell 18, 166–175.
  • 8) Hoffman, W.H., Shacka, J.J., Andjelkovic, A.V., 2012. Autophagy in the brains of young patients with poorly controlled TIDM and fatal diabetic ketoacidosis. Exp. Mol. Pathol. 93, 273–280.
  • 9) Dice, J., 1990. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 15, 305–309.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section REVIEW
Authors

Fatma Fırat

Kemal Özbilgin

Publication Date February 11, 2018
Published in Issue Year 2018 Volume: 2 Issue: 1

Cite

APA Fırat, F., & Özbilgin, K. (2018). SELEKTİF OTOFAJİ VE ALT TİPLERİ. Balıkesir Medical Journal, 2(1), 9-17.