Research Article
BibTex RIS Cite

Shading Alleviates Damage of Short Term Salinity and Protects Leaf Pigments in Sweet Cherry

Year 2023, , 95 - 103, 29.12.2023
https://doi.org/10.59128/bojans.1384971

Abstract

Salt stress negatively influences fruit yield and quality in trees. In addition to environmental stresses, excess energy from sunlight possesses harmful effects on plant metabolisms. Here we reveal the effects of shading on short term salinity stress in cherry plants. Salinity and shading treatments were introduced approximately two months after planting. Three shading levels (40%, 60%, and 80%) were applied. To induce moderate salinity stress, 35 mM NaCl (sodium chloride) was utilized for one month. Many morphological and physiological aspects and chlorophyll metabolism were evaluated. We found that the plant growth, stomatal conductance and chlorophyll biosynthesis were significantly retarded under salinity during a month. However, shading treatments alleviated the salinity damage. Moreover, salt stress hindered the biosynthesis of chlorophyll at Mg-Proto IX step. Shading treatments mitigated salinity damage associated with decreasing air and leaf temperature and preventing the loss of chlorophyll and the precursors and increasing anthocyanins. The results of the study showed that shading treatments possessed a protective effect on short term salinity in cherry plants.

References

  • Aras, S. and Eşitken, A. (2018). Physiological responses of cherry rootstocks to short term salinity. Erwerbs-Obstbau, 60, 161-164.
  • Aras, S. and Eşitken, A. (2019a). Responses of apple plants to salinity stress. Yüzüncü Yıl University Journal Agricultural Sciences, 29 (2), 253-257.
  • Aras, S. and Eşitken, A. (2019b). Responses of cherry plant grafted onto CAB-6P, MaxMa 14 and Mazzard rootstocks to short term salinity. Journal of Agricultural Studies, 7(3), 29-37.
  • Aras, S. and Eşitken, A. (2019c). Physiological effects of photoselective nets in strawberry plant. KSU Journal of Agriculture and Nature, 22, 342-346.
  • Aras, S., Eşitken, A. and Karakurt, Y. (2019). Morphological and physiological responses and some wrky genes expression in cherry rootstocks under salt stress. Spanish Journal of Agricultural Research, 17 (4), e0806.
  • Aras, S., Keles, H. and Bozkurt, E. (2021). Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Scientia Horticulturae, 281, 109967.
  • Barradas, V. L., Nicolás, E., Torrecillas, A. and Alarcón, J. J. (2005). Transpiration and canopy conductance in young apricot (Prunus armenica L.) trees subjected to different PAR levels and water stress. Agricultural Water Management, 77(1-3), 323-333.
  • Brouwer, B., Gardeström, P. and Keech, O. (2014). In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. Journal of Experimental Botany, 65(14), 4037-4049.
  • Corte-Real, J., Bertucci, M., Soukoulis, C., Desmarchelier, C., Borel, P., Richling, E., Hoffmann, L., Bohn, T. (2017). Negative effects of divalent mineral cations on the bioaccessibility of carotenoids from plant food matrices and related physical properties of gastro-intestinal fluids. Food Funct 8(3): 1008-1019.
  • da Silva, P. S. O., de Oliveira Junior, L. F. G., de Mattos, E. C., dos Santos Maciel, L. B., dos Santos, M. P. F, Sena, E. D. O. A., Barbosa, N. T. B., Carnelossi, M. A. G. and Fagundes, J. L. (2019). Calcium particle films promote artificial shading and photoprotection in leaves of American grapevines (Vitis labrusca L.). Scientia Horticulturae, 252, 77-84.
  • Del Amor, F. and Marcelis, L. F. M. (2003). Regulation of nutrient uptake, water uptake and growth under calcium starvation and recovery. Journal of Horticultural Science and Biotechnology, 7, 343-349.
  • Dussi, M. C., Giardina, G., Sosa, D., Junyent, R. G., Zecca, A. and Reeb, P. (2005). Shade nets effect on canopy light distribution and quality of fruit and spur leaf on apple cv. Fuji. Spanish Journal of Agricultural Research, (2), 253-260.
  • García-Sánchez, F., Simón, I., Lidón, V., Manera, F. J., Simón-Grao, S., Pérez-Pérez, J. G. and Gimeno, V. (2015). Shade screen increases the vegetative growth but not the production in ‘Fino 49’lemon trees grafted on Citrus macrophylla and Citrus aurantium L. Scientia Horticulturae, 194, 175-180.
  • Ghaffari, A., Gharechahi, J., Nakhoda, B. and Salekdeh, G. H. (2014). Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. Journal of Plant Physiology, 171(1), 31-44.
  • Gu, K. D., Wang, C. K., Hu, D. G. and Hao, Y. J. (2019). How do anthocyanins paint our horticultural products?. Scientia Horticulturae, 249, 257-262.
  • Hichem, H., El Naceur, A. and Mounir, D. (2009). Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica, 47(4), 517-526.
  • Hoagland, D. R. and Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular 347. Agricultural Experiment Station, University of California, Berkeley.
  • Hodgins, R. R. and Van Huystee, R. B. (1986). Rapid simultaneous estimation of protoporphyrin and Mg-porphyrins in higher plants. Journal of Plant Physiology, 125(3-4), 311-323.
  • Kitayama, M., Tisarum, R., Theerawitaya, C., Samphumphung, T., Takagaki, M., Kirdmanee, C. and Cha-um, S. (2019). Regulation on anthocyanins, α-tocopherol and calcium in two water spinach (Ipomoea aquatica) cultivars by NaCl salt elicitor. Scientia Horticulturae, 249, 390-400.
  • Liu, J., Wang, J., Yao, X., Zhang, Y., Li, J., Wang, X., Xu, Z. and Chen, W. (2015). Characterization and fine mapping of thermo-sensitive chlorophyll deficit mutant1 in rice (Oryza sativa L.). Breeding Science, 65, 161–169.
  • Mita, S., Murano, N., Akaike, M. and Nakamura, K. (1997). Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β‐amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant, J 11, 841–851.
  • Muzzopappa, F. and Kirilovsky, D. (2020). Changing color for photoprotection: the orange carotenoid protein. Trends in Plant Science, 25(1), 92-104.
  • Neto, M. C. L., Lobo, A. K., Martins, M. O., Fontenele, A. V. and Silveira, J. A. G. (2014). Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. Journal of Plant Physiology, 171(1), 23-30.
  • Nicolás, E., Torrecillas, A., DellAmico, J. and Alarcón, J. J. (2005). Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. Journal of Plant Physiology, 162(4), 439-447.
  • Nisar, N., Li, L., Lu, S., Khin, N. C. and Pogson, B. J. (2015). Carotenoid metabolism in plants. Molecular Plant, 8(1), 68-82.
  • Parida, A. K., Das, A. B., Sanada, Y. and Mohanty, P. (2004). Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany, 80, 77-87.
  • Pompelli, M. F., Martins, S. C., Antunes, W. C., Chaves, A. R. and DaMatta, F. M. (2010). Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. Journal of Plant Physiology, 167(13), 1052-1060.
  • Ray, S., Singh, V., Singh, S., Sarma, B. K. and Singh, H. B. (2016). Biochemical and histochemical analyses revealing endophytic Alcaligenes faecalis mediated suppression of oxidative stress in Abelmoschus esculentus challenged with Sclerotium rolfsii. Plant Physiology and Biochemistry, 109, 430-441.
  • Riaz, M., Yan, L., Wu, X., Hussain, S., Aziz, O., El-Desouki and Z., Jiang, C. (2019). Excess boron inhibited the trifoliate orange growth by inducing oxidative stress, alterations in cell wall structure, and accumulation of free boron. Plant Physiology and Biochemistry, 141, 105-113.
  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. USDA Agric. Handbook 60. USDA, Washington D. C.
  • Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99.
  • Shen, Y., Li, J., Gu, R., Yue, L., Zhan, X. and Xing, B. (2017). Phenanthrene-triggered chlorosis is caused by elevated Chlorophyll degradation and leaf moisture. Environmental Pollution, 220, 1311-1321.
  • Shezi, S., Magwaza, L. S., Mashilo, J., Tesfay, S. Z. and Mditshwa, A. (2020). Photochemistry and photoprotection of ‘Gem’avocado (Persea americana Mill.) leaves within and outside the canopy and the relationship with fruit maturity. Journal of Plant Physiology, 246, 153130.
  • Shumbe, L., Bott, R., Havaux, M. (2014). Dihydroactinidiolide, a high light-induced β-carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis. Molecular Plant, 7(7), 1248-1251.
  • Singleton, V. L. and Rossi, J. R. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid. American Journal of Enology and Viticulture, 16, 144-158.
  • Smart, R. E. and Bingham, G. E. (1974). Rapid estimates of relative water content. Journal of Plant Physiology, 53, 258-260.
  • Tanaka, R. and Tanaka, A. (2007). Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology, 58, 321-346.
  • Vigo, C., Therios, I. N. and Bosabalidis, A. M. (2005). Plant growth, nutrient concentration, and leaf anatomy of olive plants irrigated with diluted seawater. Journal of Plant Nutrition, 28(6), 1001-1021.
  • Wilhelm, C. and Selmar, D. (2011). Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. Journal of Plant Physiology, 168(2), 79-87.
  • Xiong, J. L., Wang, H. C., Tan, X. Y., Zhang, C. L. and Naeem, M. S. (2018). 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiology and Biochemistry, 124, 88-99.
  • Yang, Y., Lu, X., Yan, B., Li, B., Sun, J., Guo, S. and Tezuka, T. (2013). Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance. Journal of Plant Physiology, 170(7), 653-661.
  • Zhu, J. J., Li, Y. R. and Liao, J. X. (2013). Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves. Plant Physiology and Biochemistry, 73, 427-433.
  • Zhu, Y. F., Wu, Y. X., Hu, Y., Jia, X. M., Zhao, T., Cheng, L. and Wang, Y. X. (2019). Tolerance of two apple rootstocks to short-term salt stress: focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures. Acta Physiologiae Plantarum, 41(6), 87.

Gölgelemenin Kirazda Kısa Süreli Tuzluluğun Zararını Azaltması ve Yaprak Pigmentlerini Koruması

Year 2023, , 95 - 103, 29.12.2023
https://doi.org/10.59128/bojans.1384971

Abstract

Tuz stresi ağaçlarda meyve verimini ve kalitesini olumsuz yönde etkilemektedir. Çevresel streslerin yanı sıra güneş ışığından gelen fazla enerjinin bitki metabolizmaları üzerinde zararlı etkileri vardır. Burada kiraz bitkisinde gölgelemenin kısa süreli tuzluluk stresi üzerindeki etkilerini ortaya koymaktayız. Tuzluluk ve gölgeleme uygulamaları fidan dikiminden yaklaşık iki ay sonra uygulanmıştır. Üç gölgeleme seviyesi (%40, %60 ve %80) uygulanmıştır. Orta derecede tuzluluk stresini tetiklemek için bir ay boyunca 35 mM NaCl (sodyum klorür) kullanılmıştır. Birçok morfolojik ve fizyolojik parametre ile klorofil metabolizması değerlendirilmiştir. Tuzluluk altında bitki büyümesinin, stoma iletkenliğinin ve klorofil biyosentezinin bir ay boyunca önemli ölçüde düştüğü belirlenmiştir. Ancak gölgeleme uygulamaları tuzluluğun zararını hafifletmiştir. Ayrıca tuz stresi, Mg-Proto IX aşamasında klorofil biyosentezini engellemiştir. Gölgeleme uygulamaları, hava ve yaprak sıcaklığının azalmasıyla ilişkili tuzluluk hasarını azaltmış, klorofil ve öncüllerin kaybını ve antosiyaninlerin artmasını önlemiştir. Çalışmanın sonuçları, gölgeleme uygulamalarının kiraz bitkisinde kısa süreli tuzluluk üzerinde koruyucu etkiye sahip olduğunu göstermiştir.

References

  • Aras, S. and Eşitken, A. (2018). Physiological responses of cherry rootstocks to short term salinity. Erwerbs-Obstbau, 60, 161-164.
  • Aras, S. and Eşitken, A. (2019a). Responses of apple plants to salinity stress. Yüzüncü Yıl University Journal Agricultural Sciences, 29 (2), 253-257.
  • Aras, S. and Eşitken, A. (2019b). Responses of cherry plant grafted onto CAB-6P, MaxMa 14 and Mazzard rootstocks to short term salinity. Journal of Agricultural Studies, 7(3), 29-37.
  • Aras, S. and Eşitken, A. (2019c). Physiological effects of photoselective nets in strawberry plant. KSU Journal of Agriculture and Nature, 22, 342-346.
  • Aras, S., Eşitken, A. and Karakurt, Y. (2019). Morphological and physiological responses and some wrky genes expression in cherry rootstocks under salt stress. Spanish Journal of Agricultural Research, 17 (4), e0806.
  • Aras, S., Keles, H. and Bozkurt, E. (2021). Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Scientia Horticulturae, 281, 109967.
  • Barradas, V. L., Nicolás, E., Torrecillas, A. and Alarcón, J. J. (2005). Transpiration and canopy conductance in young apricot (Prunus armenica L.) trees subjected to different PAR levels and water stress. Agricultural Water Management, 77(1-3), 323-333.
  • Brouwer, B., Gardeström, P. and Keech, O. (2014). In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. Journal of Experimental Botany, 65(14), 4037-4049.
  • Corte-Real, J., Bertucci, M., Soukoulis, C., Desmarchelier, C., Borel, P., Richling, E., Hoffmann, L., Bohn, T. (2017). Negative effects of divalent mineral cations on the bioaccessibility of carotenoids from plant food matrices and related physical properties of gastro-intestinal fluids. Food Funct 8(3): 1008-1019.
  • da Silva, P. S. O., de Oliveira Junior, L. F. G., de Mattos, E. C., dos Santos Maciel, L. B., dos Santos, M. P. F, Sena, E. D. O. A., Barbosa, N. T. B., Carnelossi, M. A. G. and Fagundes, J. L. (2019). Calcium particle films promote artificial shading and photoprotection in leaves of American grapevines (Vitis labrusca L.). Scientia Horticulturae, 252, 77-84.
  • Del Amor, F. and Marcelis, L. F. M. (2003). Regulation of nutrient uptake, water uptake and growth under calcium starvation and recovery. Journal of Horticultural Science and Biotechnology, 7, 343-349.
  • Dussi, M. C., Giardina, G., Sosa, D., Junyent, R. G., Zecca, A. and Reeb, P. (2005). Shade nets effect on canopy light distribution and quality of fruit and spur leaf on apple cv. Fuji. Spanish Journal of Agricultural Research, (2), 253-260.
  • García-Sánchez, F., Simón, I., Lidón, V., Manera, F. J., Simón-Grao, S., Pérez-Pérez, J. G. and Gimeno, V. (2015). Shade screen increases the vegetative growth but not the production in ‘Fino 49’lemon trees grafted on Citrus macrophylla and Citrus aurantium L. Scientia Horticulturae, 194, 175-180.
  • Ghaffari, A., Gharechahi, J., Nakhoda, B. and Salekdeh, G. H. (2014). Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. Journal of Plant Physiology, 171(1), 31-44.
  • Gu, K. D., Wang, C. K., Hu, D. G. and Hao, Y. J. (2019). How do anthocyanins paint our horticultural products?. Scientia Horticulturae, 249, 257-262.
  • Hichem, H., El Naceur, A. and Mounir, D. (2009). Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica, 47(4), 517-526.
  • Hoagland, D. R. and Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular 347. Agricultural Experiment Station, University of California, Berkeley.
  • Hodgins, R. R. and Van Huystee, R. B. (1986). Rapid simultaneous estimation of protoporphyrin and Mg-porphyrins in higher plants. Journal of Plant Physiology, 125(3-4), 311-323.
  • Kitayama, M., Tisarum, R., Theerawitaya, C., Samphumphung, T., Takagaki, M., Kirdmanee, C. and Cha-um, S. (2019). Regulation on anthocyanins, α-tocopherol and calcium in two water spinach (Ipomoea aquatica) cultivars by NaCl salt elicitor. Scientia Horticulturae, 249, 390-400.
  • Liu, J., Wang, J., Yao, X., Zhang, Y., Li, J., Wang, X., Xu, Z. and Chen, W. (2015). Characterization and fine mapping of thermo-sensitive chlorophyll deficit mutant1 in rice (Oryza sativa L.). Breeding Science, 65, 161–169.
  • Mita, S., Murano, N., Akaike, M. and Nakamura, K. (1997). Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β‐amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant, J 11, 841–851.
  • Muzzopappa, F. and Kirilovsky, D. (2020). Changing color for photoprotection: the orange carotenoid protein. Trends in Plant Science, 25(1), 92-104.
  • Neto, M. C. L., Lobo, A. K., Martins, M. O., Fontenele, A. V. and Silveira, J. A. G. (2014). Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. Journal of Plant Physiology, 171(1), 23-30.
  • Nicolás, E., Torrecillas, A., DellAmico, J. and Alarcón, J. J. (2005). Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. Journal of Plant Physiology, 162(4), 439-447.
  • Nisar, N., Li, L., Lu, S., Khin, N. C. and Pogson, B. J. (2015). Carotenoid metabolism in plants. Molecular Plant, 8(1), 68-82.
  • Parida, A. K., Das, A. B., Sanada, Y. and Mohanty, P. (2004). Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany, 80, 77-87.
  • Pompelli, M. F., Martins, S. C., Antunes, W. C., Chaves, A. R. and DaMatta, F. M. (2010). Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. Journal of Plant Physiology, 167(13), 1052-1060.
  • Ray, S., Singh, V., Singh, S., Sarma, B. K. and Singh, H. B. (2016). Biochemical and histochemical analyses revealing endophytic Alcaligenes faecalis mediated suppression of oxidative stress in Abelmoschus esculentus challenged with Sclerotium rolfsii. Plant Physiology and Biochemistry, 109, 430-441.
  • Riaz, M., Yan, L., Wu, X., Hussain, S., Aziz, O., El-Desouki and Z., Jiang, C. (2019). Excess boron inhibited the trifoliate orange growth by inducing oxidative stress, alterations in cell wall structure, and accumulation of free boron. Plant Physiology and Biochemistry, 141, 105-113.
  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. USDA Agric. Handbook 60. USDA, Washington D. C.
  • Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99.
  • Shen, Y., Li, J., Gu, R., Yue, L., Zhan, X. and Xing, B. (2017). Phenanthrene-triggered chlorosis is caused by elevated Chlorophyll degradation and leaf moisture. Environmental Pollution, 220, 1311-1321.
  • Shezi, S., Magwaza, L. S., Mashilo, J., Tesfay, S. Z. and Mditshwa, A. (2020). Photochemistry and photoprotection of ‘Gem’avocado (Persea americana Mill.) leaves within and outside the canopy and the relationship with fruit maturity. Journal of Plant Physiology, 246, 153130.
  • Shumbe, L., Bott, R., Havaux, M. (2014). Dihydroactinidiolide, a high light-induced β-carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis. Molecular Plant, 7(7), 1248-1251.
  • Singleton, V. L. and Rossi, J. R. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid. American Journal of Enology and Viticulture, 16, 144-158.
  • Smart, R. E. and Bingham, G. E. (1974). Rapid estimates of relative water content. Journal of Plant Physiology, 53, 258-260.
  • Tanaka, R. and Tanaka, A. (2007). Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology, 58, 321-346.
  • Vigo, C., Therios, I. N. and Bosabalidis, A. M. (2005). Plant growth, nutrient concentration, and leaf anatomy of olive plants irrigated with diluted seawater. Journal of Plant Nutrition, 28(6), 1001-1021.
  • Wilhelm, C. and Selmar, D. (2011). Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. Journal of Plant Physiology, 168(2), 79-87.
  • Xiong, J. L., Wang, H. C., Tan, X. Y., Zhang, C. L. and Naeem, M. S. (2018). 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiology and Biochemistry, 124, 88-99.
  • Yang, Y., Lu, X., Yan, B., Li, B., Sun, J., Guo, S. and Tezuka, T. (2013). Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance. Journal of Plant Physiology, 170(7), 653-661.
  • Zhu, J. J., Li, Y. R. and Liao, J. X. (2013). Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves. Plant Physiology and Biochemistry, 73, 427-433.
  • Zhu, Y. F., Wu, Y. X., Hu, Y., Jia, X. M., Zhao, T., Cheng, L. and Wang, Y. X. (2019). Tolerance of two apple rootstocks to short-term salt stress: focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures. Acta Physiologiae Plantarum, 41(6), 87.
There are 43 citations in total.

Details

Primary Language English
Subjects Pomology and Treatment
Journal Section Research Articles
Authors

Servet Aras 0000-0002-0347-6552

Hakan Keles 0000-0002-8225-931X

Publication Date December 29, 2023
Submission Date November 2, 2023
Acceptance Date December 5, 2023
Published in Issue Year 2023

Cite

APA Aras, S., & Keles, H. (2023). Shading Alleviates Damage of Short Term Salinity and Protects Leaf Pigments in Sweet Cherry. Bozok Tarım Ve Doğa Bilimleri Dergisi, 2(2), 95-103. https://doi.org/10.59128/bojans.1384971