Research Article
BibTex RIS Cite

Enginar bitkisinin (Cynara scolymus L.) farklı kısımlarının antioksidan kapasitesi

Year 2022, Volume: 1 Issue: 2, 127 - 133, 13.12.2022

Abstract

Çalışmanın amacı, enginar bitkisinin farklı kısımlarının sahip olduğu antioksidan kapasitenin değerlendirmesidir. Bu çalışmada bitkinin üç farklı aksamı (sap, yaprak ve brakte) incelenmiş olup, TEAC, Trolox eşdeğer antioksidan kapasitesi; FRAP, demir (III) iyonu indirgeyici antioksidan kapasite; PHEN, toplam fenolikler; TMA, toplam monomerik antosiyaninler ·OH, hidroksil radikali süpürme kapasitesi; SOS, süperoksit temizleme kapasitelerine bakılmıştır. Çalışma sonuçlarına göre en yüksek toplam fenol içeriği 2013.58±81.23 μg GAE/g fw brakteden elde edilmiştir. En düşük değer 1536.12±86.71 μg GAE/g fw bitkinin sap kısmından elde edilmiştir. Antioksidan kapasiteyi ölçmek için TEAC ve FRAP yöntemleri kullanılmıştır. Buna göre en yüksek antioksidan kapasiteye sahip bitki kısmı brakteden (20.23±1.31 ve 20.23±1.31 µmol/L) tespit edilmiştir. Sonuç olarak, C. scolymus'un iyi bir antioksidan etki sergilediği ve özellikle gıda olarak tüketiminin insan sağlığı açısından önemli olduğu sonucuna varılmıştır.

References

  • Bensid, A.; El Abed, N.; Houicher, A.; Regenstein, J.M.; Özogul, F. Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food–a review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1–17.
  • Curadi, M.; Picciarelli, P.; Lorenzi, R.; Graifenberg, A.; Geccarelli, N. Antioxidant activity and phenolic compounds in the edible parts of early and late Italian artichoke (Cynara scolymus L.) varieties. Ital. J. Food Sci. 2005, 17, 33–44.
  • D’Antuono, I.; Carola, A.; Sena, L.; Linsalata, V.; Cardinali, A.; Logrieco, A.; Colucci, M.; Apone, F. Artichoke polyphenols produce skin anti-age effects by improving endothelial cell integrity and functionality. Molecules 2018, 23, 2729.
  • Ergezer, H.; Serdaroğlu, M. Antioxidant potential of artichoke (Cynara scolymus L.) byproducts extracts in raw beef patties during refrigerated storage. J. Food Meas. Charact. 2018, 12, 982–991.
  • El Sohaimy, S.A. Chemical composition, antioxidant and antimicrobial potential of artichoke. Open Nutraceuticals J. 2014, 7, 15–20.
  • Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181.
  • Fratianni, F.; Tucci, M.; De Palma, M.; Pepe, R.; Nazzaro, F. Polyphenolic composition in different parts of some cultivars of Globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem. 2007, 104, 1282–1286.
  • Ferracane, R.; Pellegrini, N.; Visconti, A.; Graziani, G.; Chiavaro, E.; Miglio, C.; Fogliano, V. Effects of different cooking methods on antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J. Agric. Food Chem. 2008, 56, 8601–8608.
  • Giusti MM., Wrolstad RE., Characterization and measurement of anthocyanins by UV–visible spectroscopy Unit F1.2. In: Wrolstad, R.E., Schwartz, S.J. (Eds.), Handbook of Food Analytical Chemistry, New York: Wiley; 2005. pp. 19–31.
  • Halliwell B., Gutteridge JM., Free radicals in biology and medicine, 4th ed., New York: Oxford University Press Inc; 2007.
  • Johnson IT., Antioxidants and antitumour properties. Cambridge: Woodhead Publishing Ltd; 2001. pp. 100-123.
  • Katalinic V., Modun D., Music I., Boban M., Gender differences in antioxidant capacity of rat tissues determined by 2,2V-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays, Comp. Biochem. Physiol. 140, 47-52 (2005).
  • Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural phenolic compounds for the control of oxidation, bacterial spoilage, and foodborne pathogens in meat. Foods 2020, 9, 794–822.
  • Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144.
  • McCord JM., Fridovich I., Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem. 244, 6049-6055 (1969).
  • Marakis, G.; Walker, A.; Middleton, R.; Booth, J.; Wright, J.; Pike, D. Artichoke leaf extract reduces mild dyspepsia in an open study. Phytomedicine 2002, 9, 694–699.
  • Obón, J.M.; Castellar, M.R.; Cascales, J.A.; Fernández-López, J.A. Assessment of the TEAC method for determining the antioxidant capacity of synthetic red food colorants. Food Res. Int. 2005, 38, 843--845.
  • Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268.
  • Pandino, G.; Courts, F.L.; Lombardo, S.; Mauromicale, G.; Williamson, G. Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. J. Agric. Food Chem. 2009, 58, 1026–1031.
  • Petropoulos, S.A.; Pereira, C.; Ntatsi, G.; Danalatos, N.; Barros, L.; Ferreira, I.C. Nutritional value and chemical composition of greek artichoke genotypes. Food Chem. 2018, 267, 296–302.
  • Prior, R.L.; Wu, X.; Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290--4302.
  • Salem, M.B.; Affes, H.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K.M. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum. Nutr. 2015, 70, 441–453.
  • Szôllôsi, R., Varga, I.S., 2002. Total antioxidant power in some species of Labiatae (adaptation of FRAP method). Acta Biol. Szeged 46, 125--127.
  • Singleton VL., Rossi JL., Colorimetry of total phenolics with phosphomolybdic– phosphotungstic acid reagents, Am. J. Enol. Viticult. 16, 144-158 (1965).
  • Tadhani MB., Patel VH., Subhash R., In vitro antioxidant activities of Stevia rebaudiana leaves and callus, J. Food Compos. Anal. 20, 323-329 (2007).
  • Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 2005, 81, 243S–255S.
  • Wang, M.; Simon, J.E.; Aviles, I.F.; He, K.; Zheng, Q.Y.; Tadmor, Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J. Agric. Food Chem. 2003, 51, 601–608.
  • Virgili F., Scaccini C., Packer L., Rimbach G., Cardiovascular disease and nutritional phenolics antioxidants in food. Cambridge: Woodhead Publishing Ltd; 2001. pp. 87–99.
  • Zuorro, A.; Maffei, G.; Lavecchia, R. Reuse potential of artichoke (Cynara scolymus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 2016, 111, 279–284.

Antioxidant capacity of different parts of artichoke (Cynara scolymus L.)

Year 2022, Volume: 1 Issue: 2, 127 - 133, 13.12.2022

Abstract

The study aims to evaluate the antioxidant capacity of different parts of the artichoke plant. In this study, three different parts of the plant (stem, leaf, and bract) were examined. TEAC, Trolox equivalent antioxidant capacity; FRAP, ferric reducing antioxidant power; PHEN, total phenolics; TMA, total monomeric anthocyanins ·OH, hydroxyl radical scavenging capacity; SOS, superoxide removal capacities were examined. According to the results of the study, the highest total phenol content was obtained from 2013.58±81.23 μg GAE/g fw bract. The lowest value 1536.12±86.71 μg GAE/g fw was obtained from the stem part of the plant. TEAC and FRAP methods were used to measure antioxidant capacity. Accordingly, the part of the plant with the highest antioxidant capacity was determined from bract (20.23±1.31 and 20.23±1.31 µmol/L). As a result, it was concluded that C. scolymus exhibits a good antioxidant effect, and its consumption as food is important for human health.

References

  • Bensid, A.; El Abed, N.; Houicher, A.; Regenstein, J.M.; Özogul, F. Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food–a review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1–17.
  • Curadi, M.; Picciarelli, P.; Lorenzi, R.; Graifenberg, A.; Geccarelli, N. Antioxidant activity and phenolic compounds in the edible parts of early and late Italian artichoke (Cynara scolymus L.) varieties. Ital. J. Food Sci. 2005, 17, 33–44.
  • D’Antuono, I.; Carola, A.; Sena, L.; Linsalata, V.; Cardinali, A.; Logrieco, A.; Colucci, M.; Apone, F. Artichoke polyphenols produce skin anti-age effects by improving endothelial cell integrity and functionality. Molecules 2018, 23, 2729.
  • Ergezer, H.; Serdaroğlu, M. Antioxidant potential of artichoke (Cynara scolymus L.) byproducts extracts in raw beef patties during refrigerated storage. J. Food Meas. Charact. 2018, 12, 982–991.
  • El Sohaimy, S.A. Chemical composition, antioxidant and antimicrobial potential of artichoke. Open Nutraceuticals J. 2014, 7, 15–20.
  • Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181.
  • Fratianni, F.; Tucci, M.; De Palma, M.; Pepe, R.; Nazzaro, F. Polyphenolic composition in different parts of some cultivars of Globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem. 2007, 104, 1282–1286.
  • Ferracane, R.; Pellegrini, N.; Visconti, A.; Graziani, G.; Chiavaro, E.; Miglio, C.; Fogliano, V. Effects of different cooking methods on antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J. Agric. Food Chem. 2008, 56, 8601–8608.
  • Giusti MM., Wrolstad RE., Characterization and measurement of anthocyanins by UV–visible spectroscopy Unit F1.2. In: Wrolstad, R.E., Schwartz, S.J. (Eds.), Handbook of Food Analytical Chemistry, New York: Wiley; 2005. pp. 19–31.
  • Halliwell B., Gutteridge JM., Free radicals in biology and medicine, 4th ed., New York: Oxford University Press Inc; 2007.
  • Johnson IT., Antioxidants and antitumour properties. Cambridge: Woodhead Publishing Ltd; 2001. pp. 100-123.
  • Katalinic V., Modun D., Music I., Boban M., Gender differences in antioxidant capacity of rat tissues determined by 2,2V-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays, Comp. Biochem. Physiol. 140, 47-52 (2005).
  • Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural phenolic compounds for the control of oxidation, bacterial spoilage, and foodborne pathogens in meat. Foods 2020, 9, 794–822.
  • Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144.
  • McCord JM., Fridovich I., Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem. 244, 6049-6055 (1969).
  • Marakis, G.; Walker, A.; Middleton, R.; Booth, J.; Wright, J.; Pike, D. Artichoke leaf extract reduces mild dyspepsia in an open study. Phytomedicine 2002, 9, 694–699.
  • Obón, J.M.; Castellar, M.R.; Cascales, J.A.; Fernández-López, J.A. Assessment of the TEAC method for determining the antioxidant capacity of synthetic red food colorants. Food Res. Int. 2005, 38, 843--845.
  • Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268.
  • Pandino, G.; Courts, F.L.; Lombardo, S.; Mauromicale, G.; Williamson, G. Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. J. Agric. Food Chem. 2009, 58, 1026–1031.
  • Petropoulos, S.A.; Pereira, C.; Ntatsi, G.; Danalatos, N.; Barros, L.; Ferreira, I.C. Nutritional value and chemical composition of greek artichoke genotypes. Food Chem. 2018, 267, 296–302.
  • Prior, R.L.; Wu, X.; Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290--4302.
  • Salem, M.B.; Affes, H.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K.M. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum. Nutr. 2015, 70, 441–453.
  • Szôllôsi, R., Varga, I.S., 2002. Total antioxidant power in some species of Labiatae (adaptation of FRAP method). Acta Biol. Szeged 46, 125--127.
  • Singleton VL., Rossi JL., Colorimetry of total phenolics with phosphomolybdic– phosphotungstic acid reagents, Am. J. Enol. Viticult. 16, 144-158 (1965).
  • Tadhani MB., Patel VH., Subhash R., In vitro antioxidant activities of Stevia rebaudiana leaves and callus, J. Food Compos. Anal. 20, 323-329 (2007).
  • Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 2005, 81, 243S–255S.
  • Wang, M.; Simon, J.E.; Aviles, I.F.; He, K.; Zheng, Q.Y.; Tadmor, Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J. Agric. Food Chem. 2003, 51, 601–608.
  • Virgili F., Scaccini C., Packer L., Rimbach G., Cardiovascular disease and nutritional phenolics antioxidants in food. Cambridge: Woodhead Publishing Ltd; 2001. pp. 87–99.
  • Zuorro, A.; Maffei, G.; Lavecchia, R. Reuse potential of artichoke (Cynara scolymus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 2016, 111, 279–284.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Hatice Baş 0000-0001-8296-0360

Hülya Doğan 0000-0003-1970-4123

Publication Date December 13, 2022
Submission Date October 10, 2022
Published in Issue Year 2022 Volume: 1 Issue: 2

Cite

APA Baş, H., & Doğan, H. (2022). Enginar bitkisinin (Cynara scolymus L.) farklı kısımlarının antioksidan kapasitesi. Bozok Tarım Ve Doğa Bilimleri Dergisi, 1(2), 127-133.