Research Article
BibTex RIS Cite
Year 2020, Volume: 5 Issue: 3, 131 - 143, 30.09.2020
https://doi.org/10.30728/boron.675261

Abstract

References

  • McMillian P.W., Glass-Ceramics, 2nd edition, Academic Press, New York, 1979.
  • Akbay E., Altiokka M. R., Kinetics of borax dehydration by thermal analysis, Anadolu Univ. J. Sci. Technol. A- Appl. Sci. Eng. 18 (3), 713-719, 2017.
  • Kocakuşak S., Akcay K., Ayok T., Tolun R., Production of anhydrous, crystalline borax in a fluidized bed, Ind. Eng. Chem. Res. 35 (4), 1996.
  • Eti Mine Enterprises, Boron products technical data sheet (in Turkish), Turkey, 1-107, 2018.
  • Derluyn H., Moonen P., Carmeliet J., Numerical modeling of crystallization induced damage processes, Workshop CRYSPOM III, Crystallization in porous media, Portugal, 2012.
  • Cooke R. U., Smalley I. J., Salt weathering in deserts, Nature, 220, 1226-1227, 1968.
  • Flatt R. J., Caruso F., Sanchez A. M. A., Scherer G. W., Chemo-mechanics of salt damage in stone, Nat. Commun., 5, 4823, 2014.
  • Charola A. E., Weber J., The hydration-dehydration mechanism of sodium sulphate, In: 7th International Congress on Deterioration and Conservation of Stone, Proc. Lisbon: LNEC, 581-590, 1992.
  • Rodriguez-Navarro C., Doehne E., Sebastian E., How does sodium sulphate crystallize? Implications for the decay and testing of building materials, Cem. Concr. Res., 30 (10), 1527-1534, 2000.
  • Gomez-Tena M. P., Moreno A., Bou E., Cook S., Galindo M., Vicente M. J., Use of a new borate raw material for glaze formulation, Bol. Soc. Esp. Ceram. Vidr. 49 (4), 319-326, 2010.
  • Kaplan J., Zamek J., A substitute for gerstley borate, Ceram. Tech., 24-29, 2011.
  • Haber R. A., Powders: Prefiring, in Concise encyclopedia of advanced ceramic materials, ed. R. J. Brook, Pergamon Press, pp. 377-380, 1991.
  • Ouabbas Y., Dodds J., Galet L., Chamayou A., Baron M., Particle–particle coating in a cyclomix impact mixer, Powder Technol. 189, 245–252, 2009.
  • Mujumdar A., Wei D., Dave R. N., Pfeffer R., Wu C. Y., Improvement of humidity resistance of magnesium powder using dry particle coating, Powder Technol., 140, 86–97, 2004.
  • Saleh K., Guigon P., Coating and Encapsulation Processes in Powder Technology, Elsevier, 1st edition, Handbook of Powder Technol. vol. 11, ch. 7, 323-375, 2007.
  • Otles M. S., Modification of surface properties of biopowders by dry particle coating PhD, Université de Toulouse, 2008.
  • Pfeffer R., Davé R. N., Wei D., Ramlakhan M., Synthesis of engineered particulates with tailored properties using dry particle coating, Powder Technol., 117, 40–67, 2001.
  • Hersey J. A., Ordered mixing: A new concept in powder mixing practice, Powder Technol., 11 (1), 41-44, 1975.
  • Hudon S., Lapointe-Garant P. P., Simard J. S., Pichieri A., Hammond S., Sienkiewicz G., Abatzoglou N., et al., Evaluation of a dry coating technology as a substitute for roller compaction for dry agglomeration applications in the pharmaceutical industry, J. Pharm. Innov., 1-18, 2018.
  • Cavaillès F., Sescousse R., Chamayou A., Galet L., Production of composite particles using an innovative continuous dry coating process derived from extrusion, Advanced Powder Technol., 28 (11), 2875-2885, 2017.
  • Singh P., Solanky T. K. S., Mudryy R., Pfeffer R., Dave R. N., Estimation of coating time in the magnetically assisted impaction coating process, Powder Technol. 121, 159-167, 2001.
  • Yang J., Sliva A., Banerjee A., Dave R. N., Pfeffer R., Dry particle coating for improving the flowability of cohesive powders, Powder Technol. 158, 21–33, 2005.
  • Sonoda R., Horibe M., Oshima T., Iwasaki T., Watano S., Improvement of dissolution property of poorly water-soluble drug by novel dry coating method using planetary ball mill, Chem. Pharm. Bull. 56 (9), 1243-1247, 2008.
  • Tsai W. T., Microstructural characterization of calcite-based powder materials prepared by planetary ball milling, Materials, 6, 3361-3372, 2013.
  • Suryanarayana C., Mechanical alloying and milling, Prog. Mater Sci., 46, 1–184, 2001.
  • Baláž P., Mechanochemistry in Nanoscience and Minerals Engineering, Chapter 2, High Energy Milling, Springer, Hardcover, Netherland, 2008.
  • Domka L., Modification estimate of kaolin, chalk, and precipitated calcium carbonate as plastomer and elastomer fillers, Colloid Polym. Sci., 272, 1190–1202, 1994.
  • Gilbert M., Petiraksakul P., Mathieson I., Characterisation of stearate-stearic acid coated fillers, Mater. Sci. Technol., 17, 1472–1478, 2001.
  • Wang Y., Eli W., Zhang L., Gao H., Liu Y., Li P., A new method for surface modification of nano-CaCO3 and nano-Al2O3 at room temperature, Adv. Powder Technol., 21 (2), pp. 203–205, 2010.
  • Mihajlovic S. R., Vucinic D. R., Sekulic Z. T., Milicevic S. Z., Kolonja B. M., Mechanism of stearic acid adsorption to calcite, Powder Technol., 245, 208–216, 2013.
  • Gilbert M., Sutherland I., Guest A., Characterization of coated particulate fillers, J. Mater. Sci., 35 391–397, 2000.
  • Markley K.S., Fatly Acids: Their Chemistry and Physical Properties, Part 1, 2nd edition, Interscience Publishers Inc., New York, 1960.
  • Agernäs O., Tengberg T., Development of Two Methods to Evaluate Lubricating Greases Using a Rheometer BSc, Chalmers University of Technology, Göteborg, Sweden, 2011.
  • Zhou X., Fan Z., Jin D., Qiu H., Yang J., Comparative study of the modification of mineral powder by titanate and stearic acid and preliminary investigation for their mechanism, J. Mater. Appl., 2 (1), 29-32, 2013.
  • Liao J., Du G., Qiao X., Hao D., Surface modification of diatomite by stearic acid and its effects on reinforcing for natural rubber/styrene-butadiene rubber blend, J. Chin. Ceram. Soc., 39, 641-645, 2011.
  • Akpinar S., Yazici Z. O., Can M. F., Investigation of surface-modified anhydrous borax utilisation in raw glazes, Ceram. Int. 44, 18344-18351, 2018.
  • Koskela J., Effect of mechanical dry coating on powder properties–microcrystalline cellulose and magnesium stearate, Msc. Thesis, University of Helsinki, Division of Pharmaceutical Chemistry and Technology, Helsinki, 2015.
  • Hong S. H., Lee D. W., Kim B. K., Manufacturing of aluminum flake powder from foil scrap by dry ball milling process, J. Mater. Process. Technol. 100 (1), 105–109, 2000.
  • Babuccuoglu Y., Reinforcement of Epoxies by Boron Minerals PhD Thesis, Middle East Technical University, Polymer Science and Technology Department, Ankara, 2015.
  • Pal M., Roy B., Pal M., Structural characterization of borate glasses containing zinc and manganese oxides, J. Mod. Phys., 2, 1062-1066, 2011.
  • Focke W. W., Molefe D., Labuschagne F. J. W., Ramjee S., The influence of stearic acid coating on the properties of magnesium hydroxide, hydromagnesite and hydrotalcite powders, J. Mater. Appl., 44 (22), 6100-6109, 2009.
  • Qing Y., Yang C., Sun Y., Zheng Y., Shang Y., Liu C., Simple method for preparing ZnO superhydrophobic surfaces with micro/nano roughness, J. Adhes. Sci. Technol., 29 (20) 2153–2159, 2015.
  • Waclawska I., Thermal decomposition of borax, J. Therm. Anal., 43 (1), 261-269, 1995.
  • Heller-Kallai L., Yariv S., Friedman I., Thermal analysis of the interaction between stearic acid and pyrophillite or talc. IR and DTA studies, J. Therm. Anal., 31, 95-106, 1986.

Characterization of surface properties of dry-coated anhydrous borax powders

Year 2020, Volume: 5 Issue: 3, 131 - 143, 30.09.2020
https://doi.org/10.30728/boron.675261

Abstract

Dry particle coating of anhydrous borax (ANB) powders with hydrophobic stearic acid (SA) in the planetary ball mill was investigated. Two process parameters, the amounts of modifier agent and the processing periods, were selected to investigate their effects on solubility, wettability, dispersibility, and hydration properties of ANB powders. Each of the process parameters, i.e., SA amounts (0.5, 1, and 2 wt.%), and coating periods (30, 60, and 120 min), was set at three different levels. Structural changes in the dry-coated powders were characterised using X-ray diffraction (XRD) and photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Differential thermal and thermogravimetric analysis (DTA-TG). A discrete coating at an efficiency of 68% was acquired with SA amount of 1 wt.% at a coating period of 60 min, and, thus, resulted in a 31.4% decrease (from 40% to 8.6%) in water solubility of ANB. Moreover, this discrete SA coating made ANB more hydrophobic (99o) and prevented its further hydration. Furthermore, FT-IR and XPS results indicated that SA is coated over the surface of ANB via physical adsorption rather than chemical bonding. Thus, the effective dry coating could be applied to obtain surface-coated ANB, which offers controlled solubility in water-based suspensions.

References

  • McMillian P.W., Glass-Ceramics, 2nd edition, Academic Press, New York, 1979.
  • Akbay E., Altiokka M. R., Kinetics of borax dehydration by thermal analysis, Anadolu Univ. J. Sci. Technol. A- Appl. Sci. Eng. 18 (3), 713-719, 2017.
  • Kocakuşak S., Akcay K., Ayok T., Tolun R., Production of anhydrous, crystalline borax in a fluidized bed, Ind. Eng. Chem. Res. 35 (4), 1996.
  • Eti Mine Enterprises, Boron products technical data sheet (in Turkish), Turkey, 1-107, 2018.
  • Derluyn H., Moonen P., Carmeliet J., Numerical modeling of crystallization induced damage processes, Workshop CRYSPOM III, Crystallization in porous media, Portugal, 2012.
  • Cooke R. U., Smalley I. J., Salt weathering in deserts, Nature, 220, 1226-1227, 1968.
  • Flatt R. J., Caruso F., Sanchez A. M. A., Scherer G. W., Chemo-mechanics of salt damage in stone, Nat. Commun., 5, 4823, 2014.
  • Charola A. E., Weber J., The hydration-dehydration mechanism of sodium sulphate, In: 7th International Congress on Deterioration and Conservation of Stone, Proc. Lisbon: LNEC, 581-590, 1992.
  • Rodriguez-Navarro C., Doehne E., Sebastian E., How does sodium sulphate crystallize? Implications for the decay and testing of building materials, Cem. Concr. Res., 30 (10), 1527-1534, 2000.
  • Gomez-Tena M. P., Moreno A., Bou E., Cook S., Galindo M., Vicente M. J., Use of a new borate raw material for glaze formulation, Bol. Soc. Esp. Ceram. Vidr. 49 (4), 319-326, 2010.
  • Kaplan J., Zamek J., A substitute for gerstley borate, Ceram. Tech., 24-29, 2011.
  • Haber R. A., Powders: Prefiring, in Concise encyclopedia of advanced ceramic materials, ed. R. J. Brook, Pergamon Press, pp. 377-380, 1991.
  • Ouabbas Y., Dodds J., Galet L., Chamayou A., Baron M., Particle–particle coating in a cyclomix impact mixer, Powder Technol. 189, 245–252, 2009.
  • Mujumdar A., Wei D., Dave R. N., Pfeffer R., Wu C. Y., Improvement of humidity resistance of magnesium powder using dry particle coating, Powder Technol., 140, 86–97, 2004.
  • Saleh K., Guigon P., Coating and Encapsulation Processes in Powder Technology, Elsevier, 1st edition, Handbook of Powder Technol. vol. 11, ch. 7, 323-375, 2007.
  • Otles M. S., Modification of surface properties of biopowders by dry particle coating PhD, Université de Toulouse, 2008.
  • Pfeffer R., Davé R. N., Wei D., Ramlakhan M., Synthesis of engineered particulates with tailored properties using dry particle coating, Powder Technol., 117, 40–67, 2001.
  • Hersey J. A., Ordered mixing: A new concept in powder mixing practice, Powder Technol., 11 (1), 41-44, 1975.
  • Hudon S., Lapointe-Garant P. P., Simard J. S., Pichieri A., Hammond S., Sienkiewicz G., Abatzoglou N., et al., Evaluation of a dry coating technology as a substitute for roller compaction for dry agglomeration applications in the pharmaceutical industry, J. Pharm. Innov., 1-18, 2018.
  • Cavaillès F., Sescousse R., Chamayou A., Galet L., Production of composite particles using an innovative continuous dry coating process derived from extrusion, Advanced Powder Technol., 28 (11), 2875-2885, 2017.
  • Singh P., Solanky T. K. S., Mudryy R., Pfeffer R., Dave R. N., Estimation of coating time in the magnetically assisted impaction coating process, Powder Technol. 121, 159-167, 2001.
  • Yang J., Sliva A., Banerjee A., Dave R. N., Pfeffer R., Dry particle coating for improving the flowability of cohesive powders, Powder Technol. 158, 21–33, 2005.
  • Sonoda R., Horibe M., Oshima T., Iwasaki T., Watano S., Improvement of dissolution property of poorly water-soluble drug by novel dry coating method using planetary ball mill, Chem. Pharm. Bull. 56 (9), 1243-1247, 2008.
  • Tsai W. T., Microstructural characterization of calcite-based powder materials prepared by planetary ball milling, Materials, 6, 3361-3372, 2013.
  • Suryanarayana C., Mechanical alloying and milling, Prog. Mater Sci., 46, 1–184, 2001.
  • Baláž P., Mechanochemistry in Nanoscience and Minerals Engineering, Chapter 2, High Energy Milling, Springer, Hardcover, Netherland, 2008.
  • Domka L., Modification estimate of kaolin, chalk, and precipitated calcium carbonate as plastomer and elastomer fillers, Colloid Polym. Sci., 272, 1190–1202, 1994.
  • Gilbert M., Petiraksakul P., Mathieson I., Characterisation of stearate-stearic acid coated fillers, Mater. Sci. Technol., 17, 1472–1478, 2001.
  • Wang Y., Eli W., Zhang L., Gao H., Liu Y., Li P., A new method for surface modification of nano-CaCO3 and nano-Al2O3 at room temperature, Adv. Powder Technol., 21 (2), pp. 203–205, 2010.
  • Mihajlovic S. R., Vucinic D. R., Sekulic Z. T., Milicevic S. Z., Kolonja B. M., Mechanism of stearic acid adsorption to calcite, Powder Technol., 245, 208–216, 2013.
  • Gilbert M., Sutherland I., Guest A., Characterization of coated particulate fillers, J. Mater. Sci., 35 391–397, 2000.
  • Markley K.S., Fatly Acids: Their Chemistry and Physical Properties, Part 1, 2nd edition, Interscience Publishers Inc., New York, 1960.
  • Agernäs O., Tengberg T., Development of Two Methods to Evaluate Lubricating Greases Using a Rheometer BSc, Chalmers University of Technology, Göteborg, Sweden, 2011.
  • Zhou X., Fan Z., Jin D., Qiu H., Yang J., Comparative study of the modification of mineral powder by titanate and stearic acid and preliminary investigation for their mechanism, J. Mater. Appl., 2 (1), 29-32, 2013.
  • Liao J., Du G., Qiao X., Hao D., Surface modification of diatomite by stearic acid and its effects on reinforcing for natural rubber/styrene-butadiene rubber blend, J. Chin. Ceram. Soc., 39, 641-645, 2011.
  • Akpinar S., Yazici Z. O., Can M. F., Investigation of surface-modified anhydrous borax utilisation in raw glazes, Ceram. Int. 44, 18344-18351, 2018.
  • Koskela J., Effect of mechanical dry coating on powder properties–microcrystalline cellulose and magnesium stearate, Msc. Thesis, University of Helsinki, Division of Pharmaceutical Chemistry and Technology, Helsinki, 2015.
  • Hong S. H., Lee D. W., Kim B. K., Manufacturing of aluminum flake powder from foil scrap by dry ball milling process, J. Mater. Process. Technol. 100 (1), 105–109, 2000.
  • Babuccuoglu Y., Reinforcement of Epoxies by Boron Minerals PhD Thesis, Middle East Technical University, Polymer Science and Technology Department, Ankara, 2015.
  • Pal M., Roy B., Pal M., Structural characterization of borate glasses containing zinc and manganese oxides, J. Mod. Phys., 2, 1062-1066, 2011.
  • Focke W. W., Molefe D., Labuschagne F. J. W., Ramjee S., The influence of stearic acid coating on the properties of magnesium hydroxide, hydromagnesite and hydrotalcite powders, J. Mater. Appl., 44 (22), 6100-6109, 2009.
  • Qing Y., Yang C., Sun Y., Zheng Y., Shang Y., Liu C., Simple method for preparing ZnO superhydrophobic surfaces with micro/nano roughness, J. Adhes. Sci. Technol., 29 (20) 2153–2159, 2015.
  • Waclawska I., Thermal decomposition of borax, J. Therm. Anal., 43 (1), 261-269, 1995.
  • Heller-Kallai L., Yariv S., Friedman I., Thermal analysis of the interaction between stearic acid and pyrophillite or talc. IR and DTA studies, J. Therm. Anal., 31, 95-106, 1986.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Süleyman Akpınar

Publication Date September 30, 2020
Acceptance Date September 10, 2020
Published in Issue Year 2020 Volume: 5 Issue: 3

Cite

APA Akpınar, S. (2020). Characterization of surface properties of dry-coated anhydrous borax powders. Journal of Boron, 5(3), 131-143. https://doi.org/10.30728/boron.675261