Research Article
BibTex RIS Cite

Effect of silanization time on the surface modification of anhydrous borax

Year 2020, Volume: 5 Issue: 3, 144 - 151, 30.09.2020
https://doi.org/10.30728/boron.690315

Abstract

The process of silanization to alter the surface properties of anhydrous borax powders was investigated using an organosilane of 3-(Trimethoxysilyl) propyl methacrylate. Silanization treatments were carried out in anhydrous toluene at constant reaction temperature and silane loading. For optimisation of the surface coating process of the silanization, different processing periods (1, 6, 12 and 24 hours) were attempted. The surface-treated powders were characterized by solubility and wettability tests.

References

  • [1] R.A. Haber, Powders: Prefiring, in Concise encyclopedia of advanced ceramic materials, ed. R. J. Brook, Pergamon Press, 1991, pp. 377-380
  • [2] M.S. Otles, Modification of surface properties of biopowders by dry particle coating, Ph.D. Thesis, Université de Toulouse, INPT, 2008.
  • [3] K. Saleh and P. Guigon, Coating and encapsulation processes in powder technology, Elsevier, 1st ed., Handbook of Powder Technol. vol. 11, ch. 7 (2007) 323-375.
  • [4] S.M. Yusoff, M.S.B. Ahmad, H.M. Akil, K.S. Ariffin, A. Ariffin, “Contact angle of untreated-treated kaolin and its correlation with the mechanical properties of PP–kaolin composites”, Journal of Reinforced Plastics and Composites, 29(23) 3442–3449, 2010
  • [5] Bo Lin, Jian Chen, Zeng-Tian Li, Fu-An He, De-Hao Li, Superhydrophobic modification of polyurethane sponge for the oil-water separation, Surface & Coatings Technology 359 (2019) 216–226
  • [6] W. Zhang, X. Li, Z. Shan, S.Wang, Y. Xiao, Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber, Applied Surface Science, 465 (2019) 740–746
  • [7] E. Richard, S.T. Aruna, B. J. Basu, Superhydrophobic surfaces fabricated by surface modification of alumina particles, Applied Surface Science 258 (2012) 10199–10204
  • [8] G. D. Bayık, A. Altın, Conversion of an industrial waste to an oil sorbent by coupling with functional silanes, Journal of Cleaner Production, 196 (2018) 1052-1064
  • [9] P.W. McMillian, Glass-Ceramics, 2nd ed., (1979), Academic Press, New York.
  • [10] E. Akbay, M.R. Altiokka, Kinetics of borax dehydration by thermal analysis, Anadolu Univ. J. Sci. Technol. A- Appl. Sci. Eng. 18, 3 (2017) 713-719.
  • [11] S. Kocakuşak, K. Akcay, T. Ayok, R. Tolun, Production of anhydrous, crystalline borax in a fluidized bed, Industrial & Engineering Chemistry Research 35(4) (1996).
  • [12] Eti Mine Enterprises, Boron products technical data sheet (in Turkish), 1-107, 2018
  • [13] H. Derluyn, P. Moonen, J. Carmeliet, Numerical modelling of crystallization induced damage processes, Workshop CRYSPOM III, Crystallization in porous media, 2012, Portugal.
  • [14] R. U. Cooke, I. J. Smalley, Salt weathering in deserts, Nature, 220 (1968) 1226-1227.
  • [15] R. J. Flatt, F. Caruso, A.M.A Sanchez, G.W. Scherer, Chemo-mechanics of salt damage in stone, Nature Communications, 5 (2014) 4823.
  • [16] A.E. Charola, J. Weber, The hydration-dehydration mechanism of sodium sulphate. In: 7th International Congress on Deterioration and Conservation of Stone, Proc. Lisbon: LNEC, (1992) 581-590.
  • [17] C. Rodriguez-Navarro, E. Doehne, E. Sebastian, How does sodium sulphate crystallize? Implications for the decay and testing of building materials, Cement and Concrete Research, 30(10) (2000) 1527-1534.
  • [18] J. Kaplan and J. Zamek, A substitute for gerstley borate, Ceram. Tech.32 (2011) 24-29.
  • [19] M.P. Gomez-Tena, A. Moreno, E. Bou, S. Cook, M. Galindo, M.J. Vicente, Use of a new borate raw material for glaze formulation, Bol. Soc. Esp. Ceram. Vidr. 49(4) (2010) 319-326.
  • [20] J.S. Kang, C.L. Yu, F.A. Zhang, Effect of silane modified SiO2 particles on poly(MMA-HEMA) soap-free emulsion polymerization, Iran Polym J., 18 (12), 927–935, 2009.
  • [21] Q. Tao, L. Su, R.L. Frost, D. Zhang, M. Chen, W. Shen, H. He, Silylation of mechanically ground kaolinite, Clay Minerals, 49, 559–568, 2014.
  • [22] K.C. Popat, R. W. Johnson, T. A. Desai, Characterization of vapor deposited thin silane films on silicon substrates for biomedical microdevices, Surface and Coatings Technology 2002, Vol. 154, 253-261.
  • [23] L. Moiseev, M.S. Unlu, A. K. Swan, B. B. Goldberg, C.R. Cantor, DNA conformation on surfaces measured by fluorescence self-interference, Proceedings of the National Academy of Sciences of the United States of America. 2006, 103(8), pp.2623-2628.
  • [24] F. Zhang, M. P. Srinivasan, Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities, Langmuir, 2004, 20(6), pp.2309-2314.
  • [25] L. D. White, C. P. Tripp, Reaction of (3-Aminopropyl)dimethylethoxysilane with Amine Catalysts on Silica Surfaces, Journal of Colloid and Interface Science. 2000, 232(2), pp.400-407
Year 2020, Volume: 5 Issue: 3, 144 - 151, 30.09.2020
https://doi.org/10.30728/boron.690315

Abstract

References

  • [1] R.A. Haber, Powders: Prefiring, in Concise encyclopedia of advanced ceramic materials, ed. R. J. Brook, Pergamon Press, 1991, pp. 377-380
  • [2] M.S. Otles, Modification of surface properties of biopowders by dry particle coating, Ph.D. Thesis, Université de Toulouse, INPT, 2008.
  • [3] K. Saleh and P. Guigon, Coating and encapsulation processes in powder technology, Elsevier, 1st ed., Handbook of Powder Technol. vol. 11, ch. 7 (2007) 323-375.
  • [4] S.M. Yusoff, M.S.B. Ahmad, H.M. Akil, K.S. Ariffin, A. Ariffin, “Contact angle of untreated-treated kaolin and its correlation with the mechanical properties of PP–kaolin composites”, Journal of Reinforced Plastics and Composites, 29(23) 3442–3449, 2010
  • [5] Bo Lin, Jian Chen, Zeng-Tian Li, Fu-An He, De-Hao Li, Superhydrophobic modification of polyurethane sponge for the oil-water separation, Surface & Coatings Technology 359 (2019) 216–226
  • [6] W. Zhang, X. Li, Z. Shan, S.Wang, Y. Xiao, Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber, Applied Surface Science, 465 (2019) 740–746
  • [7] E. Richard, S.T. Aruna, B. J. Basu, Superhydrophobic surfaces fabricated by surface modification of alumina particles, Applied Surface Science 258 (2012) 10199–10204
  • [8] G. D. Bayık, A. Altın, Conversion of an industrial waste to an oil sorbent by coupling with functional silanes, Journal of Cleaner Production, 196 (2018) 1052-1064
  • [9] P.W. McMillian, Glass-Ceramics, 2nd ed., (1979), Academic Press, New York.
  • [10] E. Akbay, M.R. Altiokka, Kinetics of borax dehydration by thermal analysis, Anadolu Univ. J. Sci. Technol. A- Appl. Sci. Eng. 18, 3 (2017) 713-719.
  • [11] S. Kocakuşak, K. Akcay, T. Ayok, R. Tolun, Production of anhydrous, crystalline borax in a fluidized bed, Industrial & Engineering Chemistry Research 35(4) (1996).
  • [12] Eti Mine Enterprises, Boron products technical data sheet (in Turkish), 1-107, 2018
  • [13] H. Derluyn, P. Moonen, J. Carmeliet, Numerical modelling of crystallization induced damage processes, Workshop CRYSPOM III, Crystallization in porous media, 2012, Portugal.
  • [14] R. U. Cooke, I. J. Smalley, Salt weathering in deserts, Nature, 220 (1968) 1226-1227.
  • [15] R. J. Flatt, F. Caruso, A.M.A Sanchez, G.W. Scherer, Chemo-mechanics of salt damage in stone, Nature Communications, 5 (2014) 4823.
  • [16] A.E. Charola, J. Weber, The hydration-dehydration mechanism of sodium sulphate. In: 7th International Congress on Deterioration and Conservation of Stone, Proc. Lisbon: LNEC, (1992) 581-590.
  • [17] C. Rodriguez-Navarro, E. Doehne, E. Sebastian, How does sodium sulphate crystallize? Implications for the decay and testing of building materials, Cement and Concrete Research, 30(10) (2000) 1527-1534.
  • [18] J. Kaplan and J. Zamek, A substitute for gerstley borate, Ceram. Tech.32 (2011) 24-29.
  • [19] M.P. Gomez-Tena, A. Moreno, E. Bou, S. Cook, M. Galindo, M.J. Vicente, Use of a new borate raw material for glaze formulation, Bol. Soc. Esp. Ceram. Vidr. 49(4) (2010) 319-326.
  • [20] J.S. Kang, C.L. Yu, F.A. Zhang, Effect of silane modified SiO2 particles on poly(MMA-HEMA) soap-free emulsion polymerization, Iran Polym J., 18 (12), 927–935, 2009.
  • [21] Q. Tao, L. Su, R.L. Frost, D. Zhang, M. Chen, W. Shen, H. He, Silylation of mechanically ground kaolinite, Clay Minerals, 49, 559–568, 2014.
  • [22] K.C. Popat, R. W. Johnson, T. A. Desai, Characterization of vapor deposited thin silane films on silicon substrates for biomedical microdevices, Surface and Coatings Technology 2002, Vol. 154, 253-261.
  • [23] L. Moiseev, M.S. Unlu, A. K. Swan, B. B. Goldberg, C.R. Cantor, DNA conformation on surfaces measured by fluorescence self-interference, Proceedings of the National Academy of Sciences of the United States of America. 2006, 103(8), pp.2623-2628.
  • [24] F. Zhang, M. P. Srinivasan, Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities, Langmuir, 2004, 20(6), pp.2309-2314.
  • [25] L. D. White, C. P. Tripp, Reaction of (3-Aminopropyl)dimethylethoxysilane with Amine Catalysts on Silica Surfaces, Journal of Colloid and Interface Science. 2000, 232(2), pp.400-407
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Süleyman Akpınar 0000-0002-7959-3464

Zeyni Arsoy 0000-0001-5694-6338

Publication Date September 30, 2020
Acceptance Date September 17, 2020
Published in Issue Year 2020 Volume: 5 Issue: 3

Cite

APA Akpınar, S., & Arsoy, Z. (2020). Effect of silanization time on the surface modification of anhydrous borax. Journal of Boron, 5(3), 144-151. https://doi.org/10.30728/boron.690315