Year 2020,
Volume: 5 Issue: 4, 163 - 169, 29.12.2020
Hacı Çeliker
Ahmet Başbozkurt
Ali Yaraş
Project Number
2209-A grant no: 1919B011703661
References
- [1] Zhang, S. et al., The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites, Express Polymer Letters, 5(7), 581-590, 2011.
- [2] Zhou, W., Qi, S., An, Q., Zhao, H., Liu, N., Thermal conductivity of boron nitride reinforced polyethylene composites, Materials Research Bulletin, 42(10), 1863-1873, 2007.
- [3] Li, S., Qi, S., Liu, N., Cao, P., Study on thermal conductive BN/novolac resin composites, Thermochimica acta, 523(1–2),111-115, 2011.
- [4] Wang, M., Kang, Q., Pan, N., Thermal conductivity enhancement of carbon fiber composites, Applied Thermal Engineering, 29(2–3),418-421, 2009.
- [5] Naficy, S., Garmabi, H., Study of the effective parameters on mechanical and electrical properties of carbon black filled PP/PA6 microfibrillar composites, Composites science and technology, 67(15–16), 3233-3241, 2007.
- [6] Tekce, H.S., Kumlutas, D., Tavman, I.H., Effect of particle shape on thermal conductivity of copper reinforced polymer composites, Journal of reinforced plastics and composites, 26(1),113-121, 2007.
- [7] Cheewawuttipong, W., Fuoka, D., Tanoue, S., Uematsu, H., Iemoto, Y., Thermal and mechanical properties of polypropylene/boron nitride composites, Energy Procedia 34, 808-817, 2013.
- [8] Visakh, P.M., Nazarenko, O.B., Amelkovich, Y.A., Melnikova, T. V, Thermal Properties of Epoxy Composites Filled with Boric Acid, IOP Conference Series: Materials Science and Engineering, 81(1), IOP Publishing,12095, 2015.
- [9] Scott, G.M., Smith, A., Sludge Characteristics and Disposal Alternatives for the Pulp and Paper Industry, Tappi International Environmental Conference, Tappi Press, 269, 1995.
- [10] Dorris, G.M., The physical characterization of hydrated reburned lime and lime mud particles, Journal of pulp and paper science, 19(6), J256-J267, 1993.
- [11] Bajpai, P., Biokraft pulping of eucalyptus with selected lignin-degrading fungi, Journal of Pulp Paper Science, 27, 235-239, 2001.
- [12] Küçükdoğan, N. et al., Kağıt üretim atığı katkılı yüksek yoğunluklu polietilen (yype) kompozitlerin mekanik özelliklerinin incelenmesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(8), 949-953, 2017.
- [13] Pöllänen, M., Suvanto, M., Pakkanen, T.T., Cellulose reinforced high density polyethylene composites—Morphology, mechanical and thermal expansion properties, Composites Science and Technology 76, 21-28, 2013.
- [14] Huang, H.B., Du, H.H., Wang, W.H., Shi, J.Y., Characteristics of paper mill sludge‐wood fiber‐high‐density polyethylene composites, Polymer Composites, 33(9), 1628-1634, 2012.
- [15] Son, J., Kim, H., Lee, P., Role of paper sludge particle size and extrusion temperature on performance of paper sludge–thermoplastic polymer composites, Journal of Applied Polymer Science, 82(11), 2709-2718, 2001.
- [16] Akkurt, S., Sütçü, M., Başoğlu, K., Isı yalıtım özellikleri iyileştirilmiş yapı tuğlalarının geliştirilmesinde kağıt üretim atıklarının kullanılması etkileri, X. Ulusal Tesisat mühendisliği kongresi, İzmir, Türkiye, 899-908, 2011.
- [17] Pehlivanli, Z.O., H3BO3/PP Kompozitlerinin ısı iletim katsayılarının incelenmesi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 4(3), 91-96, 2016.
- [18] Rao K. M. M., Rao K. M., Prasad A. V. R., Fabrication and testing of natural fibre composites: Vakka, sisal, bamboo and banana, Mater. Des., 31 (1), 508-513, 2010.
- [19] Ramanaiah K., Prasad A. V. R., Reddy K. H. C., Thermal and mechanical properties of waste grass broom fiber-reinforced polyester composites, Mater. Des., 40, 103-108, 2012.
- [20] Demirel M., Pamuk V., Dilsiz N., Investigation of flame retardancy and physical-mechanical properties of zinc borate/boric acid polyester composites, J. Appl. Polym. Sci., 115 (5), 2550-2555, 2010.
- [21] Li J., Cai C. L., The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites, Curr. Appl. Phys., 11 (1), 50-54, 2011.
- [22] Pehlivanlı Z. O., H3BO3/PP kompozitlerinin ısı iletim katsayılarının incelenmesi, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., 4 (3), 91-96, 2016.
- [23] Yang S. Y., Lin W. N., Huang Y. L., Tien H. W., Wang J. Y., Ma C. C. M., Li S. M., et al., Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon, 49 (3), 793-803, 2011.
Mechanical and thermal properties of boric acid and paper mill sludge reinforced polyester composites
Year 2020,
Volume: 5 Issue: 4, 163 - 169, 29.12.2020
Hacı Çeliker
Ahmet Başbozkurt
Ali Yaraş
Abstract
This study is aimed to produce polymer composite material with low thermal conductivity coefficient and high mechanical strength. Therefore, different rates of boric acid and paper mill sludge were added to the polyester matrix and the composite materials are characterized in terms of mechanical and thermal properties. Based on the experimental results, the addition of paper mill sludge and boric acid improved the bending strength and partially thermal resistance of the composite material and led to decrease in the decomposition temperature values. It was determined that paper mill sludge and boric acid decreased the thermal conductivity coefficient. The experimental results demonstrate that the utilization of boric acid and paper mill sludge in polyester based composite material production improves the mechanical and thermal properties of the material.
Supporting Institution
Scientific and Technological Research Council of Turkey
Project Number
2209-A grant no: 1919B011703661
Thanks
This study was financially supported by the Scientific and Technological Research Council of Turkey (2209-A grant no: 1919B011703661).
References
- [1] Zhang, S. et al., The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites, Express Polymer Letters, 5(7), 581-590, 2011.
- [2] Zhou, W., Qi, S., An, Q., Zhao, H., Liu, N., Thermal conductivity of boron nitride reinforced polyethylene composites, Materials Research Bulletin, 42(10), 1863-1873, 2007.
- [3] Li, S., Qi, S., Liu, N., Cao, P., Study on thermal conductive BN/novolac resin composites, Thermochimica acta, 523(1–2),111-115, 2011.
- [4] Wang, M., Kang, Q., Pan, N., Thermal conductivity enhancement of carbon fiber composites, Applied Thermal Engineering, 29(2–3),418-421, 2009.
- [5] Naficy, S., Garmabi, H., Study of the effective parameters on mechanical and electrical properties of carbon black filled PP/PA6 microfibrillar composites, Composites science and technology, 67(15–16), 3233-3241, 2007.
- [6] Tekce, H.S., Kumlutas, D., Tavman, I.H., Effect of particle shape on thermal conductivity of copper reinforced polymer composites, Journal of reinforced plastics and composites, 26(1),113-121, 2007.
- [7] Cheewawuttipong, W., Fuoka, D., Tanoue, S., Uematsu, H., Iemoto, Y., Thermal and mechanical properties of polypropylene/boron nitride composites, Energy Procedia 34, 808-817, 2013.
- [8] Visakh, P.M., Nazarenko, O.B., Amelkovich, Y.A., Melnikova, T. V, Thermal Properties of Epoxy Composites Filled with Boric Acid, IOP Conference Series: Materials Science and Engineering, 81(1), IOP Publishing,12095, 2015.
- [9] Scott, G.M., Smith, A., Sludge Characteristics and Disposal Alternatives for the Pulp and Paper Industry, Tappi International Environmental Conference, Tappi Press, 269, 1995.
- [10] Dorris, G.M., The physical characterization of hydrated reburned lime and lime mud particles, Journal of pulp and paper science, 19(6), J256-J267, 1993.
- [11] Bajpai, P., Biokraft pulping of eucalyptus with selected lignin-degrading fungi, Journal of Pulp Paper Science, 27, 235-239, 2001.
- [12] Küçükdoğan, N. et al., Kağıt üretim atığı katkılı yüksek yoğunluklu polietilen (yype) kompozitlerin mekanik özelliklerinin incelenmesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(8), 949-953, 2017.
- [13] Pöllänen, M., Suvanto, M., Pakkanen, T.T., Cellulose reinforced high density polyethylene composites—Morphology, mechanical and thermal expansion properties, Composites Science and Technology 76, 21-28, 2013.
- [14] Huang, H.B., Du, H.H., Wang, W.H., Shi, J.Y., Characteristics of paper mill sludge‐wood fiber‐high‐density polyethylene composites, Polymer Composites, 33(9), 1628-1634, 2012.
- [15] Son, J., Kim, H., Lee, P., Role of paper sludge particle size and extrusion temperature on performance of paper sludge–thermoplastic polymer composites, Journal of Applied Polymer Science, 82(11), 2709-2718, 2001.
- [16] Akkurt, S., Sütçü, M., Başoğlu, K., Isı yalıtım özellikleri iyileştirilmiş yapı tuğlalarının geliştirilmesinde kağıt üretim atıklarının kullanılması etkileri, X. Ulusal Tesisat mühendisliği kongresi, İzmir, Türkiye, 899-908, 2011.
- [17] Pehlivanli, Z.O., H3BO3/PP Kompozitlerinin ısı iletim katsayılarının incelenmesi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 4(3), 91-96, 2016.
- [18] Rao K. M. M., Rao K. M., Prasad A. V. R., Fabrication and testing of natural fibre composites: Vakka, sisal, bamboo and banana, Mater. Des., 31 (1), 508-513, 2010.
- [19] Ramanaiah K., Prasad A. V. R., Reddy K. H. C., Thermal and mechanical properties of waste grass broom fiber-reinforced polyester composites, Mater. Des., 40, 103-108, 2012.
- [20] Demirel M., Pamuk V., Dilsiz N., Investigation of flame retardancy and physical-mechanical properties of zinc borate/boric acid polyester composites, J. Appl. Polym. Sci., 115 (5), 2550-2555, 2010.
- [21] Li J., Cai C. L., The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites, Curr. Appl. Phys., 11 (1), 50-54, 2011.
- [22] Pehlivanlı Z. O., H3BO3/PP kompozitlerinin ısı iletim katsayılarının incelenmesi, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., 4 (3), 91-96, 2016.
- [23] Yang S. Y., Lin W. N., Huang Y. L., Tien H. W., Wang J. Y., Ma C. C. M., Li S. M., et al., Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon, 49 (3), 793-803, 2011.