Research Article
BibTex RIS Cite

Bone Cement Formulation with Reduced Heating of Bone Cement Resin

Year 2021, Volume: 6 Issue: 2, 274 - 282, 30.06.2021
https://doi.org/10.30728/boron.835919

Abstract

Bone cement material is one of the key materials in bone surgery and orthopedic medicine. In this study, commercial polymethyl-methacrylate bone cement was mixed with boric acid and zinc borate to reduce the reaction temperature of the bone cement. The observation of temperature changes during the polymerization using laser thermometer and thermal camera showed that the use of boron compounds decreased the temperature of the bone cement at least 10 °C which is very critical for the biomaterial uses as it affects the biocompatibility of the material. Besides temperature monitoring, microbiological tests showed that the materials have certain antibacterial effect. Water contact angle studies also supported the biocompatibility studies. In the last part, mechanical tests showed that there was not significant change in the tensile strength and tensile modulus values. Antibacterial tests exhibited that zinc borate addition shows antimicrobial activity against S.epidermidis as well as boric acid addition over %5 concentration. According to the cell culture studies, boric acid can be interpreted as non-toxic up to 10%, while 10% and 20% zinc borate has toxic effect. This is the first study to use boron compounds in bone cement and it is proved that boric acid at low concentrations can be used for bone cement applications but zinc borate would not be suitable to use in medical applications due to toxic effects.

Supporting Institution

İzmir Katip Celebi University

Project Number

2016-TYL-FEBE-0033

Thanks

This study was supported by Izmir Katip Celebi University as 2016-TYL-FEBE-0033 as a master thesis study of Muserref Caka. We would like to thank Prof. Ahmet Murat Bülbül, Prof. Mehmet Emin Erdil, and Dr. Ersin Kuyucu for the great support on the initiation of this study. Prof. Seyhun Solakoglu was also very helpful for the biocompatibility tests. Also we would like to thank research assistant Metehan Atagür for his help during the experiments.

References

  • 1. Kuhn, L. T., Biomaterials, Introd. to Biomed. Eng., 255–312, 2005. doi:10.1016/B978-0-12-238662-6.50008-2
  • 2. Guzzi, E. A., Tibbitt, M. W., Additive Manufacturing of Precision Biomaterials, Adv. Mater., 32(13), 1–24, 2020. doi:10.1002/adma.201901994
  • 3. Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., Kim, K. H., Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects, Mater. Sci. Eng. C., 106, 110154, 2020. doi:10.1016/j.msec.2019.110154.
  • 4. Alizadeh-Osgouei, M., Li, Y., Wen, C., A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications, Bioact. Mater., 4(1), 22–36, 2019. doi:10.1016/j.bioactmat.2018.11.003.
  • 5. Ananth, H., Kundapur, V., Mohammed, H. S., Anand, M., Amarnath, G. S., Mankar, S., A review on biomaterials in dental implantology, Int. J. Biomed. Sci., 11(3), 113–120, 2015. https://pubmed.ncbi.nlm.nih.gov/26508905/
  • 6. Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., Glogauer, M., Biodegradable materials for bone repair and tissue engineering applications, Materials (Basel)., 8(9), 5744–5794, 2015. doi:10.3390/ma8095273.
  • 7. Gemmell, K., D., Meyer, D., Wear of Ultra High Molecular Weight Polyethylene against Synthetic Sapphire as Bearing Coating for Total Joint Replacements, Res. Dev. Mater. Sci., 6(2), 560–567, 2018. doi:10.31031/RDMS.2018.06.000632.
  • 8. Lewis, G., Viscoelastic properties of injectable bone cements for orthopaedic applications: State-of-the-art review, J. Biomed. Mater. Res. - Part B Appl. Biomater., 98 B(1), 171–191, 2011. doi:10.1002/jbm.b.31835.
  • 9. Winkler, H., Treatment of chronic orthopaedic infection, EFORT Open Rev., 2(5), 110–116, 2017. doi:10.1302/2058-5241.2.160063.
  • 10. Cook, G. E., Markel, D. C., Ren, W., Webb, L. X., McKee, M. D., Schemitsch, E. H., Infection in Orthopaedics, J. Orthop. Trauma., 29, S19–S23, 2015. doi:10.1097/BOT.0000000000000461.
  • 11. Vaishya, R., Chauhan, M., Vaish, A., Bone cement, J. Clin. Orthop. Trauma., 4(4), 157–163, 2013. doi:10.1016/j.jcot.2013.11.005.
  • 12. Arora, M., Chan, E. K. S., Gupta, S., Diwan, A. D., Polymethylmethacrylate bone cements and additives: A review of the literature, World J. Orthop., 4(2), 67–74, 2013. doi:10.5312/wjo.v4.i2.67.
  • 13. Stańczyk, M., Telega, J., Modelling of heat transfer in biomechanics - a review. P. 2. Orthopaedics, Acta Bioeng. Biomech., 4(2), 3–31, 2002. https://www.infona.pl/resource/bwmeta1.element.baztech-article-BPB1-0014-0017
  • 14. Song, W.-L., Wang, P., Cao, L., Anderson, A., Meziani, M. J., Farr, A. J., Sun, Y.-P., Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance, Angew. Chemie., 124(26), 6604–6607, 2012. doi:10.1002/ange.201201689.
  • 15. Wang, Y., Li, H., Yao, J., Wang, X., Antonietti, M., Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation, Chem. Sci., 2(3), 446–450, 2011. doi:10.1039/c0sc00475h.
  • 16. Cheng, F., Jäkle, F., Boron-containing polymers as versatile building blocks for functional nanostructured materials, Polym. Chem., 2(10), 2122–2132, 2011. doi:10.1039/c1py00123j.
  • 17. Green, J., Mechanisms for flame retardancy and smoke suppression - A review, J. Fire Sci., 14(6), 426–442, 1996. doi:10.1177/073490419601400602.
  • 18. Shi, L., Li, D., Wang, J., Li, S., Evans, D. G., Duan, X., Synthesis, flame-retardant and smoke-suppressant properties of a borate-intercalated layered double hydroxide, Clays Clay Miner., 53(3), 294–300, 2005. doi:10.1346/CCMN.2005.0530309.
  • 19. Bailey, P. J., Cousins, G., Snow, G. A., White, A. J., Boron-containing antibacterial agents: Effects on growth and morphology of bacteria under various culture conditions, Antimicrob. Agents Chemother., 17(4), 549–553, 1980. doi:10.1128/AAC.17.4.549.
  • 20. Penyige, A., Deak, E., Barabas, G., Evidence of a role for NAD+-glycohydrolase and ADP-ribosyltransferase in growth and differentiation of Streptomyces, Microbiology., 142(8), 1996. doi: 10.1099/13500872-142-8-1937
  • 21. Baker, S. J., Ding, C. Z., Akama, T., Zhang, Y. K., Hernandez, V., Xia, Y., Therapeutic potential of boron-containing compounds, Future Med. Chem., 1(7), 1275–1288, 2009. doi:10.4155/fmc.09.71.
  • 22. Pivazyan, A. D., Matteson, D. S., Fabry-Asztalos, L., Singh, R. P., Lin, P. F., Blair, W., Guo, K., Robinson, B., Prusoff, W. H., Inhibition of HIV-1 protease by a boron-modified polypeptide, Biochem. Pharmacol., 60(7), 927–936, 2000. doi:10.1016/S0006-2952(00)00432-9.
  • 23. Benkovic, S. J. , Baker, S.J., Alley, M.R.K., Woo, Y.H., Zhang, Y.K., Akama, T., Mao, W., Baboval, J., et al., Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH, J. Med. Chem., 48(23), 7468–7476, 2005. doi:10.1021/jm050676a.
  • 24. Sokmen, N., Buyukakinci, B. Y., THE USAGE OF BORON/ BORON COMPOUNDS IN THE TEXTILE INDUSTRY AND ITS SITUATION IN TURKEY, CBU Int. Conf. Proc., 6, 1158–1165, 2018. doi:10.12955/cbup.v6.1309.
  • 25. Street, E., Lake, C., Koester, D., JIS Z 2801 : 2010 Antimicrobial Products – Test for Antimicrobial Activity and Efficacy, 60014(815), 1–4, 2014.
  • 26. Deliloglu-Gurhan, S. I., Vatansever, H. S., Ozdal-Kurt, F., Tuglu, I., Characterization of osteoblasts derived from bone marrow stromal cells in a modified cell culture system, Acta Histochem., 108(1), 49–57, 2006. doi:10.1016/j.acthis.2005.11.001.
  • 27. Obinu, A., Gavini, E., Rassu, G., Riva, F., Calligaro, A., Bonferoni, M. C., Maestri, M., Giunchedi, P., Indocyanine green loaded polymeric nanoparticles: Physicochemical characterization and interaction studies with caco-2 cell line by light and transmission electron microscopy, Nanomaterials., 10(1), 2020. doi:10.3390/nano10010133.
  • 28. Duan, G., Zhang, C., Li, A., Yang, X., Lu, L., Wang, X., Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template, Nanoscale Res. Lett., 3(3), 118–122, 2008. doi:10.1007/s11671-008-9123-7.
  • 29. Acarali, N. B., Tugrul, N., Derun, E. M., Piskin, S., Production and characterization of hydrophobic zinc borate by using palm oil, Int. J. Miner. Metall. Mater., 20(11), 1081–1088, 2013. doi:10.1007/s12613-013-0837-X.
  • 30. Yildiz, B., Seydibeyoǧlu, M. Ö., Güner, F. S., Polyurethane-zinc borate composites with high oxidative stability and flame retardancy, Polym. Degrad. Stab., 94(7), 1072–1075, 2009. doi:10.1016/j.polymdegradstab.2009.04.006.
  • 31. Ma, Y., Cao, X., Feng, X., Ma, Y., Zou, H., Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90°, Polymer (Guildf)., 48(26), 7455–7460, 2007. doi:10.1016/j.polymer.2007.10.038.
  • 32. Funk, G. A., Burkes, J. C., Cole, K. A., Rahaman, M. N., McIff, T. E., Antibiotic Elution and Mechanical Strength of PMMA Bone Cement Loaded With Borate Bioactive Glass, J. Bone Jt. Infect., 3(4), 187–196, 2018. doi:10.7150/jbji.27348.
  • 33. Hsu, C. F., Lin, S. Y., Peir, J. J., Liao, J. W., Lin, Y. C., Chou, F. I., Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma, Appl. Radiat. Isot., 69(12), 1782–1785, 2011. doi:10.1016/j.apradiso.2011.03.003.
  • 34. Ugur, A., Ceylan, O., Boran, R., Ayrikcil, S., Sarac, N., Yilmaz, D., A new approach for prevention the oxidations and mutations: zinc borate, J. Boron., 4(4), 196–202, 2019. doi:10.30728/boron.573718.

Azaltılmış Isıl Özellikli Bor Katkılı Kemik Çimentosu Üretimi

Year 2021, Volume: 6 Issue: 2, 274 - 282, 30.06.2021
https://doi.org/10.30728/boron.835919

Abstract

Kemik çimentosu malzemesi, kemik cerrahisi ve ortopedik tıpta anahtar malzemelerden biridir. Bu çalışmada, ticari polimetil-metakrilat kemik çimentosu, kemik çimentosunun reaksiyon sıcaklığını düşürmek için borik asit ve çinko borat ile karıştırılmıştır. Lazer termometre ve termal kamera kullanılarak polimerizasyon sırasında sıcaklık değişimlerinin gözlemlenmesi, bor bileşiklerinin kullanımının kemik çimentosunun sıcaklığını en az 10 ° C düşürdüğünü göstermiştir ki bu, malzemenin biyouyumluluğunu etkilediği için biyomateryal kullanımlar için çok kritiktir. Mikrobiyolojik testler, sıcaklık izlemenin yanı sıra, malzemelerin belirli antibakteriyel etkiye sahip olduğunu göstermiştir. Su temas açısı çalışmaları da biyouyumluluk çalışmalarını desteklemiştir. Son bölümde, mekanik testler, çekme dayanımı ve çekme modülü değerlerinde önemli bir değişiklik olmadığını göstermiştir. Antibakteriyel testler, çinko borat ilavesinin ve %5 konsantrasyonun üzerindeki borik asit ilavesinin S. epidermidis'e karşı antimikrobiyal aktivite gösterdiğini göstermiştir. Hücre kültürü çalışmalarına göre borik asit% 10'a kadar toksik olmayan katkı olarak yorumlanabilirken,% 10 ve % 20 çinko borat katkısının toksik etkisi olduğu görülmüştür. Bu çalışma, kemik çimentosunda bor bileşiklerinin kullanıldığı ilk çalışmadır ve düşük konsantrasyonlarda borik asit katkısının kemik çimentosu uygulamaları için kullanılabileceği ancak çinko boratın toksik etkilerinden dolayı tıbbi uygulamalarda kullanılmasının uygun olmayacağı kanıtlanmıştır.

Project Number

2016-TYL-FEBE-0033

References

  • 1. Kuhn, L. T., Biomaterials, Introd. to Biomed. Eng., 255–312, 2005. doi:10.1016/B978-0-12-238662-6.50008-2
  • 2. Guzzi, E. A., Tibbitt, M. W., Additive Manufacturing of Precision Biomaterials, Adv. Mater., 32(13), 1–24, 2020. doi:10.1002/adma.201901994
  • 3. Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., Kim, K. H., Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects, Mater. Sci. Eng. C., 106, 110154, 2020. doi:10.1016/j.msec.2019.110154.
  • 4. Alizadeh-Osgouei, M., Li, Y., Wen, C., A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications, Bioact. Mater., 4(1), 22–36, 2019. doi:10.1016/j.bioactmat.2018.11.003.
  • 5. Ananth, H., Kundapur, V., Mohammed, H. S., Anand, M., Amarnath, G. S., Mankar, S., A review on biomaterials in dental implantology, Int. J. Biomed. Sci., 11(3), 113–120, 2015. https://pubmed.ncbi.nlm.nih.gov/26508905/
  • 6. Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., Glogauer, M., Biodegradable materials for bone repair and tissue engineering applications, Materials (Basel)., 8(9), 5744–5794, 2015. doi:10.3390/ma8095273.
  • 7. Gemmell, K., D., Meyer, D., Wear of Ultra High Molecular Weight Polyethylene against Synthetic Sapphire as Bearing Coating for Total Joint Replacements, Res. Dev. Mater. Sci., 6(2), 560–567, 2018. doi:10.31031/RDMS.2018.06.000632.
  • 8. Lewis, G., Viscoelastic properties of injectable bone cements for orthopaedic applications: State-of-the-art review, J. Biomed. Mater. Res. - Part B Appl. Biomater., 98 B(1), 171–191, 2011. doi:10.1002/jbm.b.31835.
  • 9. Winkler, H., Treatment of chronic orthopaedic infection, EFORT Open Rev., 2(5), 110–116, 2017. doi:10.1302/2058-5241.2.160063.
  • 10. Cook, G. E., Markel, D. C., Ren, W., Webb, L. X., McKee, M. D., Schemitsch, E. H., Infection in Orthopaedics, J. Orthop. Trauma., 29, S19–S23, 2015. doi:10.1097/BOT.0000000000000461.
  • 11. Vaishya, R., Chauhan, M., Vaish, A., Bone cement, J. Clin. Orthop. Trauma., 4(4), 157–163, 2013. doi:10.1016/j.jcot.2013.11.005.
  • 12. Arora, M., Chan, E. K. S., Gupta, S., Diwan, A. D., Polymethylmethacrylate bone cements and additives: A review of the literature, World J. Orthop., 4(2), 67–74, 2013. doi:10.5312/wjo.v4.i2.67.
  • 13. Stańczyk, M., Telega, J., Modelling of heat transfer in biomechanics - a review. P. 2. Orthopaedics, Acta Bioeng. Biomech., 4(2), 3–31, 2002. https://www.infona.pl/resource/bwmeta1.element.baztech-article-BPB1-0014-0017
  • 14. Song, W.-L., Wang, P., Cao, L., Anderson, A., Meziani, M. J., Farr, A. J., Sun, Y.-P., Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance, Angew. Chemie., 124(26), 6604–6607, 2012. doi:10.1002/ange.201201689.
  • 15. Wang, Y., Li, H., Yao, J., Wang, X., Antonietti, M., Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation, Chem. Sci., 2(3), 446–450, 2011. doi:10.1039/c0sc00475h.
  • 16. Cheng, F., Jäkle, F., Boron-containing polymers as versatile building blocks for functional nanostructured materials, Polym. Chem., 2(10), 2122–2132, 2011. doi:10.1039/c1py00123j.
  • 17. Green, J., Mechanisms for flame retardancy and smoke suppression - A review, J. Fire Sci., 14(6), 426–442, 1996. doi:10.1177/073490419601400602.
  • 18. Shi, L., Li, D., Wang, J., Li, S., Evans, D. G., Duan, X., Synthesis, flame-retardant and smoke-suppressant properties of a borate-intercalated layered double hydroxide, Clays Clay Miner., 53(3), 294–300, 2005. doi:10.1346/CCMN.2005.0530309.
  • 19. Bailey, P. J., Cousins, G., Snow, G. A., White, A. J., Boron-containing antibacterial agents: Effects on growth and morphology of bacteria under various culture conditions, Antimicrob. Agents Chemother., 17(4), 549–553, 1980. doi:10.1128/AAC.17.4.549.
  • 20. Penyige, A., Deak, E., Barabas, G., Evidence of a role for NAD+-glycohydrolase and ADP-ribosyltransferase in growth and differentiation of Streptomyces, Microbiology., 142(8), 1996. doi: 10.1099/13500872-142-8-1937
  • 21. Baker, S. J., Ding, C. Z., Akama, T., Zhang, Y. K., Hernandez, V., Xia, Y., Therapeutic potential of boron-containing compounds, Future Med. Chem., 1(7), 1275–1288, 2009. doi:10.4155/fmc.09.71.
  • 22. Pivazyan, A. D., Matteson, D. S., Fabry-Asztalos, L., Singh, R. P., Lin, P. F., Blair, W., Guo, K., Robinson, B., Prusoff, W. H., Inhibition of HIV-1 protease by a boron-modified polypeptide, Biochem. Pharmacol., 60(7), 927–936, 2000. doi:10.1016/S0006-2952(00)00432-9.
  • 23. Benkovic, S. J. , Baker, S.J., Alley, M.R.K., Woo, Y.H., Zhang, Y.K., Akama, T., Mao, W., Baboval, J., et al., Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH, J. Med. Chem., 48(23), 7468–7476, 2005. doi:10.1021/jm050676a.
  • 24. Sokmen, N., Buyukakinci, B. Y., THE USAGE OF BORON/ BORON COMPOUNDS IN THE TEXTILE INDUSTRY AND ITS SITUATION IN TURKEY, CBU Int. Conf. Proc., 6, 1158–1165, 2018. doi:10.12955/cbup.v6.1309.
  • 25. Street, E., Lake, C., Koester, D., JIS Z 2801 : 2010 Antimicrobial Products – Test for Antimicrobial Activity and Efficacy, 60014(815), 1–4, 2014.
  • 26. Deliloglu-Gurhan, S. I., Vatansever, H. S., Ozdal-Kurt, F., Tuglu, I., Characterization of osteoblasts derived from bone marrow stromal cells in a modified cell culture system, Acta Histochem., 108(1), 49–57, 2006. doi:10.1016/j.acthis.2005.11.001.
  • 27. Obinu, A., Gavini, E., Rassu, G., Riva, F., Calligaro, A., Bonferoni, M. C., Maestri, M., Giunchedi, P., Indocyanine green loaded polymeric nanoparticles: Physicochemical characterization and interaction studies with caco-2 cell line by light and transmission electron microscopy, Nanomaterials., 10(1), 2020. doi:10.3390/nano10010133.
  • 28. Duan, G., Zhang, C., Li, A., Yang, X., Lu, L., Wang, X., Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template, Nanoscale Res. Lett., 3(3), 118–122, 2008. doi:10.1007/s11671-008-9123-7.
  • 29. Acarali, N. B., Tugrul, N., Derun, E. M., Piskin, S., Production and characterization of hydrophobic zinc borate by using palm oil, Int. J. Miner. Metall. Mater., 20(11), 1081–1088, 2013. doi:10.1007/s12613-013-0837-X.
  • 30. Yildiz, B., Seydibeyoǧlu, M. Ö., Güner, F. S., Polyurethane-zinc borate composites with high oxidative stability and flame retardancy, Polym. Degrad. Stab., 94(7), 1072–1075, 2009. doi:10.1016/j.polymdegradstab.2009.04.006.
  • 31. Ma, Y., Cao, X., Feng, X., Ma, Y., Zou, H., Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90°, Polymer (Guildf)., 48(26), 7455–7460, 2007. doi:10.1016/j.polymer.2007.10.038.
  • 32. Funk, G. A., Burkes, J. C., Cole, K. A., Rahaman, M. N., McIff, T. E., Antibiotic Elution and Mechanical Strength of PMMA Bone Cement Loaded With Borate Bioactive Glass, J. Bone Jt. Infect., 3(4), 187–196, 2018. doi:10.7150/jbji.27348.
  • 33. Hsu, C. F., Lin, S. Y., Peir, J. J., Liao, J. W., Lin, Y. C., Chou, F. I., Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma, Appl. Radiat. Isot., 69(12), 1782–1785, 2011. doi:10.1016/j.apradiso.2011.03.003.
  • 34. Ugur, A., Ceylan, O., Boran, R., Ayrikcil, S., Sarac, N., Yilmaz, D., A new approach for prevention the oxidations and mutations: zinc borate, J. Boron., 4(4), 196–202, 2019. doi:10.30728/boron.573718.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

M.ozgur Seydibeyoglu 0000-0002-2584-7043

Muserref Caka This is me 0000-0002-8688-9669

Fulden Ulucan-karnak 0000-0001-5567-0261

Günnur Onak 0000-0003-0895-4768

Ataç Uzel 0000-0002-1304-0509

Figen Özyıldız This is me 0000-0003-1006-0480

Ozan Karaman 0000-0002-4175-4402

Project Number 2016-TYL-FEBE-0033
Publication Date June 30, 2021
Acceptance Date April 4, 2021
Published in Issue Year 2021 Volume: 6 Issue: 2

Cite

APA Seydibeyoglu, M., Caka, M., Ulucan-karnak, F., Onak, G., et al. (2021). Bone Cement Formulation with Reduced Heating of Bone Cement Resin. Journal of Boron, 6(2), 274-282. https://doi.org/10.30728/boron.835919