Research Article
BibTex RIS Cite

Theoretical investigation of boric acid, monoethylene glycol and glycerol molecules to be used in some ester complex synthesis

Year 2021, Volume: 6 Issue: 2, 298 - 308, 30.06.2021
https://doi.org/10.30728/boron.894787

Abstract

When looking at the experimental research on boron complex condensation reactions, it appears that polyvinyl alcohol or mannitol is often used with boric acid (H3BO3). Contrary to the common literature use, monoethylene glycol (C2H6O2) and glycerol (C3H8O3) molecules were studied in this study. It is intended to choose the ideal molecule to synthesis the boron complex using the data obtained from the theoretical analysis of molecules, In addition, it was aimed to conduct an experimental study considering the 1:1 molar ratio between boric acid and the other two molecules in order to make an experimental contribution to the theoretical results. Spartan 14 and Gaussian 03W package programs were used in theoretical studies. As methods, the B3LYP mixed density function theory and the 6-31+G ** diffuse bipolar split valence base set were chosen. Investigation on the molecules, some structure descriptors such as total molecular energy (ET), E HOMO, E LUMO, electron affinity (A), ionization energy (I), hardness (ɳ), softness (σ), electronegativity (χ), chemical potential (CP) and electrophilicity (ω) have been calculated. According to the results obtained from the theoretical studies,in the complex ester formation reaction, the glycerol molecule contains more hydroxyl groups (three hydroxyl groups), the energy gap (8.51) is lower, the softer (0.23502) molecule and it is more electronegative (2.775) in its structure than the monoethylene glycol molecule, was predicted to be more effective. Experiments were carried out at a pressure of 1 atm, at a temperature of 100 °C, and with a Graham condenser. Since the products were not intended for use in a structure, no characterization tests were conducted on them, but pH changes over time were observed and reported. The obtained pH values revealed that the boric acid-glycerol solution was more acidic.

References

  • 1. Springsteen, G., & Wang, B. (2002). A detailed examination of boronic acid–diol complexation. Tetrahedron, 58(26), 5291-5300.
  • 2. Shvarts, E., Ignash, R., & Belousova, R. (2005). Reactions of polyols with boric acid and sodium monoborate. Russian Journal of General Chemistry, 75(11), 1687-1692.
  • 3. Fujita, N., Shinkai, S., & James, T.D. (2008). Boronic Acids in Molecular Self-Assembly. Chemistry – An Asian Journal, 3(7), 1076-1091.
  • 4. Peters, J.A. (2012). Interactions between boric acid derivatives and saccharides in aqueous media: Structures and stabilities of resulting esters. Coordination Chemistry Reviews, 268, 1-22.
  • 5. Azevedo, M. C. C., & Cavaleiro, A. M. (2012). The acid–base titration of a very weak acid: boric acid. Journal of Chemical Education, 89(6), 767-770.
  • 6. Hilal, N., Kim, G., & Somerfield C. (2011). Boron removal from saline water: A comprehensive review. Desalination, 273(1), 23-35.
  • 7. Dydo, P. (2013). The influence of d-mannitol on the effectiveness of boric acid transport during electrodialytic desalination of aqueous solutions. Journal of Membrane Science, 429, 130-138.
  • 8. Dydo, P., Turek, M., & Milewski, A. (2014). Removal of boric acid, monoborate and boron complexes with polyols by reverse osmosis membranes. Desalination, 334(1), 39-45.
  • 9. Bai, C., Guo, M., Liu, Z., Wu, Z., & Li, Q. (2018), A novel method for removal of boron from aqueous solution using sodium dodecyl benzene sulfonate and d-mannitol as the collector. Desalination, 431, 47-55.
  • 10. Geffen, N., Semiat, R., Eisen, M. S., Balazc, Y., Katz, I., & Dosoretz, C.G. (2006). Boron removal from water by complexation to polyol compounds. Journal of Membrane Science, 286(1-2), 45-51.
  • 11. Dydo, P., Nems, I., & Turek, M. (2012). Boron removal and its concentration by reverse osmosis in the presence of polyol compounds. Separation and Purification Technology, 89, 171-180.
  • 12. Zhou, R., Dı, L., Wang, C., Fang, Y., Wu, J., & Xu, Z. (2014). Surface functionalization of microporous polypropylene membrane with polyols for removal of boron acid from aqueous solution. Chinese Journal of Chemical Engineering, 22(1), 11-18.
  • 13. Du, X., Meng, J., Xu, R., Shi, Q., & Zhang, Y. (2015). Polyol-grafted polysulfone membranes for boron removal: Effects of the ligand structure. Journal of Membrane Science, 476, 205-215.
  • 14. Wang, Z., Wu, Z., Zhang, Z., & Meng, J. (2017). Hyperbranched-polyol-tethered poly (amic acid) electrospun nanofiber membrane with ultrahigh adsorption capacity for boron removal. Applied Surface Science, 402, 21-30.
  • 15. Christinat, N., Scopelliti, R., & Severin, K. (2004). A new method for the synthesis of boronate macrocycles. Chemical Communications, 10, 1158-1159.
  • 16. Barba, V., Höpfl, H., Farfan, N., Santillan, R., Beltran, H. I., & Zamudio, L.S. (2004). Boron–nitrogen macrocycles: A new generation of calix [3] arenes. Chemical Communications, 24, 2834-2835.
  • 17. D'Souza, F., Smith, P. M., Zangler, M. E., McCarty, A. L., Itou, M., Araki, Y., & Ito, O. (2004). Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: A model for the photosynthetic antenna-reaction center complex. Journal of the American Chemical Society, 126(25), 7898-7907.
  • 18. Liu, Z. Q., Fang, Q., Cao, D. X., Wang, D., & Xu, G. B. (2004). Triaryl boron-based A-π-A vs triaryl nitrogen-based D-π-D quadrupolar compounds for single-and two-photon excited fluorescence. Organic letters, 6(17), 2933-2936.
  • 19. Reyes, H., Munoz, B., Farfan, N., Santillan, R., Lima, S. R., Lacroix, P. G., & Nakatani, K. (2002). Synthesis, crystal structures, and quadratic nonlinear optical properties in a series of push–pull boronate derivatives. Journal of Materials Chemistry, 12(10), 2898-2903.
  • 20. Entwistle, C. D., & Marder, T. B. (2002). Boron chemistry lights the way: Optical properties of molecular and polymeric systems. Angewandte Chemie International Edition, 41(16), 2927-2931.
  • 21. Rivera, J.M., Rincon, S., Farfan, N., & Santillan, R. (2011). Synthesis, characterization and X-ray studies of new chiral five-six-membered ring, [4.3.0] heterobicyclic system of monomeric boronates. Journal of Organometallic Chemistry, 696(11-12), 2420-2428.
  • 22. Hawthorne, M. F., & Lee, M. W. (2003). A critical assessment of boron target compounds for boron neutron capture therapy. Journal of Neuro-Oncology, 62(1), 33-45.
  • 23. Yumatov, V. D., Il'inchik, E. A., & Volkov, V. V. (2003). X-Ray spectra and electronic structure of boron compounds. Russian Chemical Reviews, 72(12), 1011-1034.
  • 24. Marco-Dufort, B., & Tibbitt, M. (2019). Design of moldable hydrogels for biomedical applications using dynamic covalent boronic esters. Materials Today Chemistry, 12, 16-33.
  • 25. Suri, A. K, Subramanian, C., Sonber, J. K., & Murthy, C. (2010). Synthesis and consolidation of boron carbide: A review. International Materials Reviews, 55(1), 4.
  • 26. Pekdemir, A. D. (2018). Borik Asit Ve Poliollerden Düşük Sicaklikta Bor Karbür Tozlarinin Hazirlanmasi Ve Karakterizasyonu [Doktora Tezi, Ankara Üniversitesi]. [Preparation and characterization of boron carbide at low-temperature from boric acid and polyols]. YÖK Tez Merkezi (Tez Numarası 507934).
  • 27. Gao, S., Li, X., Wang, S., Xing, P., Kong, J., & Yang, G. (2019). A low cost, low energy, environmentally friendly process for producing high-purity boron carbide. Ceramics International, 45(3), 3101-3110.
  • 28. Sivkov, A., Rakhmatullin, I., Shanenkov, I., & Shanenkova, Y. (2019). Boron carbide B4C ceramics with enhanced physico-mechanical properties sintered from multimodal powder of plasma dynamic synthesis. International Journal of Refractory Metals and Hard Materials, 78, 85-91.
  • 29. Öztürk, F., & Aycan, T. (2021). Çinko (II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması. [Investigation of spectroscopic properties of Zinc (II)- sulfathiazole-diethylenetriamine complex by computational chemistry method: molecular modeling study]. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(1), 65-83.
  • 30. Kızak, H. (2021). Teorik hesaplamalar ile yeni sentezlenen disazo boyarmaddelerin yapısal ve spektroskopik özelliklerinin incelenmesi [Pamukkale Üniversitesi, Yüksek Lisans Tezi]. [Investigation of structural and spectroscopic properties of newly synthesized disazo dyes materials by theoretical calculatons]. Fen Bilimleri Enstitüsü Yüksek Lisans Tezleri (Tez Numarası 1006).
  • 31. Direm, A., El Bali, B., Sayın, K., Abdelbaky, M. S. M., & Granda, S. G. (2021). Experimental and in silico studies of dichloro-tetrakis (1H-pyrazole)-cobalt (II): Structural description, photoluminescent behavior and molecular docking. Journal of Molecular Structure, 1235,130266.
  • 32. Elbeyli, İ. Y. (2000). Boraks ve borik asit kati atiklarinda ortaya çikan kati atiklarin sanayiide değerlendirilmesi [Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi]. [Evaluation of solid wastes that are formed during the borax and boric acid production in cement industry]. YÖK Tez Merkezi (Tez Numarası 95086).
  • 33. Uyar, T., & Aksoy, S. (2008). Genel Kimya 2 İlkeler ve Modern Uygulamalar. [General Chemistry Principles and Modern Applications] (8nd Baskıdan Çeviri). Palme Yayıncılık. ISBN 975-8624-43-1.
  • 34. Bai, C., Wu, Z., Ye, X., Liu, H., Liu, Z., Zhang, H., Liu, Q & et al. (2019). Influence of the pH in Reactions of Boric Acid/Borax with Simple Hydroxyl Compounds: Investigation by Raman Spectroscopy and DFT Calculations. ChemistrySelect, 4(48), 14132-14139.
  • 35. Wolska, J., & Bryjak, M. (2013). Methods for boron removal from aqueous solutions-A review. Desalination, 310, 18-24.
  • 36. Pappin, B., Kiefel M. J., & Houston T.A. (2012). Boron-carbohydrate interactions, Carbohydrates-comprehensive studies on glycobiology and glycotechnology. InTech. http://dx.doi.org/10.5772/2702.
  • 37. Ståhlberg, T., Rodriguez, S., Fristrup, P., & Riisager, A. (2011). Metal-free dehydration of glucose to 5-(hydroxymethyl) furfural in ionic liquids with boric acid as a promoter. Chemistry–A European Journal, 17(5), 1456-1464.
  • 38. Hansen, T. S., Mielby, J., & Riisager, A. (2011). Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green chemistry, 13(1), 109-114.
  • 39. Tunalı, N. K., & Özkar, S. (2011). Anorganik Kimya. [Inorganic Chemistry] (9nd baskı). Gazi Kitabevi Yayınları. ISBN-10 6053445347
  • 40. Schmidt, M.P., Siciliano, S.D., & Peak, D. (2021). The role of monodentate tetrahedral borate complexes in boric acid binding to a soil organic matter analogue. Chemosphere, 276, 130150.
  • 41. Xu, X., Fei, J., Xu, Y., Li, G., Dong, W., Xue, H., & Li, J. (2021). Boric Acid-Fueled ATP Synthesis by FoF1 ATP Synthase Reconstituted in a Supramolecular Architecture. Angewandte Chemie, 133(14), 7695-7698.
  • 42. Van Hal, J. W., Ledford, J. S., & Zhang, X. (2007). Investigation of three types of catalysts for the hydration of ethylene oxide (EO) to monoethylene glycol (MEG). Catalysis Today, 123(1-4), 310-315.
  • 43. Pagliaro, M., & Rossi M. (2008). The future of glycerol. RSC Green Chemistry No 8. (2nd Ed.).
  • 44. Yalçınsoy, Ö. (2020), Gliserolün Katalitik Termokimyasal Dönüşümü ile Hidrojence Zengin Gaz Üretimi [Yüksek Lisans Tezi, Eskişehir Teknik Üniversitesi]. [Hydrogen-rich gas production by the catalytic thermochemical conversion of glycerol]. YÖK Tez Merkezi (Tez Numarası 697693). 45. Pizzorno, L. (2015). Nothing boring about boron. Integrative Medicine: A Clinician's Journal, 14(4), 35.
  • 46. Pagliaro, M., Criminna, R., Kimura, H., Rossi, M., & Pina, C. D. (2007). From glycerol to value-added products. Angewandte Chemie International Edition, 46(24), 4434-4440.
  • 47. Sayın, K. (2014). Hesaplamali kimya yöntemleri ile bazı Platin(II) oksim komplekslerinin moleküler yapisinin ve moleküler özelliklerinin araştirilmasi [Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi]. [The investigation of structural and molecular properties of some platin(II) oxime complexes with computational chemistry methods]. YÖK Tez Merkezi (Tez Numarası 363971).
  • 48. Sayın, K. (2017). Hesaplamalı kimya yöntemleriyle bazı bor komplekslerinin yapısal ve elektronik özelliklerinin incelenmesi [Doktora Tezi, Sivas Cumhuriyet Üniversitesi]. [Investigations of structures and electronic properties of some boron complexes with computational chemistry methods]. YÖK Tez Merkezi (Tez Numarası 465242).
  • 49. Ayşakar, E. (2019). Turna yemişi, zerdeçal ve çilek meyvelerinin antioksidan özelliklerinin hesaplamalı kimya yöntemleri ile incelenmesi [Yüksek Lisans Tezi, Sakarya Üniversitesi]. [Investigation of cranberry, turmeric and strawberry fruits with calculative chemistry method]. YÖK Tez Merkezi (Tez Numarası 611714).
  • 50. Örnek, M. (2019). Tetrazol, tiyazol, triazin ve siklobütil içeren tek kristal yapılarin deneysel ve hesaplamalı kimya yöntemleriyle aydınlatılması [Yüksek Lisans Tezi, Çankırı Karatekin Üniversitesi]. [Illimunation of the crystal structures including tetrazole, thiazole, triazine and cyclobutyl by experimental and computational chemistry methods]. YÖK Tez Merkezi (Tez Numarası 553918).
  • 51. Tutar, N. N. (2019). 6,7-dihidroksi-4-metil-8-(arilazo) kumarin türevlerinin korozyon inhibisyon etkinliklerinin hesaplamalı kimya yöntemleriyle incelenmesi [Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi]. [Investigation of corrosion inhibition efficiencies Of 6,7-Dihydroxy-4-Methyl-8-(Arylazo) coumarin derivatives by computational chemistry methods]. YÖK Tez Merkezi (Tez Numarası 580673).
  • 52. Zaim, Z. (2019). [Tp(CO)2MoC-Ph)]2+ ve [L(CO)2MoC-Ph)]+ Alkilidin komplekslerinin hesaplamalı kimya ile incelenmesi [Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi]. [Investigation of [Tp(CO)2MoC-Ph)]2+ and [L(CO)2MoC-Ph)]+ alkylidyne complexes with computational chemistry]. YÖK Tez Merkezi (Tez Numarası 547732).
  • 53. Ölüç, İ.B. (2020). Fındık bitkisinin antioksidan aktivitesinin hesaplamalı kimya yöntemleri ile tespit edilmesi [Yüksek Lisans Tezi, Üsküdar Üniversitesi]. [Antioxidant activity of the hazelnut plant determination by computational chemistry methods]. YÖK Tez Merkezi (Tez Numarası 625461).
  • 54. Erdem, S.S. (2006). Hesapsal Organik Kimya Ders Notları. Marmara Üniversitesi Fen Bilimleri Enstitüsü.
  • 55. Sayın, K., & Karakaş, D. (2017). Theoretical study on the antitumor properties of Ru (II) complexes containing 2-pyridyl, 2-pyridine-4-carboxylic acid ligands. Journal of Molecular Structure, 1149, 473-486.
  • 56. Sayın, K., Karakaş, D., Kariper, S. E., & Sayın T. A. (2018). Computational study of some fluoroquinolones: Structural, spectral and docking investigations. Journal of Molecular Structure, 1156, 172-181.
  • 57. Becke, A.D., Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. The Journal of chemical physics, 97(12), 9173-9177.
  • 58. Frisch, M., Schlegel H. B., Scuseria G. E. & et al. (2004), Gaussian 03, revision C. 02., Gaussian, Inc., Wallingford, CT.
  • 59. Heydari, Z. (2018). The study of dissolution boric acid in different temperatures: A DFT study. International Journal of New Chemistry, 5(4), 140-147.
  • 60. Tian, S. X., Xu K. Z., Huang M. B., Chen X. J., Yang J. L., & Jia C. C. (1999). Theoretical study on infrared vibrational spectra of boric-acid in gas-phase using density functional methods. Journal of Molecular Structure: THEOCHEM, 469(1-3), 223-227.
  • 61. Zhou, Y., Fang C., Fang Y., & Zhu F. (2011). Polyborates in aqueous borate solution: A Raman and DFT theory investigation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1), 82-87.
  • 62. Pichierri, F. (2017). Molecular triskelions: structure and bonding in the perhalogenated analogues of boric acid, X3BO3 (X= F, Cl, Br, I). Structural Chemistry, 28(1), 213-223.
  • 63. Da Silva, M.B., dos Santos R. C. R., Cunha A. M., Valentini A., Pessoa O. D. L., Caetano E. W. S., & Freire V. N. (2016). Structural, electronic, and optical properties of bulk boric acid 2A and 3T polymorphs: experiment and density functional theory calculations. Crystal Growth & Design,16(11), 6631-6640.
  • 64. Günay, N., Pir, H., & Atalay, Y. (2011). L-asparaginyum pikrat molekülünün spektroskopik özelliklerinin teorik olarak incelenmesi. [Theoretical investigation of spectroscopic properties of L-asparaginium picrate molecule]. SAÜ Fen Edebiyat Dergisi, 1, 15-32.
  • 65. Türker, L., & Varış, S. (2014). A possible complex between TNT and epinephrine-A DFT study. Zeitschrift für anorganische und allgemeine Chemie, 640(2), 334-338.
  • 66. Türker, L., Variş, S., & Bayar, Ç.Ç. (2013). A theoretical study of JP-10 hydroperoxidation. Fuel,104, 128-132.
  • 67. Koopmans, T. (1934). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica, 1(1-6), 104-113.

Bazı ester kompleks sentezlerinde kullanılacak borik asit, monoetilen glikol ve gliserol moleküllerinin kuramsal ve deneysel olarak incelenmesi

Year 2021, Volume: 6 Issue: 2, 298 - 308, 30.06.2021
https://doi.org/10.30728/boron.894787

Abstract

Bor kompleksleri üzerine kondenzasyon tepkimeleriyle yapılan deneysel çalışmalar incelendiğinde; borik asitle (H3BO3) genellikle polivinil alkolün veya mannitolün kullanıldığı görülmektedir. Yaygın literatür kullanımının aksine bu çalışmada monoetilen glikol (C2H6O2) ve gliserol (C3H8O3) molekülleri çalışılmıştır. Moleküllerin teorik olarak incelenmesi sonucu elde edilen verilerden yararlanılarak bor kompleksi sentezi için en ideal molekülün seçilmesi, ayrıca teorik sonuçlara deneysel katkı sağlaması amacıyla borik asit ve diğer iki molekül arasında 1:1 mol oranı göz önüne alınarak deneysel bir çalışmanın yürütülmesi amaçlanmıştır. Teorik çalışmalarda Spartan 14 ve Gaussian 03W paket programları kullanılmıştır. Metot olarak B3LYP karma yoğunluk fonksiyonu kuramı ve 6-31+G** dağınık çift polarize olmuş split valans baz seti tercih edilmiştir. İncelenen moleküllere ilişkin toplam molekül enerjisi (ET), E HOMO, E LUMO, elektron ilgisi (A), iyonlaşma enerjisi (I), sertlik (ɳ), yumuşaklık (σ), elektronegativite (χ), kimyasal potansiyel (CP) ve elektrofilisite (ω) gibi bazı yapı tanımlayıcıları hesaplanmıştır. Yapılan teorik çalışmalardan elde edilen sonuçlara göre, kompleks ester oluşum reaksiyonunda gliserol molekülünün monoetilen glikol molekülünden, yapısında daha fazla hidroksil grubu (üç hidroksil grubu) içermesi, enerji boşluğunun (8,51) daha düşük olması, daha yumuşak (0,23502) ve daha elektronegatif (2,775) molekül olması nedenleriyle kompleks ester oluşumunda daha etkin olacağı öngörülmüştür. Deneysel çalışmalar ise 1 atm basınç, 100 °C sıcaklık ve spiralli geri soğutucu altında yürütülmüştür. Yapı aydınlatmaları amaçlanmadığından ürünler üzerinde karakterizasyon çalışmaları yapılmamış, çözeltilerin zamana bağlı pH değişimleri izlenerek kaydedilmiştir. Elde edilen pH değerleri incelendiğinde borik asit-gliserol karışımının daha asidik bir çözelti oluşturduğu sonucuna varılmıştır.

References

  • 1. Springsteen, G., & Wang, B. (2002). A detailed examination of boronic acid–diol complexation. Tetrahedron, 58(26), 5291-5300.
  • 2. Shvarts, E., Ignash, R., & Belousova, R. (2005). Reactions of polyols with boric acid and sodium monoborate. Russian Journal of General Chemistry, 75(11), 1687-1692.
  • 3. Fujita, N., Shinkai, S., & James, T.D. (2008). Boronic Acids in Molecular Self-Assembly. Chemistry – An Asian Journal, 3(7), 1076-1091.
  • 4. Peters, J.A. (2012). Interactions between boric acid derivatives and saccharides in aqueous media: Structures and stabilities of resulting esters. Coordination Chemistry Reviews, 268, 1-22.
  • 5. Azevedo, M. C. C., & Cavaleiro, A. M. (2012). The acid–base titration of a very weak acid: boric acid. Journal of Chemical Education, 89(6), 767-770.
  • 6. Hilal, N., Kim, G., & Somerfield C. (2011). Boron removal from saline water: A comprehensive review. Desalination, 273(1), 23-35.
  • 7. Dydo, P. (2013). The influence of d-mannitol on the effectiveness of boric acid transport during electrodialytic desalination of aqueous solutions. Journal of Membrane Science, 429, 130-138.
  • 8. Dydo, P., Turek, M., & Milewski, A. (2014). Removal of boric acid, monoborate and boron complexes with polyols by reverse osmosis membranes. Desalination, 334(1), 39-45.
  • 9. Bai, C., Guo, M., Liu, Z., Wu, Z., & Li, Q. (2018), A novel method for removal of boron from aqueous solution using sodium dodecyl benzene sulfonate and d-mannitol as the collector. Desalination, 431, 47-55.
  • 10. Geffen, N., Semiat, R., Eisen, M. S., Balazc, Y., Katz, I., & Dosoretz, C.G. (2006). Boron removal from water by complexation to polyol compounds. Journal of Membrane Science, 286(1-2), 45-51.
  • 11. Dydo, P., Nems, I., & Turek, M. (2012). Boron removal and its concentration by reverse osmosis in the presence of polyol compounds. Separation and Purification Technology, 89, 171-180.
  • 12. Zhou, R., Dı, L., Wang, C., Fang, Y., Wu, J., & Xu, Z. (2014). Surface functionalization of microporous polypropylene membrane with polyols for removal of boron acid from aqueous solution. Chinese Journal of Chemical Engineering, 22(1), 11-18.
  • 13. Du, X., Meng, J., Xu, R., Shi, Q., & Zhang, Y. (2015). Polyol-grafted polysulfone membranes for boron removal: Effects of the ligand structure. Journal of Membrane Science, 476, 205-215.
  • 14. Wang, Z., Wu, Z., Zhang, Z., & Meng, J. (2017). Hyperbranched-polyol-tethered poly (amic acid) electrospun nanofiber membrane with ultrahigh adsorption capacity for boron removal. Applied Surface Science, 402, 21-30.
  • 15. Christinat, N., Scopelliti, R., & Severin, K. (2004). A new method for the synthesis of boronate macrocycles. Chemical Communications, 10, 1158-1159.
  • 16. Barba, V., Höpfl, H., Farfan, N., Santillan, R., Beltran, H. I., & Zamudio, L.S. (2004). Boron–nitrogen macrocycles: A new generation of calix [3] arenes. Chemical Communications, 24, 2834-2835.
  • 17. D'Souza, F., Smith, P. M., Zangler, M. E., McCarty, A. L., Itou, M., Araki, Y., & Ito, O. (2004). Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: A model for the photosynthetic antenna-reaction center complex. Journal of the American Chemical Society, 126(25), 7898-7907.
  • 18. Liu, Z. Q., Fang, Q., Cao, D. X., Wang, D., & Xu, G. B. (2004). Triaryl boron-based A-π-A vs triaryl nitrogen-based D-π-D quadrupolar compounds for single-and two-photon excited fluorescence. Organic letters, 6(17), 2933-2936.
  • 19. Reyes, H., Munoz, B., Farfan, N., Santillan, R., Lima, S. R., Lacroix, P. G., & Nakatani, K. (2002). Synthesis, crystal structures, and quadratic nonlinear optical properties in a series of push–pull boronate derivatives. Journal of Materials Chemistry, 12(10), 2898-2903.
  • 20. Entwistle, C. D., & Marder, T. B. (2002). Boron chemistry lights the way: Optical properties of molecular and polymeric systems. Angewandte Chemie International Edition, 41(16), 2927-2931.
  • 21. Rivera, J.M., Rincon, S., Farfan, N., & Santillan, R. (2011). Synthesis, characterization and X-ray studies of new chiral five-six-membered ring, [4.3.0] heterobicyclic system of monomeric boronates. Journal of Organometallic Chemistry, 696(11-12), 2420-2428.
  • 22. Hawthorne, M. F., & Lee, M. W. (2003). A critical assessment of boron target compounds for boron neutron capture therapy. Journal of Neuro-Oncology, 62(1), 33-45.
  • 23. Yumatov, V. D., Il'inchik, E. A., & Volkov, V. V. (2003). X-Ray spectra and electronic structure of boron compounds. Russian Chemical Reviews, 72(12), 1011-1034.
  • 24. Marco-Dufort, B., & Tibbitt, M. (2019). Design of moldable hydrogels for biomedical applications using dynamic covalent boronic esters. Materials Today Chemistry, 12, 16-33.
  • 25. Suri, A. K, Subramanian, C., Sonber, J. K., & Murthy, C. (2010). Synthesis and consolidation of boron carbide: A review. International Materials Reviews, 55(1), 4.
  • 26. Pekdemir, A. D. (2018). Borik Asit Ve Poliollerden Düşük Sicaklikta Bor Karbür Tozlarinin Hazirlanmasi Ve Karakterizasyonu [Doktora Tezi, Ankara Üniversitesi]. [Preparation and characterization of boron carbide at low-temperature from boric acid and polyols]. YÖK Tez Merkezi (Tez Numarası 507934).
  • 27. Gao, S., Li, X., Wang, S., Xing, P., Kong, J., & Yang, G. (2019). A low cost, low energy, environmentally friendly process for producing high-purity boron carbide. Ceramics International, 45(3), 3101-3110.
  • 28. Sivkov, A., Rakhmatullin, I., Shanenkov, I., & Shanenkova, Y. (2019). Boron carbide B4C ceramics with enhanced physico-mechanical properties sintered from multimodal powder of plasma dynamic synthesis. International Journal of Refractory Metals and Hard Materials, 78, 85-91.
  • 29. Öztürk, F., & Aycan, T. (2021). Çinko (II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması. [Investigation of spectroscopic properties of Zinc (II)- sulfathiazole-diethylenetriamine complex by computational chemistry method: molecular modeling study]. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(1), 65-83.
  • 30. Kızak, H. (2021). Teorik hesaplamalar ile yeni sentezlenen disazo boyarmaddelerin yapısal ve spektroskopik özelliklerinin incelenmesi [Pamukkale Üniversitesi, Yüksek Lisans Tezi]. [Investigation of structural and spectroscopic properties of newly synthesized disazo dyes materials by theoretical calculatons]. Fen Bilimleri Enstitüsü Yüksek Lisans Tezleri (Tez Numarası 1006).
  • 31. Direm, A., El Bali, B., Sayın, K., Abdelbaky, M. S. M., & Granda, S. G. (2021). Experimental and in silico studies of dichloro-tetrakis (1H-pyrazole)-cobalt (II): Structural description, photoluminescent behavior and molecular docking. Journal of Molecular Structure, 1235,130266.
  • 32. Elbeyli, İ. Y. (2000). Boraks ve borik asit kati atiklarinda ortaya çikan kati atiklarin sanayiide değerlendirilmesi [Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi]. [Evaluation of solid wastes that are formed during the borax and boric acid production in cement industry]. YÖK Tez Merkezi (Tez Numarası 95086).
  • 33. Uyar, T., & Aksoy, S. (2008). Genel Kimya 2 İlkeler ve Modern Uygulamalar. [General Chemistry Principles and Modern Applications] (8nd Baskıdan Çeviri). Palme Yayıncılık. ISBN 975-8624-43-1.
  • 34. Bai, C., Wu, Z., Ye, X., Liu, H., Liu, Z., Zhang, H., Liu, Q & et al. (2019). Influence of the pH in Reactions of Boric Acid/Borax with Simple Hydroxyl Compounds: Investigation by Raman Spectroscopy and DFT Calculations. ChemistrySelect, 4(48), 14132-14139.
  • 35. Wolska, J., & Bryjak, M. (2013). Methods for boron removal from aqueous solutions-A review. Desalination, 310, 18-24.
  • 36. Pappin, B., Kiefel M. J., & Houston T.A. (2012). Boron-carbohydrate interactions, Carbohydrates-comprehensive studies on glycobiology and glycotechnology. InTech. http://dx.doi.org/10.5772/2702.
  • 37. Ståhlberg, T., Rodriguez, S., Fristrup, P., & Riisager, A. (2011). Metal-free dehydration of glucose to 5-(hydroxymethyl) furfural in ionic liquids with boric acid as a promoter. Chemistry–A European Journal, 17(5), 1456-1464.
  • 38. Hansen, T. S., Mielby, J., & Riisager, A. (2011). Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green chemistry, 13(1), 109-114.
  • 39. Tunalı, N. K., & Özkar, S. (2011). Anorganik Kimya. [Inorganic Chemistry] (9nd baskı). Gazi Kitabevi Yayınları. ISBN-10 6053445347
  • 40. Schmidt, M.P., Siciliano, S.D., & Peak, D. (2021). The role of monodentate tetrahedral borate complexes in boric acid binding to a soil organic matter analogue. Chemosphere, 276, 130150.
  • 41. Xu, X., Fei, J., Xu, Y., Li, G., Dong, W., Xue, H., & Li, J. (2021). Boric Acid-Fueled ATP Synthesis by FoF1 ATP Synthase Reconstituted in a Supramolecular Architecture. Angewandte Chemie, 133(14), 7695-7698.
  • 42. Van Hal, J. W., Ledford, J. S., & Zhang, X. (2007). Investigation of three types of catalysts for the hydration of ethylene oxide (EO) to monoethylene glycol (MEG). Catalysis Today, 123(1-4), 310-315.
  • 43. Pagliaro, M., & Rossi M. (2008). The future of glycerol. RSC Green Chemistry No 8. (2nd Ed.).
  • 44. Yalçınsoy, Ö. (2020), Gliserolün Katalitik Termokimyasal Dönüşümü ile Hidrojence Zengin Gaz Üretimi [Yüksek Lisans Tezi, Eskişehir Teknik Üniversitesi]. [Hydrogen-rich gas production by the catalytic thermochemical conversion of glycerol]. YÖK Tez Merkezi (Tez Numarası 697693). 45. Pizzorno, L. (2015). Nothing boring about boron. Integrative Medicine: A Clinician's Journal, 14(4), 35.
  • 46. Pagliaro, M., Criminna, R., Kimura, H., Rossi, M., & Pina, C. D. (2007). From glycerol to value-added products. Angewandte Chemie International Edition, 46(24), 4434-4440.
  • 47. Sayın, K. (2014). Hesaplamali kimya yöntemleri ile bazı Platin(II) oksim komplekslerinin moleküler yapisinin ve moleküler özelliklerinin araştirilmasi [Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi]. [The investigation of structural and molecular properties of some platin(II) oxime complexes with computational chemistry methods]. YÖK Tez Merkezi (Tez Numarası 363971).
  • 48. Sayın, K. (2017). Hesaplamalı kimya yöntemleriyle bazı bor komplekslerinin yapısal ve elektronik özelliklerinin incelenmesi [Doktora Tezi, Sivas Cumhuriyet Üniversitesi]. [Investigations of structures and electronic properties of some boron complexes with computational chemistry methods]. YÖK Tez Merkezi (Tez Numarası 465242).
  • 49. Ayşakar, E. (2019). Turna yemişi, zerdeçal ve çilek meyvelerinin antioksidan özelliklerinin hesaplamalı kimya yöntemleri ile incelenmesi [Yüksek Lisans Tezi, Sakarya Üniversitesi]. [Investigation of cranberry, turmeric and strawberry fruits with calculative chemistry method]. YÖK Tez Merkezi (Tez Numarası 611714).
  • 50. Örnek, M. (2019). Tetrazol, tiyazol, triazin ve siklobütil içeren tek kristal yapılarin deneysel ve hesaplamalı kimya yöntemleriyle aydınlatılması [Yüksek Lisans Tezi, Çankırı Karatekin Üniversitesi]. [Illimunation of the crystal structures including tetrazole, thiazole, triazine and cyclobutyl by experimental and computational chemistry methods]. YÖK Tez Merkezi (Tez Numarası 553918).
  • 51. Tutar, N. N. (2019). 6,7-dihidroksi-4-metil-8-(arilazo) kumarin türevlerinin korozyon inhibisyon etkinliklerinin hesaplamalı kimya yöntemleriyle incelenmesi [Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi]. [Investigation of corrosion inhibition efficiencies Of 6,7-Dihydroxy-4-Methyl-8-(Arylazo) coumarin derivatives by computational chemistry methods]. YÖK Tez Merkezi (Tez Numarası 580673).
  • 52. Zaim, Z. (2019). [Tp(CO)2MoC-Ph)]2+ ve [L(CO)2MoC-Ph)]+ Alkilidin komplekslerinin hesaplamalı kimya ile incelenmesi [Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi]. [Investigation of [Tp(CO)2MoC-Ph)]2+ and [L(CO)2MoC-Ph)]+ alkylidyne complexes with computational chemistry]. YÖK Tez Merkezi (Tez Numarası 547732).
  • 53. Ölüç, İ.B. (2020). Fındık bitkisinin antioksidan aktivitesinin hesaplamalı kimya yöntemleri ile tespit edilmesi [Yüksek Lisans Tezi, Üsküdar Üniversitesi]. [Antioxidant activity of the hazelnut plant determination by computational chemistry methods]. YÖK Tez Merkezi (Tez Numarası 625461).
  • 54. Erdem, S.S. (2006). Hesapsal Organik Kimya Ders Notları. Marmara Üniversitesi Fen Bilimleri Enstitüsü.
  • 55. Sayın, K., & Karakaş, D. (2017). Theoretical study on the antitumor properties of Ru (II) complexes containing 2-pyridyl, 2-pyridine-4-carboxylic acid ligands. Journal of Molecular Structure, 1149, 473-486.
  • 56. Sayın, K., Karakaş, D., Kariper, S. E., & Sayın T. A. (2018). Computational study of some fluoroquinolones: Structural, spectral and docking investigations. Journal of Molecular Structure, 1156, 172-181.
  • 57. Becke, A.D., Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. The Journal of chemical physics, 97(12), 9173-9177.
  • 58. Frisch, M., Schlegel H. B., Scuseria G. E. & et al. (2004), Gaussian 03, revision C. 02., Gaussian, Inc., Wallingford, CT.
  • 59. Heydari, Z. (2018). The study of dissolution boric acid in different temperatures: A DFT study. International Journal of New Chemistry, 5(4), 140-147.
  • 60. Tian, S. X., Xu K. Z., Huang M. B., Chen X. J., Yang J. L., & Jia C. C. (1999). Theoretical study on infrared vibrational spectra of boric-acid in gas-phase using density functional methods. Journal of Molecular Structure: THEOCHEM, 469(1-3), 223-227.
  • 61. Zhou, Y., Fang C., Fang Y., & Zhu F. (2011). Polyborates in aqueous borate solution: A Raman and DFT theory investigation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1), 82-87.
  • 62. Pichierri, F. (2017). Molecular triskelions: structure and bonding in the perhalogenated analogues of boric acid, X3BO3 (X= F, Cl, Br, I). Structural Chemistry, 28(1), 213-223.
  • 63. Da Silva, M.B., dos Santos R. C. R., Cunha A. M., Valentini A., Pessoa O. D. L., Caetano E. W. S., & Freire V. N. (2016). Structural, electronic, and optical properties of bulk boric acid 2A and 3T polymorphs: experiment and density functional theory calculations. Crystal Growth & Design,16(11), 6631-6640.
  • 64. Günay, N., Pir, H., & Atalay, Y. (2011). L-asparaginyum pikrat molekülünün spektroskopik özelliklerinin teorik olarak incelenmesi. [Theoretical investigation of spectroscopic properties of L-asparaginium picrate molecule]. SAÜ Fen Edebiyat Dergisi, 1, 15-32.
  • 65. Türker, L., & Varış, S. (2014). A possible complex between TNT and epinephrine-A DFT study. Zeitschrift für anorganische und allgemeine Chemie, 640(2), 334-338.
  • 66. Türker, L., Variş, S., & Bayar, Ç.Ç. (2013). A theoretical study of JP-10 hydroperoxidation. Fuel,104, 128-132.
  • 67. Koopmans, T. (1934). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica, 1(1-6), 104-113.
There are 66 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Cihat Hilal 0000-0002-6966-6711

Müşerref Önal 0000-0002-1540-8389

Publication Date June 30, 2021
Acceptance Date May 10, 2021
Published in Issue Year 2021 Volume: 6 Issue: 2

Cite

APA Hilal, C., & Önal, M. (2021). Bazı ester kompleks sentezlerinde kullanılacak borik asit, monoetilen glikol ve gliserol moleküllerinin kuramsal ve deneysel olarak incelenmesi. Journal of Boron, 6(2), 298-308. https://doi.org/10.30728/boron.894787