Toz enjeksiyon kalıplama tekniği için üretilen bor karbür besleme stoklarının reolojik ve bağlayıcı giderme özelliklerinin incelenmesi
Year 2022,
Volume: 7 Issue: 2, 453 - 460, 30.06.2022
Sezer Bilketay
,
Batuhan Soruşbay
,
Hamit Gülsoy
Abstract
Bu çalışmada, bor karbür (B4C) tozu ve çeşitli polimerik bağlayıcılar kullanılarak toz enjeksiyon kalıplama (TEK) besleme stoğu hazırlanmıştır. B4C tozu ilavesinin besleme stoğunundaki kritik toz yükleme değeri, reolojik ve bağlayıcı giderme davranışları üzerindeki etkisi farklı sıcaklıklarda rotasyonel reometre cihazı kullanılarak incelenmiştir. Hacimce %2,5’luk artışla %50-60 toz yükleme aralığında gerçekleştirilen incelemeler sonucunda kritik toz yükleme değerinin %55 olduğu tespit edilmiş olup bu katı yükleme oranındaki B4C tozu polimerik bağlayıcılar ile karıştırılarak besleme stoğu elde edilmiştir. Besleme stoklarının reolojik davranışları, TEK tekniği için temel gereksinimlerden biri olan psödoplastik akış davranışı sergilemiştir. Ayrıca yüksek toz yüklemesindeki besleme stoğunun, sıcaklığa karşı yüksek hassasiyet gösterdiği görülmüştür. Bağlayıcı sistemi, kabul edilebilir düzeyde karışım homojenitesi, mükemmel kalıplanabilirlik, uygun hızlı çözücü ve termal ayrıştırma hızı sağlamak amacıyla kullanılmıştır. Kalıplama aşamasının ardından elde edilen numunelerden bağlayıcıları uzaklaştırmak için solvent ve ısıl bağlayıcı giderme teknikleri kullanılmıştır. Bağlayıcısı giderilen numuneler yüksek saflıktaki Ar atmosferi altında sinterlenmiştir. Başlangıç toz morfolojileri, kalıplanmış, bağlayıcıları giderilmiş ve sinterlenmiş numunelerin kırık yüzeyleri taramalı elektron mikroskobu (SEM) kullanılarak incelenmiştir. Deneysel sonuçlar göstermiştir ki; hacimce %55 toz yükleme oranlarındaki besleme stokları başarılı şekilde kalıplanabilmekte ve 50-70°C sıcaklıklarında hasarsız solvent bağlayıcı giderme işlemine tabi tutulabilmektedir.
Supporting Institution
Tubitak, Marmara Üniversitesi
Project Number
(proje no: 213M196) ve Marmara Üniversitesi (proje no: FEN-C-DRP-110215-0039)
Thanks
Bu çalışma TÜBİTAK (proje no: 213M196) ve Marmara Üniversitesi (proje no: FEN-C-DRP-110215-0039) tarafından desteklenmiştir.
References
- [1] Heaney, D. (Eds.) (2019). Handbook of Metal Injection Molding. 2nd Edition Book Series: Woodhead Publishing Series in Metals and Surface Engineering. ISBN: 978-008-1028-09-4.
- [2] German, R.M., Bose, A. (1997). Injection Molding of Metals and Ceramics. Metal Powder Industries Federation. ISBN: 978-187-8954-61-9.
- [3] Wang, C., Lu, Z., Zhang, K. (2012). Microstructure, mechanical properties and sintering model of B4C nozzle with micro holes by powder injection molding. Powder Technology, 228, 334-338. DOI: 10.1016/j.powtec.2012.05.049.
- [4] Wang, C., Lu, Z., Zhang, K. (2013). Evaluation of thermal debinding of injection-molded boron carbide in an ambient atmosphere. The International Journal of Advanced Manufacturing Technology, 64, 1751-1757. DOI: 10.1007/s00170-012-4138-8.
- [5] Roy, T., Subramanian, C., Suri, A. (2006). Pressureless Sintering of Boron Carbide. Ceramics International, 32(3), 227-233. DOI: 10.1016/j.ceramint.2005.02.008.
- [6] Zorzi, J.E., Perottoni, C.A., da Jornada, J.A.H. (2005). Hardness and wear resistance of B4C ceramics prepared with several additives. Materials Letters, 59(23), 2932-2935. DOI: 10.1016/j.matlet.2005.04.047.
- [7] Yamada, S., Hirao, K., Yamauchi, Y., & Kanzaki, S. (2002). Journal of Materials Science, 37(23), 5007–5012. DOI: 10.1023/a:1021027430338.
- [8] Yamada, S., Hirao, K., Yamauchi, Y., & Kanzaki, S. (2003). Mechanical and electrical properties of B4C–CrB2 ceramics fabricated by liquid phase sintering. Ceramics International, 29(3), 299–304. DOI:10.1016/s0272-8842(02)00120-7.
- [9] Junlong, S., Changxia, L., Jin, T., & Baofu, F. (2012). Erosion behavior of B4C based ceramic nozzles by abrasive air-jet. Ceramics International, 38(8), 6599–6605. DOI: 10.1016/j.ceramint.2012.05.04.
- [10] Ahn, S., Park, S. J., Lee, S., Atre, S. V., & German, R. M. (2009). Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process. Powder Technology, 193(2), 162–169. DOI: 10.1016/j.powtec.2009.03.010.
- [11] Y. Li, L. Li, K. Khalil, J. Mat. Proces. Tech. 183, 432 (2007) Li, Y., Li, L., & Khalil, K. A. (2007). Effect of powder loading on metal injection molding stainless steels. Journal of Materials Processing Technology, 183(2-3), 432–439. DOI: 10.1016/j.jmatprotec.2006.10.039.
- [12] Blanco, A., Azpılgaın, Z., Lozares, J., Kapranos, P., & Hurtado, I. (2010). Rheological characterization of A201 aluminum alloy. Transactions of Nonferrous Metals Society of China, 20(9), 1638–1642. DOI: 10.1016/s1003-6326(09)60351-4.
- [13] Krauss, V. A., Pires, E. N., Klein, A. N., & Fredel, M. C. (2005). Rheological properties of alumina injection feedstocks. Materials Research, 8(2), 187–189. DOI: 10.1590/s1516-14392005000200018.
- [14] Huang, B., Liang, S., & Qu, X. (2003). The rheology of metal injection molding. Journal of Materials Processing Technology, 137(1-3), 132–137. DOI:10.1016/s0924-0136(02)01100-7.
- [15] Hausnerova, B., Marcanikova, L., Filip, P., & Saha, P. (2011). Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder. Polymer Engineering & Science, 51(7), 1376–1382. DOI: 10.1002/pen.21928.
Investigation of rheological and debinding properties of boron carbide feedstocks for powder injection molding
Year 2022,
Volume: 7 Issue: 2, 453 - 460, 30.06.2022
Sezer Bilketay
,
Batuhan Soruşbay
,
Hamit Gülsoy
Abstract
In this study, powder injection molding (PIM) feedstock was prepared using boron carbide (B4C) powder and various polymeric binders. The effects of B4C powder addition on the attributes of feedstock; including critical solid loading, rheological behavior and binder decomposition behavior were studied using rotational rheometry at different temperatures. As a result of the examinations carried out in the powder loading range of 50-60% with an increase of 2.5% in volume, it was determined that the critical powder loading value was 55%, and the feedstock was obtained by mixing the B4C powder at this solid loading rate with polymeric binders. Rheological behaviour shows that feedstock exhibits a pseudoplastic flow behavior which is one of the main requirements for PIM. It was also observed that the feedstock at high powder loading showed high sensitivity to temperature. The binder system has been used to provide acceptable mixing homogeneity, excellent moldability, suitable fast solvent and thermal debinding rate. Solvent and thermal debinding techniques were used to remove binders from the samples obtained after the molding step. The debinded samples were sintered under high purity Ar atmosphere. Initial powder morphologies, fracture surfaces of molded, debinded and sintered samples were investigated using scanning electron microscope (SEM). Experimental results showed that; feedstocks at 55% powder loading rates can be successfully molded and subjected to undamaged solvent debinding at temperatures of 50-70°C.
Project Number
(proje no: 213M196) ve Marmara Üniversitesi (proje no: FEN-C-DRP-110215-0039)
References
- [1] Heaney, D. (Eds.) (2019). Handbook of Metal Injection Molding. 2nd Edition Book Series: Woodhead Publishing Series in Metals and Surface Engineering. ISBN: 978-008-1028-09-4.
- [2] German, R.M., Bose, A. (1997). Injection Molding of Metals and Ceramics. Metal Powder Industries Federation. ISBN: 978-187-8954-61-9.
- [3] Wang, C., Lu, Z., Zhang, K. (2012). Microstructure, mechanical properties and sintering model of B4C nozzle with micro holes by powder injection molding. Powder Technology, 228, 334-338. DOI: 10.1016/j.powtec.2012.05.049.
- [4] Wang, C., Lu, Z., Zhang, K. (2013). Evaluation of thermal debinding of injection-molded boron carbide in an ambient atmosphere. The International Journal of Advanced Manufacturing Technology, 64, 1751-1757. DOI: 10.1007/s00170-012-4138-8.
- [5] Roy, T., Subramanian, C., Suri, A. (2006). Pressureless Sintering of Boron Carbide. Ceramics International, 32(3), 227-233. DOI: 10.1016/j.ceramint.2005.02.008.
- [6] Zorzi, J.E., Perottoni, C.A., da Jornada, J.A.H. (2005). Hardness and wear resistance of B4C ceramics prepared with several additives. Materials Letters, 59(23), 2932-2935. DOI: 10.1016/j.matlet.2005.04.047.
- [7] Yamada, S., Hirao, K., Yamauchi, Y., & Kanzaki, S. (2002). Journal of Materials Science, 37(23), 5007–5012. DOI: 10.1023/a:1021027430338.
- [8] Yamada, S., Hirao, K., Yamauchi, Y., & Kanzaki, S. (2003). Mechanical and electrical properties of B4C–CrB2 ceramics fabricated by liquid phase sintering. Ceramics International, 29(3), 299–304. DOI:10.1016/s0272-8842(02)00120-7.
- [9] Junlong, S., Changxia, L., Jin, T., & Baofu, F. (2012). Erosion behavior of B4C based ceramic nozzles by abrasive air-jet. Ceramics International, 38(8), 6599–6605. DOI: 10.1016/j.ceramint.2012.05.04.
- [10] Ahn, S., Park, S. J., Lee, S., Atre, S. V., & German, R. M. (2009). Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process. Powder Technology, 193(2), 162–169. DOI: 10.1016/j.powtec.2009.03.010.
- [11] Y. Li, L. Li, K. Khalil, J. Mat. Proces. Tech. 183, 432 (2007) Li, Y., Li, L., & Khalil, K. A. (2007). Effect of powder loading on metal injection molding stainless steels. Journal of Materials Processing Technology, 183(2-3), 432–439. DOI: 10.1016/j.jmatprotec.2006.10.039.
- [12] Blanco, A., Azpılgaın, Z., Lozares, J., Kapranos, P., & Hurtado, I. (2010). Rheological characterization of A201 aluminum alloy. Transactions of Nonferrous Metals Society of China, 20(9), 1638–1642. DOI: 10.1016/s1003-6326(09)60351-4.
- [13] Krauss, V. A., Pires, E. N., Klein, A. N., & Fredel, M. C. (2005). Rheological properties of alumina injection feedstocks. Materials Research, 8(2), 187–189. DOI: 10.1590/s1516-14392005000200018.
- [14] Huang, B., Liang, S., & Qu, X. (2003). The rheology of metal injection molding. Journal of Materials Processing Technology, 137(1-3), 132–137. DOI:10.1016/s0924-0136(02)01100-7.
- [15] Hausnerova, B., Marcanikova, L., Filip, P., & Saha, P. (2011). Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder. Polymer Engineering & Science, 51(7), 1376–1382. DOI: 10.1002/pen.21928.