Research Article
BibTex RIS Cite

Aktif karbon destekli ucuz ve kullanışlı katalizörün amonyak bor hidrolizinde incelenmesi

Year 2023, Volume: 8 Issue: 2, 59 - 65, 30.06.2023
https://doi.org/10.30728/boron.1179156

Abstract

Bu çalışmada ilk kez kahve çekirdeği atığından (kahve telvesinden) elde edilen aktif karbon kullanılarak CuMoB@AC ilk kez katalizörü sentezlendi. Burada en iyi katalitik performanslarını belirlemek amacıyla; Cu:Mo oranı, Metal/AC oranı, optimum NaOH oranı, katalizör miktarı, en uygun NH 3 BH 3 oranı ve farklı sıcaklıklarda yapılan deneyler sonucunda da reaksiyon kinetiği çıkarılarak reaksiyonun derecesinin n. dereceden (0.9) olduğu ve aktivasyon enerjisinin de 34,89 kJ/mol olduğu belirlendi. Aynı zamanda katalizörümüz karakterizasyonu belirlemek için SEM-EDS, XRD ileri analitiksel yöntemler kullanılarak belirlenmiştir.

Supporting Institution

Siirt Üniversitesi

Project Number

2019-SİÜFEN-004

Thanks

Bu çalışma Siirt Üniversitesi (Proje no: 2019-SİÜFEN-004) tarafından desteklenmiştir.

References

  • 1. Patel, N. and A. Miotello. (2015). Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals. International journal of hydrogen energy, 40(3): p. 1429-1464.
  • 2. Han, M., J. Qu, and Q. Guo. (2015). Corn stalk activated carbon based Co catalyst prepared by one-step method for hydrogen generation. Procedia engineering, 102: p. 450-457.
  • 3. Du, Y., et al., (2017)Highly active iridium catalyst for hydrogen production from formic acid. Chinese Chemical Letters, 28(8): p. 1746-1750.
  • 4. Keskin, M.S., et al., (2022). High hydrogen production rate from potassium borohydride hydrolysis with an efficient catalyst: CNT@Ru(0). Desalination and Water Treatment, 250: p. 189-196.
  • 5. Şahin, Ö., et al. (2021). Effect of plasma pretreatment of Co–Cu–B catalyst on hydrogen generation from sodium borohydride methanolysis. Reaction Kinetics, Mechanisms and Catalysis, 133(2): p. 851-861.
  • 6. Peng, B. and J. Chen. (2008). Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy & Environmental Science, 1(4): p. 479-483.
  • 7. Karkamkar, A., C. Aardahl, and T. Autrey. (2007). Recent developments on hydrogen release from ammonia borane. Mater Matters, 2: p. 6-9.
  • 8. Izgi, M.S., O. Sahin, and C. Saka. (2019). gamma-Al2O3 supported/Co-Cr-B catalyst for hydrogen evolution via NH3BH3 hydrolysis. Materials and Manufacturing Processes, 34(14): p. 1620-1626.
  • 9. Izgi, M.S., et al., (2020). Epoxy-activated acrylic particulate polymer-supported Co-Fe-Ru-B catalyst to produce H-2 from hydrolysis of NH3BH3. International Journal of Hydrogen Energy, 45(43): p. 22638-22648.
  • 10. Jiang, H.-L. and Q. Xu. (2011). Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catalysis Today, 170(1): p. 56-63.
  • 11. Kazici, H.C., et al. (2019). Novel activated carbon supported trimetallic PdCoAg nanoparticles as efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 44(21): p. 10561-10572.
  • 12. Şahin, Ö., et al. (2020). As a highly efficient reduced graphene oxide-supported ternary catalysts for the fast hydrogen release from NaBH4. Graphene Technology, 5(3): p. 103-111.
  • 13. Heldebrant, D.J., et al., (2008). Synthesis of ammonia borane for hydrogen storage applications. Energy & Environmental Science, 1(1): p. 156-160.
  • 14. Himmelberger, D.W., et al. (2009). Base-promoted ammonia borane hydrogen-release. Journal of the American Chemical Society, 131(39): p. 14101-14110.
  • 15. Alpaydın, C.Y., S.K. Gülbay, and C.O. Colpan. (2020). A review on the catalysts used for hydrogen production from ammonia borane. International Journal of Hydrogen Energy, 45(5): p. 3414-3434.
  • 16. Kazici, H.C., M.S. Izgi, and O. Sahin. (2021).A comprehensive study on the synthesis, characterization and mathematical modeling of nanostructured Co-based catalysts using different support materials for AB hydrolysis. Chemical Papers, 75(6): p. 2713-2725.
  • 17. Akbayrak, S., Y. Tonbul, and S. Özkar. (2016). Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Applied Catalysis B: Environmental, 198: p. 162-170.
  • 18. Akbayrak, S. and S. Özkar. (2012). Ruthenium (0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia–borane. ACS Applied Materials & Interfaces, 4(11): p. 6302-6310.
  • 19. Akbayrak, S. and S. Özkar. (2021). Magnetically isolable Pt0/Co3O4 nanocatalysts: outstanding catalytic activity and high reusability in hydrolytic dehydrogenation of ammonia borane. ACS Applied Materials & Interfaces, 13(29): p. 34341-34348.
  • 20. Tunç, N. and M. Rakap. (2020) Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis. Renewable Energy, 155: p. 1222-1230.
  • 21. Abay, B. and M. Rakap. (2020). Eco-friendly synthesis of carboxymethyl cellulose-stabilized Ru0. 57Co0. 43 nanoclusters as extremely efficient and durable catalysts for hydrolytic dehydrogenation of methylamine borane. ACS Sustainable Chemistry & Engineering, 8(43): p. 16197-16204.
  • 22. Kazici, H.C., M.S. Izgi, and O. Sahin. (2022). Co-Mn-B Nanoparticles Supported on Epoxy-Based Polymer as Catalyst for Evolution of H-2 from Ammonia Borane Semi-Methanolysis. Journal of Electronic Materials, 51(5): p. 2356-2368.
  • 23. Izgi, M.S., et al. (2020). Hydrogen production by using Ru nanoparticle decorated with Fe3O4@SiO2-NH2 core-shell microspheres. International Journal of Hydrogen Energy, 2020. 45(55): p. 30415-30430.
  • 24. Izgi, M.S., et al. (2019). Hydrogen production through the cooperation of a catalyst synthesized in ethanol medium and the effect of the plasma. Energy Sources Part a-Recovery Utilization and Environmental Effects.
  • 25. Erhan, O., M. Aslan, and M.S. İzgi. (2021). Kobalt Bazli Bimetalik Nanokatalizörün Potasyum Borhidrür Hidroliz Tepkimesi Üzerindeki Katalitik Etkisinin Incelenmesi. Konya Mühendislik Bilimleri Dergisi. 9: p. 200-212.
  • 26. Onat, E., et al. (2021). An efficient synergistic Co@CQDs catalyst for hydrogen production from the hydrolysis of NH3BH3. Journal of Materials Science-Materials in Electronics, 32(23): p. 27251-27259.
  • 27. Onat, E., et al. (2021). Investigation of high catalytic activity catalyst for high hydrogen production rate: Co-Ru@MOF. Journal of the Australian Ceramic Society, 2021. 57(5): p. 1389-1395.
  • 28. Lu, Y.-C., M.-S. Chen, and Y.-W. Chen, Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2. International Journal of Hydrogen Energy, 2012. 37(5): p. 4254-4258.
  • 29. Baytar, O., et al. (2019). Al2o3 Supported Co-Cu-B (Co-Cu-B/Al2O3) Catalyst For Hydrogen Generation By Hydrolysis Of Aqueous Sodium Borohydride (NaBH4) Solutions. Digest Journal of Nanomaterials and Biostructures, 14(3): p. 673-681.
  • 30. Izgi, M.S., et al. (2019). Studies On Catalytic Behavior Of Co-Cr-B/Al2O3 In Hydrogen Generation By Hydrolysis Of NaBH4. Digest Journal of Nanomaterials and Biostructures, 2019. 14(4): p. 1005-1012.
  • 31. Zhang, X., et al. (2019). Synthesis of MOF-derived Co@ C composites and application for efficient hydrolysis of sodium borohydride. Applied Surface Science, 469: p. 764-769.
  • 32. Zorer, C., et al. (2020) Synthesis Of An Efficient Photocatalyst (Activated Carbon Supported Zns) For Methylene Blue Degradation. Digest Journal of Nanomaterials and Biostructures, 15(3): p. 629-636.
  • 33. Kazici, H.C., et al. (2020). Synthesis of Metal-Oxide-Supported Triple Nano Catalysts and Application to H-2 Production and H2O2 Oxidation. Journal of Electronic Materials, 49(6): p. 3634-3644.

Investigation of a cheap and useful activated carbon supported catalyst in ammonia boron hydrolysis

Year 2023, Volume: 8 Issue: 2, 59 - 65, 30.06.2023
https://doi.org/10.30728/boron.1179156

Abstract

In this study, CuMoB@AC catalyst was synthesized for the first time by using activated carbon obtained from coffee bean waste (coffee grounds). In order to determine the best catalytic performances; Cu:Mo ratio, Metal/AC ratio, optimum NaOH ratio, catalyst amount, optimum NH3BH3 ratio and reaction kinetics were determined as a result of experiments performed at different temperatures. It was determined that the degree of the reaction was n. degree (0.9) and the activation energy was 34.89 kJ/mol. At the same time, our catalyst was determined using SEM-EDS, XRD advanced analytical methods to determine the characterization.

Project Number

2019-SİÜFEN-004

References

  • 1. Patel, N. and A. Miotello. (2015). Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals. International journal of hydrogen energy, 40(3): p. 1429-1464.
  • 2. Han, M., J. Qu, and Q. Guo. (2015). Corn stalk activated carbon based Co catalyst prepared by one-step method for hydrogen generation. Procedia engineering, 102: p. 450-457.
  • 3. Du, Y., et al., (2017)Highly active iridium catalyst for hydrogen production from formic acid. Chinese Chemical Letters, 28(8): p. 1746-1750.
  • 4. Keskin, M.S., et al., (2022). High hydrogen production rate from potassium borohydride hydrolysis with an efficient catalyst: CNT@Ru(0). Desalination and Water Treatment, 250: p. 189-196.
  • 5. Şahin, Ö., et al. (2021). Effect of plasma pretreatment of Co–Cu–B catalyst on hydrogen generation from sodium borohydride methanolysis. Reaction Kinetics, Mechanisms and Catalysis, 133(2): p. 851-861.
  • 6. Peng, B. and J. Chen. (2008). Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy & Environmental Science, 1(4): p. 479-483.
  • 7. Karkamkar, A., C. Aardahl, and T. Autrey. (2007). Recent developments on hydrogen release from ammonia borane. Mater Matters, 2: p. 6-9.
  • 8. Izgi, M.S., O. Sahin, and C. Saka. (2019). gamma-Al2O3 supported/Co-Cr-B catalyst for hydrogen evolution via NH3BH3 hydrolysis. Materials and Manufacturing Processes, 34(14): p. 1620-1626.
  • 9. Izgi, M.S., et al., (2020). Epoxy-activated acrylic particulate polymer-supported Co-Fe-Ru-B catalyst to produce H-2 from hydrolysis of NH3BH3. International Journal of Hydrogen Energy, 45(43): p. 22638-22648.
  • 10. Jiang, H.-L. and Q. Xu. (2011). Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catalysis Today, 170(1): p. 56-63.
  • 11. Kazici, H.C., et al. (2019). Novel activated carbon supported trimetallic PdCoAg nanoparticles as efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 44(21): p. 10561-10572.
  • 12. Şahin, Ö., et al. (2020). As a highly efficient reduced graphene oxide-supported ternary catalysts for the fast hydrogen release from NaBH4. Graphene Technology, 5(3): p. 103-111.
  • 13. Heldebrant, D.J., et al., (2008). Synthesis of ammonia borane for hydrogen storage applications. Energy & Environmental Science, 1(1): p. 156-160.
  • 14. Himmelberger, D.W., et al. (2009). Base-promoted ammonia borane hydrogen-release. Journal of the American Chemical Society, 131(39): p. 14101-14110.
  • 15. Alpaydın, C.Y., S.K. Gülbay, and C.O. Colpan. (2020). A review on the catalysts used for hydrogen production from ammonia borane. International Journal of Hydrogen Energy, 45(5): p. 3414-3434.
  • 16. Kazici, H.C., M.S. Izgi, and O. Sahin. (2021).A comprehensive study on the synthesis, characterization and mathematical modeling of nanostructured Co-based catalysts using different support materials for AB hydrolysis. Chemical Papers, 75(6): p. 2713-2725.
  • 17. Akbayrak, S., Y. Tonbul, and S. Özkar. (2016). Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Applied Catalysis B: Environmental, 198: p. 162-170.
  • 18. Akbayrak, S. and S. Özkar. (2012). Ruthenium (0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia–borane. ACS Applied Materials & Interfaces, 4(11): p. 6302-6310.
  • 19. Akbayrak, S. and S. Özkar. (2021). Magnetically isolable Pt0/Co3O4 nanocatalysts: outstanding catalytic activity and high reusability in hydrolytic dehydrogenation of ammonia borane. ACS Applied Materials & Interfaces, 13(29): p. 34341-34348.
  • 20. Tunç, N. and M. Rakap. (2020) Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis. Renewable Energy, 155: p. 1222-1230.
  • 21. Abay, B. and M. Rakap. (2020). Eco-friendly synthesis of carboxymethyl cellulose-stabilized Ru0. 57Co0. 43 nanoclusters as extremely efficient and durable catalysts for hydrolytic dehydrogenation of methylamine borane. ACS Sustainable Chemistry & Engineering, 8(43): p. 16197-16204.
  • 22. Kazici, H.C., M.S. Izgi, and O. Sahin. (2022). Co-Mn-B Nanoparticles Supported on Epoxy-Based Polymer as Catalyst for Evolution of H-2 from Ammonia Borane Semi-Methanolysis. Journal of Electronic Materials, 51(5): p. 2356-2368.
  • 23. Izgi, M.S., et al. (2020). Hydrogen production by using Ru nanoparticle decorated with Fe3O4@SiO2-NH2 core-shell microspheres. International Journal of Hydrogen Energy, 2020. 45(55): p. 30415-30430.
  • 24. Izgi, M.S., et al. (2019). Hydrogen production through the cooperation of a catalyst synthesized in ethanol medium and the effect of the plasma. Energy Sources Part a-Recovery Utilization and Environmental Effects.
  • 25. Erhan, O., M. Aslan, and M.S. İzgi. (2021). Kobalt Bazli Bimetalik Nanokatalizörün Potasyum Borhidrür Hidroliz Tepkimesi Üzerindeki Katalitik Etkisinin Incelenmesi. Konya Mühendislik Bilimleri Dergisi. 9: p. 200-212.
  • 26. Onat, E., et al. (2021). An efficient synergistic Co@CQDs catalyst for hydrogen production from the hydrolysis of NH3BH3. Journal of Materials Science-Materials in Electronics, 32(23): p. 27251-27259.
  • 27. Onat, E., et al. (2021). Investigation of high catalytic activity catalyst for high hydrogen production rate: Co-Ru@MOF. Journal of the Australian Ceramic Society, 2021. 57(5): p. 1389-1395.
  • 28. Lu, Y.-C., M.-S. Chen, and Y.-W. Chen, Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2. International Journal of Hydrogen Energy, 2012. 37(5): p. 4254-4258.
  • 29. Baytar, O., et al. (2019). Al2o3 Supported Co-Cu-B (Co-Cu-B/Al2O3) Catalyst For Hydrogen Generation By Hydrolysis Of Aqueous Sodium Borohydride (NaBH4) Solutions. Digest Journal of Nanomaterials and Biostructures, 14(3): p. 673-681.
  • 30. Izgi, M.S., et al. (2019). Studies On Catalytic Behavior Of Co-Cr-B/Al2O3 In Hydrogen Generation By Hydrolysis Of NaBH4. Digest Journal of Nanomaterials and Biostructures, 2019. 14(4): p. 1005-1012.
  • 31. Zhang, X., et al. (2019). Synthesis of MOF-derived Co@ C composites and application for efficient hydrolysis of sodium borohydride. Applied Surface Science, 469: p. 764-769.
  • 32. Zorer, C., et al. (2020) Synthesis Of An Efficient Photocatalyst (Activated Carbon Supported Zns) For Methylene Blue Degradation. Digest Journal of Nanomaterials and Biostructures, 15(3): p. 629-636.
  • 33. Kazici, H.C., et al. (2020). Synthesis of Metal-Oxide-Supported Triple Nano Catalysts and Application to H-2 Production and H2O2 Oxidation. Journal of Electronic Materials, 49(6): p. 3634-3644.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Hatice Bektaş 0000-0003-3017-8080

Erhan Onat 0000-0003-1638-0151

Ömer Şahin 0000-0003-4575-3762

Sevilay Demirci 0000-0003-4028-5699

Orhan Baytar 0000-0002-2915-202X

Mehmet Sait İzgi 0000-0003-3685-3219

Project Number 2019-SİÜFEN-004
Publication Date June 30, 2023
Acceptance Date April 25, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Bektaş, H., Onat, E., Şahin, Ö., Demirci, S., et al. (2023). Aktif karbon destekli ucuz ve kullanışlı katalizörün amonyak bor hidrolizinde incelenmesi. Journal of Boron, 8(2), 59-65. https://doi.org/10.30728/boron.1179156