Research Article
BibTex RIS Cite

Interaction of betacoronavirus and S. aureus with boron nitride nanoparticles (BNNPs)

Year 2023, Volume: 8 Issue: 2, 66 - 75, 30.06.2023
https://doi.org/10.30728/boron.1261594

Abstract

Investigations on advance effects of boron-containing compounds have gained attention the last decade. This study was carried out to investigate the effect of hexagonal boron nitride nanoparticles (BNNPs) on Bovine Coronavirus (BCoV) and Staphylococcus aureus (S. aureus) by different methods. First, biological effects of different BNNPs concentrations lower than 0.5 mg/mL examined on HRT-18 (Human Rectal Tumor) for 5 days. Different concentrations of hBN mixed with BCoV in liquid, on membrane or directly on cells and examined for differences of titers or replications. And also Bacterial Filtration Efficiency (BFE) test of hBN powders coated on polypropylene fabric by spray method was applied against S. aureus. The compound was found slightly toxic on the HRT-18 cell line by live cell counting, while no remarkable morphological difference was observed. BNNPs treatment with 0.025 or 0.3mg/mL concentrations did not reduce the infective titer and create no inhibitory effect on in vitro replication. Stability of virus titer after treatment of BNNPs coated fabric also indicated no antiviral efficiency. But hBN applied fabric formed a barrier of ≥90.3%, while non hBN applied fabric formed ≥64.6% barrier. The present study demonstrate that, BNNPs alone is not a good candidate for disinfectant or drug for BCoVs, while it could be valuable to use as coated fabric in the areas needing easy sanitation especially for S. aureus.

Supporting Institution

Eskisehir Technical University Scientific Research Projects Commission

Project Number

20GAP072

References

  • [1] Soriano-Ursúa, M. A., Das, B. C., & Trujillo-Ferrara, J. G. (2014). Boron-containing compounds: Chemicobiological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opinion on Therapeutic Patents, (24), 485-500. https://doi.org/10.15 17/13543776.2014.881472.
  • [2] Pizzorno, L. (2015). Nothing boring about boron. Integrative Medicine, 14(4), 35-48. [3] Nielsen, F. H. (2014). Update on human health effects of boron. Journal of Trace Elements in Medicine and Biology, (28), 383-387. https://doi.org/10.1016/j.jtemb.2014.06.023.
  • [4] Farfán-García, E. D., Castillo-Mendieta, N. T., Ciprés-Flores, F. J., Padilla-Martínez, I. I., Trujillo-Ferrar, J.G., & Soriano-Ursúa, M. A. (2016). Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicology Letters, (258), 115-125. https://doi.org/10.1016/j.toxlet.2016.06.018.
  • [5] Baker, S. J., Tomsho, J. W., & Benkovic, S. J. (2011). Boron-containing inhibitors of synthetases. Chemical Society Reviews, 40(8), 4279-4285. https://doi. org/10.1039/c0cs00131g. [6] Dembitsky, V. M., Al Quntar, A. A. A., & Srebnik, M. (2011). Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chemical Reviews, 111(1), 209-237. https://doi.org/10.1021/cr100093b.
  • [7] Fernandes, G. F. S., Denny, W. A., & Dos Santos, J. L. (2019). Boron in drug design: Recent advances in the development of new therapeutic agents. European Journal of Medicinal Chemistry, 179, 791-804. https:// doi.org/10.1016/j.ejmech.2019.06.092. [8] Munir, M., Hussain, S., Anwar, R., Waqas, M., & Ali, J. (2020). The role of nanoparticles in the diagnosis and treatment of diseases. Scientific Inquiry and Review, 4, 14-26. https://doi.org/10.32350/sir.
  • [9] Sharker, SM. (2019). Hexagonal boron nitrides (White graphene): A promising method for cancer drug delivery. International Journal of Nanomedicine, 14, 9983-9993. https://doi.org/10.2147/IJN.S205095.
  • [10] Adamo, G., Campora, S., & Ghersi, G. (2017). Functionalization of nanoparticles in specific targeting and mechanism release. In F. Denisa, G. A. Mihai, (Eds.). Nanostructures for Novel Therapy (1st ed, pp. 57-80). Elsevier Inc. https://doi.org/10.1016/B978-0-323-46142-9.00003-7.
  • [11] Ikram, M., Jahan, I., Haider, A., Hassan, J., Ul-Hamid, A., Imran, M., Haider, J., Shahzadi, A., Shahbaz, A., & Ali, S. (2020). Bactericidal behavior of chemically exfoliated boron nitride nanosheets doped with zirconium. Applied Nanoscience, 10, 2339-2349. https://doi.org/10.1007/ s13204-020-01412-z.
  • [12] Kıvanç, M., Barutca, B., Koparal, A. T., Göncü, Y., Bostancı, S. H., & Ay, N. (2018). Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Materials Science and Engineering: C, 91, 115-124. https://doi.org/10.1016/j.msec.2018.05.028.
  • [13] Pandit, S., Gaska, K., Mokkapati, V. R. S. S., Forsberg, S., Svensson, M., Kádár, R., & Mijakovic, I. (2019). Antibacterial effect of boron nitride flakes with controlled orientation in polymer composites. RSC Advances, 9, 33454-33459. https://doi.org/10.1039/C9RA06773F.
  • [14] Rengasamy, S., Shaffer, R., Williams, B., & Smit, S. (2017). A comparison of facemask and respirator filtration test methods. Journal of Occupational and Environmental Hygiene, 14, 92-103. https://doi.org /10.1080/15459624.2016.1225157/SUPPL_FILE/ UOEH_A_1225157_SM2604.DOC.
  • [15] Leonas, K., Jones, C. R., & Hall, D. (2003). The relationship of fabric properties and bacterial filtration efficiency for selected surgical face masks. Journal of Textile and Apparel, Technology and Management, 3, 1-8.
  • [16] Kar, F., Hacıoğlu, C., Göncü, Y., Söğüt, İ., Şenturk, H., Burukoğlu Dönmez, D., … & Ay, N. (2020). In vivo assessment of the effect of hexagonal boron nitride nanoparticles on biochemical, histopathological, oxidant and antioxidant status. Journal of Cluster Science, 322(32), 517-529. https://doi.org/10.1007/ S10876-020-01811-W.
  • [17] Teresa, O. H., & Choi, C. K. (2010). Comparison between SiOC thin films fabricated by using plasma enhance chemical vapor deposition and SiO2 thin films by using fourier transform infrared spectroscopy. Journal of the Korean Physical Society, 56, 1150-1155. https://doi.org/10.3938/JKPS.56.1150.
  • [18] Ahmed, G. S., Gilbert, M., Mainprize, S., & Rogerson, M. (2013). FTIR analysis of silane grafted high density polyethylene. Plastics, Rubber and Composites, 38(1), 13-20. https://doi.org/10.1179/174328909X387711
  • [19] Fang, J., Zhang, L., Sutton, D., Wang, X., & Lin, T. (2012). Needleless melt-electrospinning of polypropylene nanofibres. Journal of Nanomaterials, 2012, 1-9. 382639, https://doi.org/10.1155/2012/382639. [20] Abdel-Hamid, H. M. (2005). Effect of electron beam irradiation on polypropylene films-dielectric and FT-IR studies, Solid-State Electronics, 49, 1163-1167. https:// doi.org/10.1016/J.SSE.2005.03.025.
  • [21] Nocentini, A., Supuran, C. T., & Winum, J. Y. (2018). Benzoxaborole compounds for therapeutic uses: a patent review (2010-2018). Expert Opinion on Therapeutic Patents, 28, 493-504. https://doi.org/10.1 080/13543776.2018.1473379.
  • [22] Ghosh, A. K., Xia, Z., Kovela, S., Robinson, W. L., & Johnson, M. E. (2019). Potent HIV-1 protease inhibitors containing carboxylic and boronic acids: Effect on enzyme inhibition and antiviral activity and proteinligand xray structural studies. ChemMedChem, 14, 1863-1872. https://doi.org/10.1002/cmdc.201900508.
  • [23] Maynard, A., Crosby, R. M., Ellis, B., Hamatake, R., & Hong, Z. (2014). Discovery of a potent boronic acid derived inhibitor of the HCV RNA-dependent RNA polymerase. Journal of Medicinal Chemistry, 57, 1902- 1913. https://doi.org/10.1021/jm400317w.
  • [24] Neznanov, N., Dragunsky, E. M., Chumakov, K. M., Neznanova, L., & Wek, R. C. (2008). Different effect of proteasome inhibition on vesicular stomatitis virus and poliovirus replication. PLoS One, 3, (4). e1887. https:// doi.org/10.1371/journal.pone.0001887.
  • [25] Amaya, M., Keck, F., Lindquist, M., Voss, K., & Scavone, L. (2015). The ubiquitin proteasome system plays a role in Venezuelan equine encephalitis virus infection. PLoS One, 30, 10(4), e0124792. https://doi.org/10.1371/ journal.pone.0124792.
  • [26] Choy, M. M., Zhang, S. L., Costa, V. V., Tan, H. C., & Horrevorts, S. (2015). Proteasome inhibition suppresses dengue virus egress in antibody dependent infection. PLOS Neglected Tropical Diseases, 9(11), e0004058. doi: 10.1371/journal.pntd.0004058.
  • [27] Barrows, N. J., Campos, R. K., Powell, S. T., Prasanth, K. R., & Schott-Lerner, G. (2016) A screen of FDAapproved drugs for inhibitors of zika virus infection. Cell Host Microbe, 20, 259-270. https://doi.org/10.1016/j. chom.2016.07.004.
  • [28] Barrado-Gil, L., Galindo, I., Martínez-Alonso, D., Viedma, S., & Alonso, C. (2017). The ubiquitinproteasome system is required for African swine fever replication. PLoS One, 12(12), e0189741. https://doi. org/10.1371/journal.pone.0189741.
  • [29] Bandi, P., Garcia, M. L., Booth, C. J., Chisari, F. V., & Robek, M. D. (2010). Bortezomib inhibits Hepatitis B virus replication in transgenic mice. Antimicrobial Agents and Chemotherapy, 54(2), 749-756. https://doi. org/10.1128/AAC.01101-09.
  • [30] Liu, S., Liu, H., Zhang, K., Li, X., & Duan, Y. (2019). Proteasome inhibitor PS-341 effectively blocks infection by the severe fever with thrombocytopenia syndrome virus. Virologica Sinica, 34, 572-582. https:// doi.org/10.1007/s12250-019-00162-9.
  • [31] Shahiduzzaman, M., Ezatti, P., Xin, G., & Coombs, K. M. (2014). Proteasomal serine hydrolases are pregulated by and required for influenza virus infection. Journal of Proteome Research, 13, 2223-2238. https:// doi.org/10.1021/pr5001779.
  • [32] Horváth, L., Magrez, A., Golberg, D., Zhi, C., & Bando, Y. (2011). In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano, 5, 3800-3810. https://doi.org/10.1021/nn200139h.
  • [33] Cetiner, E., Sayin, K., Tuzun, B., & Ataseven, H. (2021). Could boron-containing compounds (BCCs) be effective against SARS-CoV-2 as antiviral agent. Bratislava Medical Journal, 122, 263-269. https://doi. org/10.4149/BLL_2021_044.
  • [34] Vega Valdez, I. R., Melvin, R. N., José, S. Q. M., Eunice, F. G. E. D., & Marvin, S. U. A. (2020). Docking simulations exhibit bortezomib and other boroncontaining peptidomimetics as potential inhibitors of SARS-CoV-2 main protease. Current Chemical Biology, 14, 279-288. https://doi.org/10.2174/22127968149992 01102195651.
  • [35] Soliman, K. A., & Aal, S. A. (2021). Theoretical investigation of favipiravir antiviral drug based on fullerene and boron nitride nanocages. Diamond and Related Materials, 117, 108458. https://doi. org/10.1016/j.diamond.2021.108458.
  • [36] Schneider, S. M., Pritchard, S. M., Wudiri, G. A., Trammell, C. E., & Nicola, A. V. (2019). Early steps in herpes simplex virus infection blocked by a proteasome inhibitor. MBio, 10(3): e00732-e00719. https://doi. org/10.1128/mBio.00732-19.
  • [37] Wang, W., Yim, S. L., Wong, C. H., & Kan, C. W. (2021) Study on the development of antiviral spandex fabric coated with poly(hexamethylene biguanide) hydrochloride (PHMB). Polymers (Basel), 13(13), 2122. https://doi.org/10.3390/POLYM13132122.
  • [38] Bentis, A., Boukhriss, A., & Gmouh, S. (2020). Flameretardant and water-repellent coating on cotton fabric by titania–boron sol–gel method. Journal of Sol-Gel Science and Technology, 94, 719-730. https://doi. org/10.1007/S10971-020-05224-Z.
  • [39] Akbar, W., Karagoz, A., Basim, G. B., Noor, M., Syed, T., Lum, J., & Unluagac, M. (2015). Nano-boron as an antibacterial agent for functionalized textiles. MRS Online Proceedings Library, 1793, 53-57. https://doi. org/10.1557/OPL.2015.728.
  • [40] Kwong, L. H., Wilson, R., Kumar, S., Crider, Y.S., & Sanchez, Y. R. (2021). Review of the breathability and filtration efficiency of common household materials for face masks. ACS Nano. 15(4). 5904-5924. https://doi. org/10.1021/ACSNANO.0C10146.
  • [41] Ju J. T. J., Boisvert L. N., & Zuo Y. Y. (2021). Face masks against COVID-19: Standards, efficacy, testing and decontamination methods. Advances in Colloid and Interface Science, 292, 102435. https://doi. org/10.1016/J.CIS.2021.102435.
  • [42] Yu, De J., Goldminz, A., Chisolm, S., Jacob, S. E., Zippin, J. H., Wu, P. A., ... & Atwater, A. R. (2021) Facial personal protective equipment: materials, resterilization methods, and management of occupation-related dermatoses. Dermatitis, 32(2), 78-85. https://doi.org/10.1097/DER.0000000000000699.
  • [43] Tessarolo, F., Nollo, G., Benedetti, L., Helfer, F., & Rovati, L. (2022). Measuring breathability and bacterial filtration efficiency of face masks in the pandemic context: A round robin study with proficiency testing among non-accredited laboratories. Measurement, 189, 110481. https://doi.org/10.1016/J. MEASUREMENT.2021.110481.
  • [44] Ekabutr, P., Chuysinuan, P., Suksamrarn, S., Sukhumsirichart, W., & Hongmanee, P. (2019). Development of antituberculosis melt-blown polypropylene filters coated with mangosteen extracts for medical face mask applications. Polymer Bulletin. 76, 1985-2004. https://doi.org/10.1007/ S00289-018-2468-X/FIGURES/7.
  • [45] Bataglioli, R. A., Rocha Neto, J. B. M., Calais, G. B., Lopes, L. M., & Tsukamoto, J. (2022). Hybrid alginate-copper sulfate textile coating for coronavirus inactivation, Journal of the American Ceramic Society, 105, 17481752. https://doi.org/10.1111/JACE.17862.

Betacoronavirus ve S. aureus'un hekzagonal bor nitrür ile etkileşimi

Year 2023, Volume: 8 Issue: 2, 66 - 75, 30.06.2023
https://doi.org/10.30728/boron.1261594

Abstract

Nanopartikül ve boron ihtiva eden bileşikler üzerine elde edilen son gelişmeler, son yıllarda daha fazla ilgi gösterilmesine yol açmıştır. Bu çalışmada bor nitrür nanopartiküllerinin Bovine Coronavirus (BCoV) ve Staphylococcus aureus (S. aureus) üzerine etkisi araştırılmıştır. Deneylerden önce 0,5 mg/mL'den düşük konsantrasyonlardaki BNNP’nin HRT-18 hücre kültüründeki etkileri 5 gün süreyle mikroskobik ve hücre canlık testiyle incelenmiştir.takiben hBN, önceden BCoV ekimi yapılmış hücre kültür sıvısına da eklenmiştir. Ayrıca farklı konsantrasyonlardaki ürün hBN, sıvı ortamda ve kaplanmış membrane yüzeyinde BCoV ile biraraya getirilerek virus replikasyon ya da virusun enfektivite gücündeki etkisi araştırılmıştır. Diğer yandan spreyleme yöntemi ile hBN kaplanmış membranda Staphylococcus aureus (S. aureus) kullanılarak tıbbi Bakteriyel Filtrasyon Verimliliğini (BFE) değerlendirilmiştir. HRT-18 hücre hattında belirgin bir morfolojik değişiklik saptanmasa da canlı hücre sayımı yöntemi ile hBN hafif toksik olarak değerlendirilmiştir. BCoV etkileşimini incelendiği 0,3 mg/mL ve altındaki konsantrasyonlarda (0,025 or 0,3 mg/mL) hBNN uygulamasının virus süspansiyonunda enfeksiyözite gücünde azalmaya yol açmadığı, aynı zamanda in-vitro koşullarda virus replikasyonu üzerine inhibitör etkide olmadığı görüldü. Bakteriyel Filtrasyon Verimliliği testinde ise hBN kaplanmış polipropilen kumaşın %90,3 ≥ oranında bariyer oluşturduğu, buna karşı hBN kaplanmamış kumaşın %64,6 ≥ oranıda bariyer oluşturduğu belirlenmiştir. Mevcut çalışma, BNNP'lerin tek başına BCoV'ler için dezenfektan veya ilaç için iyi bir aday olmadığını, ancak özellikle S. aureus gibi kolay sanitasyona ihtiyaç duyulan alanlarda kullanılmasının değerli olabileceğini göstermektedir.

Project Number

20GAP072

References

  • [1] Soriano-Ursúa, M. A., Das, B. C., & Trujillo-Ferrara, J. G. (2014). Boron-containing compounds: Chemicobiological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opinion on Therapeutic Patents, (24), 485-500. https://doi.org/10.15 17/13543776.2014.881472.
  • [2] Pizzorno, L. (2015). Nothing boring about boron. Integrative Medicine, 14(4), 35-48. [3] Nielsen, F. H. (2014). Update on human health effects of boron. Journal of Trace Elements in Medicine and Biology, (28), 383-387. https://doi.org/10.1016/j.jtemb.2014.06.023.
  • [4] Farfán-García, E. D., Castillo-Mendieta, N. T., Ciprés-Flores, F. J., Padilla-Martínez, I. I., Trujillo-Ferrar, J.G., & Soriano-Ursúa, M. A. (2016). Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicology Letters, (258), 115-125. https://doi.org/10.1016/j.toxlet.2016.06.018.
  • [5] Baker, S. J., Tomsho, J. W., & Benkovic, S. J. (2011). Boron-containing inhibitors of synthetases. Chemical Society Reviews, 40(8), 4279-4285. https://doi. org/10.1039/c0cs00131g. [6] Dembitsky, V. M., Al Quntar, A. A. A., & Srebnik, M. (2011). Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chemical Reviews, 111(1), 209-237. https://doi.org/10.1021/cr100093b.
  • [7] Fernandes, G. F. S., Denny, W. A., & Dos Santos, J. L. (2019). Boron in drug design: Recent advances in the development of new therapeutic agents. European Journal of Medicinal Chemistry, 179, 791-804. https:// doi.org/10.1016/j.ejmech.2019.06.092. [8] Munir, M., Hussain, S., Anwar, R., Waqas, M., & Ali, J. (2020). The role of nanoparticles in the diagnosis and treatment of diseases. Scientific Inquiry and Review, 4, 14-26. https://doi.org/10.32350/sir.
  • [9] Sharker, SM. (2019). Hexagonal boron nitrides (White graphene): A promising method for cancer drug delivery. International Journal of Nanomedicine, 14, 9983-9993. https://doi.org/10.2147/IJN.S205095.
  • [10] Adamo, G., Campora, S., & Ghersi, G. (2017). Functionalization of nanoparticles in specific targeting and mechanism release. In F. Denisa, G. A. Mihai, (Eds.). Nanostructures for Novel Therapy (1st ed, pp. 57-80). Elsevier Inc. https://doi.org/10.1016/B978-0-323-46142-9.00003-7.
  • [11] Ikram, M., Jahan, I., Haider, A., Hassan, J., Ul-Hamid, A., Imran, M., Haider, J., Shahzadi, A., Shahbaz, A., & Ali, S. (2020). Bactericidal behavior of chemically exfoliated boron nitride nanosheets doped with zirconium. Applied Nanoscience, 10, 2339-2349. https://doi.org/10.1007/ s13204-020-01412-z.
  • [12] Kıvanç, M., Barutca, B., Koparal, A. T., Göncü, Y., Bostancı, S. H., & Ay, N. (2018). Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Materials Science and Engineering: C, 91, 115-124. https://doi.org/10.1016/j.msec.2018.05.028.
  • [13] Pandit, S., Gaska, K., Mokkapati, V. R. S. S., Forsberg, S., Svensson, M., Kádár, R., & Mijakovic, I. (2019). Antibacterial effect of boron nitride flakes with controlled orientation in polymer composites. RSC Advances, 9, 33454-33459. https://doi.org/10.1039/C9RA06773F.
  • [14] Rengasamy, S., Shaffer, R., Williams, B., & Smit, S. (2017). A comparison of facemask and respirator filtration test methods. Journal of Occupational and Environmental Hygiene, 14, 92-103. https://doi.org /10.1080/15459624.2016.1225157/SUPPL_FILE/ UOEH_A_1225157_SM2604.DOC.
  • [15] Leonas, K., Jones, C. R., & Hall, D. (2003). The relationship of fabric properties and bacterial filtration efficiency for selected surgical face masks. Journal of Textile and Apparel, Technology and Management, 3, 1-8.
  • [16] Kar, F., Hacıoğlu, C., Göncü, Y., Söğüt, İ., Şenturk, H., Burukoğlu Dönmez, D., … & Ay, N. (2020). In vivo assessment of the effect of hexagonal boron nitride nanoparticles on biochemical, histopathological, oxidant and antioxidant status. Journal of Cluster Science, 322(32), 517-529. https://doi.org/10.1007/ S10876-020-01811-W.
  • [17] Teresa, O. H., & Choi, C. K. (2010). Comparison between SiOC thin films fabricated by using plasma enhance chemical vapor deposition and SiO2 thin films by using fourier transform infrared spectroscopy. Journal of the Korean Physical Society, 56, 1150-1155. https://doi.org/10.3938/JKPS.56.1150.
  • [18] Ahmed, G. S., Gilbert, M., Mainprize, S., & Rogerson, M. (2013). FTIR analysis of silane grafted high density polyethylene. Plastics, Rubber and Composites, 38(1), 13-20. https://doi.org/10.1179/174328909X387711
  • [19] Fang, J., Zhang, L., Sutton, D., Wang, X., & Lin, T. (2012). Needleless melt-electrospinning of polypropylene nanofibres. Journal of Nanomaterials, 2012, 1-9. 382639, https://doi.org/10.1155/2012/382639. [20] Abdel-Hamid, H. M. (2005). Effect of electron beam irradiation on polypropylene films-dielectric and FT-IR studies, Solid-State Electronics, 49, 1163-1167. https:// doi.org/10.1016/J.SSE.2005.03.025.
  • [21] Nocentini, A., Supuran, C. T., & Winum, J. Y. (2018). Benzoxaborole compounds for therapeutic uses: a patent review (2010-2018). Expert Opinion on Therapeutic Patents, 28, 493-504. https://doi.org/10.1 080/13543776.2018.1473379.
  • [22] Ghosh, A. K., Xia, Z., Kovela, S., Robinson, W. L., & Johnson, M. E. (2019). Potent HIV-1 protease inhibitors containing carboxylic and boronic acids: Effect on enzyme inhibition and antiviral activity and proteinligand xray structural studies. ChemMedChem, 14, 1863-1872. https://doi.org/10.1002/cmdc.201900508.
  • [23] Maynard, A., Crosby, R. M., Ellis, B., Hamatake, R., & Hong, Z. (2014). Discovery of a potent boronic acid derived inhibitor of the HCV RNA-dependent RNA polymerase. Journal of Medicinal Chemistry, 57, 1902- 1913. https://doi.org/10.1021/jm400317w.
  • [24] Neznanov, N., Dragunsky, E. M., Chumakov, K. M., Neznanova, L., & Wek, R. C. (2008). Different effect of proteasome inhibition on vesicular stomatitis virus and poliovirus replication. PLoS One, 3, (4). e1887. https:// doi.org/10.1371/journal.pone.0001887.
  • [25] Amaya, M., Keck, F., Lindquist, M., Voss, K., & Scavone, L. (2015). The ubiquitin proteasome system plays a role in Venezuelan equine encephalitis virus infection. PLoS One, 30, 10(4), e0124792. https://doi.org/10.1371/ journal.pone.0124792.
  • [26] Choy, M. M., Zhang, S. L., Costa, V. V., Tan, H. C., & Horrevorts, S. (2015). Proteasome inhibition suppresses dengue virus egress in antibody dependent infection. PLOS Neglected Tropical Diseases, 9(11), e0004058. doi: 10.1371/journal.pntd.0004058.
  • [27] Barrows, N. J., Campos, R. K., Powell, S. T., Prasanth, K. R., & Schott-Lerner, G. (2016) A screen of FDAapproved drugs for inhibitors of zika virus infection. Cell Host Microbe, 20, 259-270. https://doi.org/10.1016/j. chom.2016.07.004.
  • [28] Barrado-Gil, L., Galindo, I., Martínez-Alonso, D., Viedma, S., & Alonso, C. (2017). The ubiquitinproteasome system is required for African swine fever replication. PLoS One, 12(12), e0189741. https://doi. org/10.1371/journal.pone.0189741.
  • [29] Bandi, P., Garcia, M. L., Booth, C. J., Chisari, F. V., & Robek, M. D. (2010). Bortezomib inhibits Hepatitis B virus replication in transgenic mice. Antimicrobial Agents and Chemotherapy, 54(2), 749-756. https://doi. org/10.1128/AAC.01101-09.
  • [30] Liu, S., Liu, H., Zhang, K., Li, X., & Duan, Y. (2019). Proteasome inhibitor PS-341 effectively blocks infection by the severe fever with thrombocytopenia syndrome virus. Virologica Sinica, 34, 572-582. https:// doi.org/10.1007/s12250-019-00162-9.
  • [31] Shahiduzzaman, M., Ezatti, P., Xin, G., & Coombs, K. M. (2014). Proteasomal serine hydrolases are pregulated by and required for influenza virus infection. Journal of Proteome Research, 13, 2223-2238. https:// doi.org/10.1021/pr5001779.
  • [32] Horváth, L., Magrez, A., Golberg, D., Zhi, C., & Bando, Y. (2011). In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano, 5, 3800-3810. https://doi.org/10.1021/nn200139h.
  • [33] Cetiner, E., Sayin, K., Tuzun, B., & Ataseven, H. (2021). Could boron-containing compounds (BCCs) be effective against SARS-CoV-2 as antiviral agent. Bratislava Medical Journal, 122, 263-269. https://doi. org/10.4149/BLL_2021_044.
  • [34] Vega Valdez, I. R., Melvin, R. N., José, S. Q. M., Eunice, F. G. E. D., & Marvin, S. U. A. (2020). Docking simulations exhibit bortezomib and other boroncontaining peptidomimetics as potential inhibitors of SARS-CoV-2 main protease. Current Chemical Biology, 14, 279-288. https://doi.org/10.2174/22127968149992 01102195651.
  • [35] Soliman, K. A., & Aal, S. A. (2021). Theoretical investigation of favipiravir antiviral drug based on fullerene and boron nitride nanocages. Diamond and Related Materials, 117, 108458. https://doi. org/10.1016/j.diamond.2021.108458.
  • [36] Schneider, S. M., Pritchard, S. M., Wudiri, G. A., Trammell, C. E., & Nicola, A. V. (2019). Early steps in herpes simplex virus infection blocked by a proteasome inhibitor. MBio, 10(3): e00732-e00719. https://doi. org/10.1128/mBio.00732-19.
  • [37] Wang, W., Yim, S. L., Wong, C. H., & Kan, C. W. (2021) Study on the development of antiviral spandex fabric coated with poly(hexamethylene biguanide) hydrochloride (PHMB). Polymers (Basel), 13(13), 2122. https://doi.org/10.3390/POLYM13132122.
  • [38] Bentis, A., Boukhriss, A., & Gmouh, S. (2020). Flameretardant and water-repellent coating on cotton fabric by titania–boron sol–gel method. Journal of Sol-Gel Science and Technology, 94, 719-730. https://doi. org/10.1007/S10971-020-05224-Z.
  • [39] Akbar, W., Karagoz, A., Basim, G. B., Noor, M., Syed, T., Lum, J., & Unluagac, M. (2015). Nano-boron as an antibacterial agent for functionalized textiles. MRS Online Proceedings Library, 1793, 53-57. https://doi. org/10.1557/OPL.2015.728.
  • [40] Kwong, L. H., Wilson, R., Kumar, S., Crider, Y.S., & Sanchez, Y. R. (2021). Review of the breathability and filtration efficiency of common household materials for face masks. ACS Nano. 15(4). 5904-5924. https://doi. org/10.1021/ACSNANO.0C10146.
  • [41] Ju J. T. J., Boisvert L. N., & Zuo Y. Y. (2021). Face masks against COVID-19: Standards, efficacy, testing and decontamination methods. Advances in Colloid and Interface Science, 292, 102435. https://doi. org/10.1016/J.CIS.2021.102435.
  • [42] Yu, De J., Goldminz, A., Chisolm, S., Jacob, S. E., Zippin, J. H., Wu, P. A., ... & Atwater, A. R. (2021) Facial personal protective equipment: materials, resterilization methods, and management of occupation-related dermatoses. Dermatitis, 32(2), 78-85. https://doi.org/10.1097/DER.0000000000000699.
  • [43] Tessarolo, F., Nollo, G., Benedetti, L., Helfer, F., & Rovati, L. (2022). Measuring breathability and bacterial filtration efficiency of face masks in the pandemic context: A round robin study with proficiency testing among non-accredited laboratories. Measurement, 189, 110481. https://doi.org/10.1016/J. MEASUREMENT.2021.110481.
  • [44] Ekabutr, P., Chuysinuan, P., Suksamrarn, S., Sukhumsirichart, W., & Hongmanee, P. (2019). Development of antituberculosis melt-blown polypropylene filters coated with mangosteen extracts for medical face mask applications. Polymer Bulletin. 76, 1985-2004. https://doi.org/10.1007/ S00289-018-2468-X/FIGURES/7.
  • [45] Bataglioli, R. A., Rocha Neto, J. B. M., Calais, G. B., Lopes, L. M., & Tsukamoto, J. (2022). Hybrid alginate-copper sulfate textile coating for coronavirus inactivation, Journal of the American Ceramic Society, 105, 17481752. https://doi.org/10.1111/JACE.17862.
There are 41 citations in total.

Details

Primary Language English
Subjects Ceramics in Materials Engineering
Journal Section Research Article
Authors

Gizem Aytoğu 0000-0002-3411-081X

Yapıncak Goncu 0000-0002-8602-9765

Belma Nural Yaman 0000-0003-2576-1300

Berfin Kadiroğlu 0000-0001-5969-6127

Özer Ateş 0000-0001-7676-9033

Mustafa Erdem Üreyen 0000-0002-9055-3228

Nuran Ay 0000-0002-2228-9904

Kadir Yeşilbağ 0000-0003-1793-6879

Project Number 20GAP072
Publication Date June 30, 2023
Acceptance Date May 7, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Aytoğu, G., Goncu, Y., Nural Yaman, B., Kadiroğlu, B., et al. (2023). Interaction of betacoronavirus and S. aureus with boron nitride nanoparticles (BNNPs). Journal of Boron, 8(2), 66-75. https://doi.org/10.30728/boron.1261594