Research Article
BibTex RIS Cite

Üleksit esaslı bor kullanarak atıksulardan yaygın kullanım alanlı bir antibiyotik olan tetrasiklininin giderimininin incelenmesi

Year 2024, Volume: 9 Issue: 1, 1 - 8, 29.03.2024
https://doi.org/10.30728/boron.1127885

Abstract

Bu çalışmanın birinci kısmında, farklı pH, sıcaklık ve dozajlarda tetrasiklin antibiyotiği ile geleneksel adsorbanlara alternatif olarak bor, alümina ve polipropilen giderim mekanizması araştırılmıştır. Optimum deney koşullarında bor, ile reaksiyon kinetiği, reaksiyon izotermleri analiz edilerek tetrasiklinlerin giderim mekanizmaları araştırılmıştır. Adsorbentler için maksimum adsorpsiyon değerleri gözlendiği pH 6-7 aralığında, 0.5 g adsorbent içeren ortamda, 25 oC’ de ve başlangıç tetrasiklin derişimi 50 mg/L’de olduğu ortamda görülmüştür. Bor, alümina için tetrasiklinin en yüksek adsorpsiyon verimi sırayla % 90,11 olarak bulunmuştur.
Artan sıcaklıkla adsorpsiyon verimin azaldığı görülmüştür. Termodinamik parametreler, Gibbs serbest enerjisi (ΔG), entropi (ΔS) ve entalpi (ΔH) değerleri bulunmuştur. Bor, için dört sıcaklıkta sunulan negatif ΔG değerleri, adsorpsiyon olayının kendiliğinden gerçekleştiğini göstermiştir. ΔS’nin pozitif değeri adsorpsiyon işlemi sırasında katı/sıvı ara yüzeyinde düzensizliğin arttığını, negatif olması düzensizliğin azaldığını gösterir. TC işlemlerinin adsorpsiyonu negatif ΔH olması da adsorpsiyon ekzotermik olduğunu ve adsorpsiyon proseslerine spontan uygulanabilir olduğunu göstermiştir

Supporting Institution

Cumhuriyet Üniversitesi

Project Number

M-615

Thanks

Yazarlar Etimaden işletmelerine teşekkür eder.

References

  • [1] Bryjoko, M., Wolskoa, J., Sarokoa, I., Kobay, N. (2009). Adsorption- Membrane Filtration Process in Boran Removal from First Stage Seawater RO Permeate. Desanalination, 241, 127-132.
  • [2] Çalık, M. (2002). Bor Mineralleri ve Özellikleri, Mühendis ve Makine Dergisi, 508, 36-41.
  • [3] Saruiz, K., Nuhoğlu İ. (1992). Endüstriyel Hammadde Yatakları ve Madenciliği, Anadolu Üniversitesi, Eskişehir.
  • [4] Tmmob bor raporu 09.05.2016 [5] Olgun, A., Atar, N. (2012). Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. Journal of Industrial and Engineering Chemistry, 18,1751–1757 [6] Lin, Y., Xu, S., Jia, L. (2013). Fast and Highly Efficient Tetracyclines Removal from Environmental Waters by Graphane Oxide Functionalized Magnetic Perticles. Chemical Engineering Journal, 225,679-685.
  • [7] Li, Z.H., Schulz, L., Ackley, C., Fenske, N. (2010). Adsorption of tetracycline ob kaolinite with pH-dependent surface charges. Journal of Colloid and Interface Science, 351, 254-260.
  • [8] Cabello, F.C. (2006). Heavy Use Of Prophylactic Antibiotics İn Aquculture: Agrowing Problem For Humam And Animal Health And For The Environment. Environmicrobial, 8, 1137-1144.
  • [9] Gao, P., Munir, M., Xagoroki, I. (2012). Correlation Of Tetracycline And Sulfanamide Antibiotics With Correspanting Resistance Genes and Resistant Bacteria in Conventional Municapal Wastewater Treatment Plant. Science Of Te Total Enviromental, 421-422, 173-183.
  • [10] Liv, H., Yang, Y., Kang, J., Fan, M., Qu, J. (2012). Removal of tetracycline from water by Fe-Mn binary oxide. Journal of Environmental Sciences, 24 (2), 242-247.
  • [11] Sithole, B.B., Guy, R.D. (1987). Models for Tetracycline in Aquatic Environments, II.Interaction with Humic Substances. Water Air and Soil Pollution, 32, 315-321.
  • [12] Güler, Ü.A., Türkay, M. (2016). Aljinat-TiO2-Alg Kompozitinin Sentezi ve Sulu Çözeltilerden Tetrasiklin Gideriminde Kullanılabilirliği ve Karakterizasyonu, Karaelmas Fen ve Müh. Dergisi, 6(1); 130-135.
  • [13] Ji, L., Duan, L., Zhu, D. (2009). Mechanisms for Strong Adsorption of Tetracycline to Carbon Nonotubes. A Comporative Study Using Activated Carbon and Graphite as Adsorbents. Enviromental Science Technology, 43,2322.
  • [14] Su Kirliliği Yönetmeliği, (2004), Resmi Gazete, 31 Aralık Sayı; 25687.
  • [15] Dökmeci, A.H. (2009). Bazı Farmasötik İlaç Kalıntılarının Sulardaki Toksik Etkileri. Trakya Üniversitesi Sağlık Bilimleri Enstitüsü Toksikoloji Bilim Dalı (Doktora Tezi), Edirne
  • [16] Homem, V., Santos, L. (2011). Degradation and Removal Methods of Antibiotics from Aqueous Matrices- A Review. Journal Of Environmental Management, 92, 2304-2347.
  • [17] Emmolla, E.S., And Chaudhuri, M. (2012). The Feasibility of Using Combined Fenton-Sbr For Antibiotic. Wastewater Treatment Desalination, 285, 14-21.
  • [18] Türkdoğan, F.I., Yetilmezsoy, K. (2009). Appraisol of Potential Environmental Risks Associated with Human Antibiotic Can Sumption in Turkey. Journal of Hazardous Materials, 166, 297-308.
  • [19] Chee-Sanford, J., Aminou, R., Kropoc, I., Garrigues, J.N., Nackie, R. (2001). Occurrence And Groundwater Underlying Two Swine Production Facilities. Appl. Environment Microbiology, 67, 1494-1502.
  • [20] Yalap, K.S., Balcıoğlu, I.A. (2008). Oksitetrasiklinin İleri Oksidasyon İle Arıtımına Su Bileşenlerinin Etkisi. İtü Dergisi Su Kirlenme Kontrolü, 18, 2-3, 51-60.
  • [21] Rivera-Utrilla, J., Prados-Joya, G., Sanchez-Polo, M., Ferro-Garcio, M.A., Bautista-Toledo, I. (2009). Removal of Nitroimidazole Antibiotics from Aqueous Solution by Adsorption/ Bioadsorption on Activated Carbon. Journal of Hazardous Materials, 170 (1), 298-305.
  • [22] Sarmah, A.K., Meyer, M.R., Boxall, A.B.A. (2006). A Global Perspective on the Use, Soles, Exposure Pothways, Occurence, Fate and Effects of Veterinary Antibiotics(Vas) in The Environment. Chemosphere, 65, 725-759.
  • [23] Lv, J.M, Ma, Y.L, Chang, X. Ve Fan, S.B. (2015). Removal and Removing Mechanism of Tetracycline Residue from Aqueous Solution by Using Cu13x. Chemical Engineering Journal, 273, 247-253.
  • [24] Bangari, R S.Anshul Yadav A, Awasthi, P., Sinha, N. (2022),Experimental and theoretical analysis of simultaneous removal of methylene blue and tetracycline using boron nitride nanosheets as adsorbent,Colloids and Surfaces A: Physicochemical and Engineering Aspects 634, 127943.
  • [25] Wang, J., Hu, J., Zhang, S. (2010). Studies on the Sorption of Tetracycline onto Clays and Marine Sediment from Seawater. Journal Colloid Interface Science, 349, 578-582.
  • [26]Islam, M., Potel, R.K. (2013). Evaluation of Removal Efficiency of Flüoride from Aqueous Solution Using and Kinetic Studies. Water Science Technology, 67,1490-1496.
  • [27] Sakar, M., Balakumar, S., Saravanan, P., Bharathkumar S. Particulates (2016). Vs fibers: Dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures, RSC public, 1-14.

Investigation of the removal of tetracycline, a widely used antibiotic, from wastewater by using ulexite-based boron

Year 2024, Volume: 9 Issue: 1, 1 - 8, 29.03.2024
https://doi.org/10.30728/boron.1127885

Abstract

In this study, antibiotic removal mechanism was investigated by using ulexite-derived boron as an alternative to conventional adsorbents. Tetracycline was chosen as the antibiotic, considering its widespread use and the development of antibiotic-resistant microorganisms it causes. Removal mechanisms of tetracyclines were investigated by analyzing reaction isotherms under optimized experimental conditions using boron at different pH, temperature and dosages. Maximum adsorption values for adsorbents were observed in the pH range of 6-7, in the medium containing 0.5 g adsorbent, at 25 oC and in the medium where the initial tetracycline concentration was 50 mg/L. The highest adsorption efficiency of tetracycline for boron was found to be 90.11%. It was observed that the adsorption efficiency decreased with increasing temperature. Thermodynamic parameters, Gibbs free energy (ΔG), entropy (ΔS) and enthalpy (ΔH) values were found. For boron, the negative ΔG values presented at four temperatures showed that the adsorption event occurred spontaneously. The positive value of ΔS indicates that the disorder increases at the solid/liquid interface during the adsorption process, while the negative value indicates that the disorder decreases. The adsorption negative ΔH of the TC processes also showed that the adsorption is exothermic and can be applied spontaneously to the adsorption processes.

Project Number

M-615

References

  • [1] Bryjoko, M., Wolskoa, J., Sarokoa, I., Kobay, N. (2009). Adsorption- Membrane Filtration Process in Boran Removal from First Stage Seawater RO Permeate. Desanalination, 241, 127-132.
  • [2] Çalık, M. (2002). Bor Mineralleri ve Özellikleri, Mühendis ve Makine Dergisi, 508, 36-41.
  • [3] Saruiz, K., Nuhoğlu İ. (1992). Endüstriyel Hammadde Yatakları ve Madenciliği, Anadolu Üniversitesi, Eskişehir.
  • [4] Tmmob bor raporu 09.05.2016 [5] Olgun, A., Atar, N. (2012). Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. Journal of Industrial and Engineering Chemistry, 18,1751–1757 [6] Lin, Y., Xu, S., Jia, L. (2013). Fast and Highly Efficient Tetracyclines Removal from Environmental Waters by Graphane Oxide Functionalized Magnetic Perticles. Chemical Engineering Journal, 225,679-685.
  • [7] Li, Z.H., Schulz, L., Ackley, C., Fenske, N. (2010). Adsorption of tetracycline ob kaolinite with pH-dependent surface charges. Journal of Colloid and Interface Science, 351, 254-260.
  • [8] Cabello, F.C. (2006). Heavy Use Of Prophylactic Antibiotics İn Aquculture: Agrowing Problem For Humam And Animal Health And For The Environment. Environmicrobial, 8, 1137-1144.
  • [9] Gao, P., Munir, M., Xagoroki, I. (2012). Correlation Of Tetracycline And Sulfanamide Antibiotics With Correspanting Resistance Genes and Resistant Bacteria in Conventional Municapal Wastewater Treatment Plant. Science Of Te Total Enviromental, 421-422, 173-183.
  • [10] Liv, H., Yang, Y., Kang, J., Fan, M., Qu, J. (2012). Removal of tetracycline from water by Fe-Mn binary oxide. Journal of Environmental Sciences, 24 (2), 242-247.
  • [11] Sithole, B.B., Guy, R.D. (1987). Models for Tetracycline in Aquatic Environments, II.Interaction with Humic Substances. Water Air and Soil Pollution, 32, 315-321.
  • [12] Güler, Ü.A., Türkay, M. (2016). Aljinat-TiO2-Alg Kompozitinin Sentezi ve Sulu Çözeltilerden Tetrasiklin Gideriminde Kullanılabilirliği ve Karakterizasyonu, Karaelmas Fen ve Müh. Dergisi, 6(1); 130-135.
  • [13] Ji, L., Duan, L., Zhu, D. (2009). Mechanisms for Strong Adsorption of Tetracycline to Carbon Nonotubes. A Comporative Study Using Activated Carbon and Graphite as Adsorbents. Enviromental Science Technology, 43,2322.
  • [14] Su Kirliliği Yönetmeliği, (2004), Resmi Gazete, 31 Aralık Sayı; 25687.
  • [15] Dökmeci, A.H. (2009). Bazı Farmasötik İlaç Kalıntılarının Sulardaki Toksik Etkileri. Trakya Üniversitesi Sağlık Bilimleri Enstitüsü Toksikoloji Bilim Dalı (Doktora Tezi), Edirne
  • [16] Homem, V., Santos, L. (2011). Degradation and Removal Methods of Antibiotics from Aqueous Matrices- A Review. Journal Of Environmental Management, 92, 2304-2347.
  • [17] Emmolla, E.S., And Chaudhuri, M. (2012). The Feasibility of Using Combined Fenton-Sbr For Antibiotic. Wastewater Treatment Desalination, 285, 14-21.
  • [18] Türkdoğan, F.I., Yetilmezsoy, K. (2009). Appraisol of Potential Environmental Risks Associated with Human Antibiotic Can Sumption in Turkey. Journal of Hazardous Materials, 166, 297-308.
  • [19] Chee-Sanford, J., Aminou, R., Kropoc, I., Garrigues, J.N., Nackie, R. (2001). Occurrence And Groundwater Underlying Two Swine Production Facilities. Appl. Environment Microbiology, 67, 1494-1502.
  • [20] Yalap, K.S., Balcıoğlu, I.A. (2008). Oksitetrasiklinin İleri Oksidasyon İle Arıtımına Su Bileşenlerinin Etkisi. İtü Dergisi Su Kirlenme Kontrolü, 18, 2-3, 51-60.
  • [21] Rivera-Utrilla, J., Prados-Joya, G., Sanchez-Polo, M., Ferro-Garcio, M.A., Bautista-Toledo, I. (2009). Removal of Nitroimidazole Antibiotics from Aqueous Solution by Adsorption/ Bioadsorption on Activated Carbon. Journal of Hazardous Materials, 170 (1), 298-305.
  • [22] Sarmah, A.K., Meyer, M.R., Boxall, A.B.A. (2006). A Global Perspective on the Use, Soles, Exposure Pothways, Occurence, Fate and Effects of Veterinary Antibiotics(Vas) in The Environment. Chemosphere, 65, 725-759.
  • [23] Lv, J.M, Ma, Y.L, Chang, X. Ve Fan, S.B. (2015). Removal and Removing Mechanism of Tetracycline Residue from Aqueous Solution by Using Cu13x. Chemical Engineering Journal, 273, 247-253.
  • [24] Bangari, R S.Anshul Yadav A, Awasthi, P., Sinha, N. (2022),Experimental and theoretical analysis of simultaneous removal of methylene blue and tetracycline using boron nitride nanosheets as adsorbent,Colloids and Surfaces A: Physicochemical and Engineering Aspects 634, 127943.
  • [25] Wang, J., Hu, J., Zhang, S. (2010). Studies on the Sorption of Tetracycline onto Clays and Marine Sediment from Seawater. Journal Colloid Interface Science, 349, 578-582.
  • [26]Islam, M., Potel, R.K. (2013). Evaluation of Removal Efficiency of Flüoride from Aqueous Solution Using and Kinetic Studies. Water Science Technology, 67,1490-1496.
  • [27] Sakar, M., Balakumar, S., Saravanan, P., Bharathkumar S. Particulates (2016). Vs fibers: Dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures, RSC public, 1-14.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehtap Erşan 0000-0002-5429-4468

Feride Düğenci 0000-0001-8096-2020

Project Number M-615
Publication Date March 29, 2024
Acceptance Date January 29, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Erşan, M., & Düğenci, F. (2024). Üleksit esaslı bor kullanarak atıksulardan yaygın kullanım alanlı bir antibiyotik olan tetrasiklininin giderimininin incelenmesi. Journal of Boron, 9(1), 1-8. https://doi.org/10.30728/boron.1127885