Research Article
BibTex RIS Cite

Determination of Flight Activities and Populations of Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) In Hazelnut Orchards in Samsun, Türkiye

Year 2022, Volume: 5 Issue: 4, 406 - 414, 01.10.2022
https://doi.org/10.47115/bsagriculture.1146116

Abstract

Ambrosia beetles are highly invasive pests that cause thousands of hazelnut branches to dry out in hazelnut orchards each year. The manegement against these pests in hazelnut orchards, first of all, it is necessary to know the time of emergence of these pests during the year and the dates when their populations are concentrated. Between 2017-2019, studies were carried out in the Çarşamba and Terme districts of Samsun, which play an important role in hazelnut production in Türkiye. Populations of three invasive ambrosia beetle species (Anisandrus dispar, Xylosandrus germanus and Xyleborinus saxesenii) in hazelnut orchards were monitored using sticky traps for three years, from mid-March to mid-October. A. dispar, adults started to emerge in mid-March, their populations increased in April-May and started to decrease from mid-June. The emergence of X. germanus adults began in April, their populations peaked in late May and early June, and then the population began to decline. There was also a slight increase in their population in August. The emergence of X. saxesenii adults began in late March and a slight increase in their population was observed at the end of April. Populations of this species increased significantly in late June and early July, with a slight increase in populations in August. When these three ambrosia beetle species, which were caught in red sticky traps in hazelnut orchards for three years, were compared, the catch rates were determined as 56.28% for A. dispar, 24.20% for X. germanus and 19.52% for X. saxesenii, respectively. Thanks to this information obtained, it was determined when to start the combat against these pests in hazelnut orchards and when the management should be done most intensely.

Thanks

I would like to thank the valuable hazelnut producers in Çarşamba and Terme districts where the studies were carried out.

References

  • Ak K, Uysal M, Tuncer C. 2005. Giresun, Ordu ve Samsun illerinde fındık bahçelerinde zarar yapan yazıcıböcek (Coleoptera: Scolytidae) Türleri, kısa biyolojileri ve bulunuş oranları. ANAJAS, 20(2): 37-44.
  • Aker O. 2018. Fındıkta zararlı olan yazıcı böceklere (Coleoptera: Curculionidae: Scolytinae) karşı mücadelede semiokimyasal destekli tuzak bitki yönteminin geliştirmesi. PhD thesis, Ondokuz Mayıs University, Graduate School of Natural and Applied Sciences, Samsun, pp. 144.
  • Coyle DR, Booth DC, Wallace MS. 2005. Ambrosia beetle (Coleoptera: Scolytidae) species, flight, and attack on living eastern cottonwood trees. J Econom Entomol, 98(6): 2049-2057.
  • De Souza Covre L, Melo AA, Flechtmann CAH. 2021. Flight activity and spread of Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae) in Brazil. Trees, Forests People, 4: 100076.
  • Hofstetter RW, Klepzig KD, Villari C. 2022. Effects of rising temperatures on ectosymbiotic communities associated with bark and ambrosia beetles. Academic Press, Bark Beetle Management, Ecology, and Climate Change, 2022: 303-341.
  • Hulcr J, Stelinski LL. 2017. The ambrosia symbiosis: from evolutionary ecology to practical management. Annual Rev Entomol, 62: 285-303.
  • Kelsey RG, Beh MM, Shaw DC, Manter DK. 2013. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak. J Chem Ecol, 39(4): 494-506.
  • Kelsey RG, Gallego D, Sánchez-García FJ, Pajares JA. 2014. Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles. Canadian J Forest Res, 44(6): 554-561.
  • Kirkendall LR, Biedermann PH, Jordal BH. 2015. Evolution and diversity of bark and ambrosia beetles. Academic Press, Bark beetles, 2015: 85-156.
  • Lehenberger M, Benkert M, Biedermann PB. 2021. Ethanol-enriched substrate facilitates ambrosia beetle fungi, but inhibits their pathogens and fungal symbionts of bark beetles. Front Microbiol, 11: 590111.
  • Miller DR, Crowe CM, Ginzel MD, Ranger CM, Schultz PB. 2018. Comparison of baited bottle and multiple-funnel traps for ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in Eastern United States1. J Entomol Sci, 53(3): 347-360.
  • Miller DR, Rabaglia RJ. 2009. Ethanol and (−)-α-pinene: Attractant kairomones for bark and ambrosia beetles in the southeastern US. J Chem Ecol, 35(4): 435-448.
  • Noseworthy MK, Humble LM, Sweeney J, Silk P, Mayo P. 2012. Attraction of Monarthrum scutellare (Coleoptera: Curculionidae: Scolytinae) to hydroxy ketones and host volatiles. Canadian J Forest Res, 42(10): 1851-1857.
  • Oliver JB, Mannion CM. 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environ Entomol, 30(5): 909-918.
  • Ranger CM, Gorzlancyk AM, Addesso KM, Oliver JB, Reding ME, Schultz PB, Held DW. 2014. Conophthorin enhances the electroantennogram and field behavioural response of Xylosandrus germanus (C oleoptera: C urculionidae) to ethanol. Agri Forest Entomol, 16(4): 327-334.
  • Ranger CM, Reding ME, Addesso K, Ginzel M, Rassati D. 2021. Semiochemical-mediated host selection by Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae) attacking horticultural tree crops: a review of basic and applied science. Canadian Entomol, 153(1): 103-120.
  • Ranger CM, Reding ME, Schultz PB, Oliver JB. 2013. Influence of flood-stress on ambrosia beetle (Coleoptera: Curculionidae, Scolytinae) host-selection and implications for their management in a changing climate. Agri Forest Entomol, 15: 56-64.
  • Ranger CM, Reding ME, Schultz PB, Oliver JB, Frank SD, Addesso KM, Chong JH, Sampson B, Werle C, Gill S, Krause C. 2016. Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. J Integrated Pest Manage, 7(1): 1-23.
  • Ranger CM, Schultz PB, Frank SD, Chong JH, Reding ME. 2015. Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLoS One, 10(7): e0131496.
  • Ranger CM, Schultz PB, Frank SD, Reding ME. 2019. Freeze stress of deciduous trees induces attacks by opportunistic ambrosia beetles. Agri Forest Entomol, 21(2): 168-179.
  • Rassati D, Faccoli M, Battisti A, Marini L. 2016. Habitat and climatic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. Biol Invasions, 18(10): 2809-2821.
  • Reding ME, Oliver J., Schultz PB, Ranger CM, Youssef NN. 2013. Ethanol injection of ornamental trees facilitates testing insecticide efficacy against ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). J Econom Entomol, 106(1): 289-298.
  • Peer K, Taborsky M. 2007. Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles. Behav Ecol Sociobiol, 61(5): 729-739.
  • Sarikaya O, Sayin H. 2015. Observation on the flight activities of the two ambrosia beetles Anisandrus dispar (Fabricius, 1792.) and Xyleborinus saxesenii (Ratzeburg, 1837.) in Kasnak oak forest nature protection area in the South Western of Turkey. International J Agri Innovat Res, 4(2): 357-360.
  • Saruhan İ, Akyol H. 2012. Monitoring population density and fluctuations of Anisandrus dispar and Xyleborinus saxesenii (Coleoptera: Scolytinae, Curculionidae) in hazelnut orchards. African J Biotech, 11(18): 4202-4207.
  • Saruhan İ, Tuncer C. 2000. Population densities and seasonal fluctuations of hazelnut pests in Samsun, Turkey. In Proceedings of V International Congress on Hazelnut, August 27, Corvallis, Oregon, USA, pp. 556: 495-502.
  • Speranza S, Bucini D, Paparatti B. 2008. New observation on biology of european shot-hole borer [xyleborus dispar (f.)] on hazel in northern latium (central italy). In Proceedings of VII International Congress on Hazelnut, June 23-27, Viterbo, Italy, pp. 845: 539-542.
  • Şahin G, Özder N. 2017. Düzce İlinde Fındık Üretim Alanlarında Görülen Yazıcıböcek Türleri (Coleoptera: Scolytidae) Üzerine Araştırmalar. Tekirdağ Zir Fak Derg, 14(3): 27-37.
  • Tuncer C, Knizek M, Hulcr J. 2017. Scolytinae in hazelnut orchards of Turkey: clarification of species and identification key (Coleoptera, Curculionidae). ZooKeys, 710: 65-76.
  • Turkish State Meteorological Service (TSMS). 2020. Meteorological data source for provinces and districts 2020. (access date: November 20, 2020).
  • Turkish Statistical Institute (Türkstat). 2022. Production of fruits, beverages and spices crops, ‘Hazelnuts’, 2021. (access date: July 10, 2020).
  • Uygun N, Ulusoy MR, Karaca İ. 2002. Meyve ve bağ zararlilari. çukurova university. Faculty of Agriculture, Adana, Turkey, Publication number: 252, pp. 345.
  • Wang Z, Li Y, Ernstsons AS, Sun R, Hulcr J, Gao L. 2021. The infestation and habitat of the ambrosia beetle Euwallacea interjectus (Coleoptera: Curculionidae: Scolytinae) in the riparian zone of Shanghai. Agri Forest Entomol, 1(159): 104-109.
  • Werle C, Ranger CM, Schultz PB, Reding ME, Addesso KM, Oliver JB, Sampson BJ. 2019. Integrating repellent and attractant semiochemicals into a push–pull strategy for ambrosia beetles (Coleoptera: Curculionidae). J Applied Entomol, 143(4): 333-343.
Year 2022, Volume: 5 Issue: 4, 406 - 414, 01.10.2022
https://doi.org/10.47115/bsagriculture.1146116

Abstract

References

  • Ak K, Uysal M, Tuncer C. 2005. Giresun, Ordu ve Samsun illerinde fındık bahçelerinde zarar yapan yazıcıböcek (Coleoptera: Scolytidae) Türleri, kısa biyolojileri ve bulunuş oranları. ANAJAS, 20(2): 37-44.
  • Aker O. 2018. Fındıkta zararlı olan yazıcı böceklere (Coleoptera: Curculionidae: Scolytinae) karşı mücadelede semiokimyasal destekli tuzak bitki yönteminin geliştirmesi. PhD thesis, Ondokuz Mayıs University, Graduate School of Natural and Applied Sciences, Samsun, pp. 144.
  • Coyle DR, Booth DC, Wallace MS. 2005. Ambrosia beetle (Coleoptera: Scolytidae) species, flight, and attack on living eastern cottonwood trees. J Econom Entomol, 98(6): 2049-2057.
  • De Souza Covre L, Melo AA, Flechtmann CAH. 2021. Flight activity and spread of Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae) in Brazil. Trees, Forests People, 4: 100076.
  • Hofstetter RW, Klepzig KD, Villari C. 2022. Effects of rising temperatures on ectosymbiotic communities associated with bark and ambrosia beetles. Academic Press, Bark Beetle Management, Ecology, and Climate Change, 2022: 303-341.
  • Hulcr J, Stelinski LL. 2017. The ambrosia symbiosis: from evolutionary ecology to practical management. Annual Rev Entomol, 62: 285-303.
  • Kelsey RG, Beh MM, Shaw DC, Manter DK. 2013. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak. J Chem Ecol, 39(4): 494-506.
  • Kelsey RG, Gallego D, Sánchez-García FJ, Pajares JA. 2014. Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles. Canadian J Forest Res, 44(6): 554-561.
  • Kirkendall LR, Biedermann PH, Jordal BH. 2015. Evolution and diversity of bark and ambrosia beetles. Academic Press, Bark beetles, 2015: 85-156.
  • Lehenberger M, Benkert M, Biedermann PB. 2021. Ethanol-enriched substrate facilitates ambrosia beetle fungi, but inhibits their pathogens and fungal symbionts of bark beetles. Front Microbiol, 11: 590111.
  • Miller DR, Crowe CM, Ginzel MD, Ranger CM, Schultz PB. 2018. Comparison of baited bottle and multiple-funnel traps for ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in Eastern United States1. J Entomol Sci, 53(3): 347-360.
  • Miller DR, Rabaglia RJ. 2009. Ethanol and (−)-α-pinene: Attractant kairomones for bark and ambrosia beetles in the southeastern US. J Chem Ecol, 35(4): 435-448.
  • Noseworthy MK, Humble LM, Sweeney J, Silk P, Mayo P. 2012. Attraction of Monarthrum scutellare (Coleoptera: Curculionidae: Scolytinae) to hydroxy ketones and host volatiles. Canadian J Forest Res, 42(10): 1851-1857.
  • Oliver JB, Mannion CM. 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environ Entomol, 30(5): 909-918.
  • Ranger CM, Gorzlancyk AM, Addesso KM, Oliver JB, Reding ME, Schultz PB, Held DW. 2014. Conophthorin enhances the electroantennogram and field behavioural response of Xylosandrus germanus (C oleoptera: C urculionidae) to ethanol. Agri Forest Entomol, 16(4): 327-334.
  • Ranger CM, Reding ME, Addesso K, Ginzel M, Rassati D. 2021. Semiochemical-mediated host selection by Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae) attacking horticultural tree crops: a review of basic and applied science. Canadian Entomol, 153(1): 103-120.
  • Ranger CM, Reding ME, Schultz PB, Oliver JB. 2013. Influence of flood-stress on ambrosia beetle (Coleoptera: Curculionidae, Scolytinae) host-selection and implications for their management in a changing climate. Agri Forest Entomol, 15: 56-64.
  • Ranger CM, Reding ME, Schultz PB, Oliver JB, Frank SD, Addesso KM, Chong JH, Sampson B, Werle C, Gill S, Krause C. 2016. Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. J Integrated Pest Manage, 7(1): 1-23.
  • Ranger CM, Schultz PB, Frank SD, Chong JH, Reding ME. 2015. Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLoS One, 10(7): e0131496.
  • Ranger CM, Schultz PB, Frank SD, Reding ME. 2019. Freeze stress of deciduous trees induces attacks by opportunistic ambrosia beetles. Agri Forest Entomol, 21(2): 168-179.
  • Rassati D, Faccoli M, Battisti A, Marini L. 2016. Habitat and climatic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. Biol Invasions, 18(10): 2809-2821.
  • Reding ME, Oliver J., Schultz PB, Ranger CM, Youssef NN. 2013. Ethanol injection of ornamental trees facilitates testing insecticide efficacy against ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). J Econom Entomol, 106(1): 289-298.
  • Peer K, Taborsky M. 2007. Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles. Behav Ecol Sociobiol, 61(5): 729-739.
  • Sarikaya O, Sayin H. 2015. Observation on the flight activities of the two ambrosia beetles Anisandrus dispar (Fabricius, 1792.) and Xyleborinus saxesenii (Ratzeburg, 1837.) in Kasnak oak forest nature protection area in the South Western of Turkey. International J Agri Innovat Res, 4(2): 357-360.
  • Saruhan İ, Akyol H. 2012. Monitoring population density and fluctuations of Anisandrus dispar and Xyleborinus saxesenii (Coleoptera: Scolytinae, Curculionidae) in hazelnut orchards. African J Biotech, 11(18): 4202-4207.
  • Saruhan İ, Tuncer C. 2000. Population densities and seasonal fluctuations of hazelnut pests in Samsun, Turkey. In Proceedings of V International Congress on Hazelnut, August 27, Corvallis, Oregon, USA, pp. 556: 495-502.
  • Speranza S, Bucini D, Paparatti B. 2008. New observation on biology of european shot-hole borer [xyleborus dispar (f.)] on hazel in northern latium (central italy). In Proceedings of VII International Congress on Hazelnut, June 23-27, Viterbo, Italy, pp. 845: 539-542.
  • Şahin G, Özder N. 2017. Düzce İlinde Fındık Üretim Alanlarında Görülen Yazıcıböcek Türleri (Coleoptera: Scolytidae) Üzerine Araştırmalar. Tekirdağ Zir Fak Derg, 14(3): 27-37.
  • Tuncer C, Knizek M, Hulcr J. 2017. Scolytinae in hazelnut orchards of Turkey: clarification of species and identification key (Coleoptera, Curculionidae). ZooKeys, 710: 65-76.
  • Turkish State Meteorological Service (TSMS). 2020. Meteorological data source for provinces and districts 2020. (access date: November 20, 2020).
  • Turkish Statistical Institute (Türkstat). 2022. Production of fruits, beverages and spices crops, ‘Hazelnuts’, 2021. (access date: July 10, 2020).
  • Uygun N, Ulusoy MR, Karaca İ. 2002. Meyve ve bağ zararlilari. çukurova university. Faculty of Agriculture, Adana, Turkey, Publication number: 252, pp. 345.
  • Wang Z, Li Y, Ernstsons AS, Sun R, Hulcr J, Gao L. 2021. The infestation and habitat of the ambrosia beetle Euwallacea interjectus (Coleoptera: Curculionidae: Scolytinae) in the riparian zone of Shanghai. Agri Forest Entomol, 1(159): 104-109.
  • Werle C, Ranger CM, Schultz PB, Reding ME, Addesso KM, Oliver JB, Sampson BJ. 2019. Integrating repellent and attractant semiochemicals into a push–pull strategy for ambrosia beetles (Coleoptera: Curculionidae). J Applied Entomol, 143(4): 333-343.
There are 34 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Onur Aker 0000-0002-9581-9697

Publication Date October 1, 2022
Submission Date July 20, 2022
Acceptance Date August 31, 2022
Published in Issue Year 2022 Volume: 5 Issue: 4

Cite

APA Aker, O. (2022). Determination of Flight Activities and Populations of Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) In Hazelnut Orchards in Samsun, Türkiye. Black Sea Journal of Agriculture, 5(4), 406-414. https://doi.org/10.47115/bsagriculture.1146116

                                                  24890