Review
BibTex RIS Cite

Potential Bioenergy Crops: Sweet Sorghum and Globe Artichoke

Year 2024, Volume: 7 Issue: 5, 596 - 602, 15.09.2024
https://doi.org/10.47115/bsagriculture.1535854

Abstract

The growing international demand for petroleum-based fuel and the related environmental issues, such as greenhouse gas emissions, global warming, and changes in the climate, have redirected global focus toward the development of sustainable, eco-friendly, and renewable fuels derived from energy crops. The production of biofuel utilizing fast-growing and very effective bioenergy crops is becoming a dependable substitute for fossil fuels. Bioenergy crops refer to specific plants that are cultivated and managed at reduced expenses for the purpose of producing biofuels. Among these, globe artichoke and sweet sorghum are significant bioenergy crops that can expedite the shift towards a low-carbon economy. Both plants are important crops that serve multiple purposes as food, animal feed, and bioenergy sources. Moreover, they are highly adaptable to harsh conditions. The potential for ethanol production from sweet sorghum is a minimum of 6000 L per hectare. Globe artichoke, on the other hand, has high biomass and energy production even with limited external management sources. These traits make them highly desirable as bioenergy plants. This review demonstrates the potential of global artichoke and sweet sorghum as bioenergy sources. A comprehensive understanding of the bioenergy potential of globe artichoke and sweet sorghum will better allow us to exploit these crops.

References

  • Abu-Reidah IM, Arraez-Roman D, Segura-Carretero A, Fernandez-Gutierrez A. 2013. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chem, 141(3): 2269-2277.
  • Acquadro A, Portis E, Scaglione D, Mauro RP, Campion B, Falavigna A, Zaccardelli R, Ronga D, Perrone D, Mauromicale G, Lanteri S. 2013. CYNERGIA project: exploitability of Cynara cardunculus L. as energy crop. Acta Hortic, 983: 109-116.
  • Ananda GKS, Myrans H, Norton SL, Gleadow R, Furtado A, Henry RJ. 2020. Wild Sorghum as a Promising Resource for Crop Improvement. Front Plant Sci, 11: 1108.
  • Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G. 2008. Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol, 99(1): 110-9.
  • Appiah-Nkansah NB, Li J, Rooney W, Wang D. 2019. A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renew Energy, 143: 1121-1132.
  • Archontoulis SV. 2011. Analysis of growth dynamics of Mediterranean bioenergy crops. PhD Thesis, Wageningen University, Wageningen, the Netherlands, pp: 235.
  • Athuman JJ. 2023. Fostering sustainable agriculture through integrated agricultural science education: General overview and lessons from studies. Res Rev Agri Sci 1: 1.
  • Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL. 2015. Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res, 8: 1500-1511.
  • Bibri SE, Krogstie J, Kaboli A, Alahi A. 2024. Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environ Sci Ecotechnol, 19: 100330.
  • Christou M, Alexopoulou E, Panoutsou C, Monti A. 2010. Overview of the markets for the energy crops in EU-27. Biofuels Bioprod Biorefin, 4: 605-619.
  • Ciancolini A. 2012. Characterization and Selection of Globe Artichoke and Cardoon Germplasm for Biomass, Food and Biocompound Production. PhD thesis, Università degli Studi della Tuscia, Italy and Institut National Polytechnique de Toulouse, France, pp: 250.
  • Cotana F, Cavalaglio G, Gelosia M, Coccia V, Petrozzi A, Ingles D, Pompili E. 2015. A comparison between SHF and SSSF processes from cardoon for ethanol production. Ind Crop Prod, 69: 424-432.
  • Dressler D, Loewen A, Nelles M. 2012. Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. Int. J Life Cycle Assess, 17: 1104-1115.
  • Ekbiç E. 2005. Sakız enginar çeşidinde meydana gelen dönüşüm üzerinde araştırmalar. Doktora Tezi, Çukurova Üniversitesi, Adana, Türkiye, pp: 87.
  • Encinar JM, González JF, Rodríguez JJ, Tejedor A. 2002. Biodiesel fuels from vegetable oils: transesterification of Cynara cardunculus L. oils with ethanol. Energ Fuel, 16: 443-450.
  • Escobar JC, Lora ES, Venturini OJ, Yanez EE, Castillo EF, Almazan O. 2009. Biofuels: Environment, technology and food security. Renew. Sustain. Energy Rev, 13(6-7): 1275-1287.
  • Fernandes MC, Ferro MD, Paulino AFC, Mendes JAS, Gravitis J, Evtuguin DV, Xavier AMRB. 2015. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour Technol, 186: 309-315.
  • Fernandez J, Curt MD, Aguado PL. 2006. Industrial applications of Cynara cardunculus L. for energy and other uses. Ind Crops Prod, 24(3): 222-229.
  • Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J. 2017. Utilization of bioresources for sustainable biofuels: A Review. Renew. Sustain Energy Rev, 73: 205-214.
  • Gominho J, Lourenco A, Palma P, Lourenco ME, Curt MD, Fernandez J, Pereira H. 2011. Large scale cultivation of Cynara cardunculus L. for biomass production–A case study. Ind Crops Prod, 33: 1-6.
  • Gresshoff PM, Rangan L, Indrasumunar A, Scott PT. 2017. A new bioenergy crop based on oil-rich seeds from the legume tree Pongamia pinnata. Energy Emis Control Technol, 5: 19-26.
  • Ierna A, Mauro RP, Mauromicale G. 2012a. Biomass, grain and energy yield in Cynara cardunculus L. as affected by fertilization, genotype and harvest time. Biomass Bioenerg, 36: 404-410.
  • Ierna A, Mauro RP, Mauromicale G. 2012b. Improved yield and nutrient efficiency in two globe artichoke genotypes by balancing nitrogen and phosphorus supply. Agron Sustain Devel, 32: 773-780.
  • Jaggard KW, Qi A, Ober ES. 2010. Possible change to arable crop yields by 2050. Philosophical transaction of the Royal Society B: Biological Sciences, 365: 2835-2851.
  • Karp A, Shield I. 2008. Bioenergy from plants and the sustainable yield challenge. New Phytologist, 179: 15-32.
  • Kellogg EA. 2013. Phylogenetic relationships of saccharinae and sorghinae. In: Paterson HA, editor. Genomics of the Saccharinae. Springer, New York, US, pp: 3-21.
  • Khawaja C, Janssen R, Rutz D, Luquet D, Trouche G, Oriol G, Reddy B, Srinivasa Rao P, Basavaraj G, Schaffert RE, Damasceno CMB. 2014. Energy Sorghum: an Alternative Energy Crop, WIP Renewable Energies, Munich, Germany.
  • Kim HK, Parajuli PB, To SF. 2013. Assessing impacts of bioenergy crops and climate change on hydrometeorology in the Yazoo River Basin, Mississippi. Agri Forest Meteorol, 169: 61-73.
  • Lingl, S. 1987. Sucrose metabolism in the primary culm of sweet sorghum during development. Crop Sci, 27: 1214e9.
  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, et al. 2009. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol, 9: 13.
  • Mask PL, Morris WC. 1991. Sweet sorghum culture and syrup production. The Alabama Cooperative Extension Service, Auburn University, Alabama, US, pp: 63.
  • Mauro RP, Portis E, Lanteri S, Mauromicale G. 2012. Genotypic and bioagronomical characterization of an early Sicilian landrace of globe artichoke. Euphytica, 186: 357-366.
  • Mauro RP, Sortino O, Pesce GR, Agnello M, Lombardo S, Pandino G, Mauromicale G. 2015. Exploitability of cultivated and wild cardoon as long-term low-input energy crops. Ital J Agron, 10: 44-46.
  • Mauromicale G, Sortino O, Pesce GR, Agnello M, Mauro RM. 2014. Suitability of cultivated and wild cardoon as a sustainable bioenergy crop for low input cultivation in low quality Mediterranean soils. Ind Crops Prod, 57: 82-89.
  • Olweny C, Abayo G, Dida M., et al. 2013. Screening of sweet sorghum (Sorghum bicolor (L.) Moench) varieties for sugar and biomass production. Sugar Tech, 15: 258-262.
  • Oyier MO, Owuoche JO, Oyoo ME, Cheruiyot E, Mulianga B, Rono J. 2017. Effect of harvesting stage on sweet sorghum (Sorghum bicolor L.) genotypes in Western Kenya. Scient World J, 2017: 8249532.
  • Pesce GR, Negrib M, Bacenettib J, Mauromicale G. 2017. The biomethane, silage and biomass yield obtainable from three accessions of Cynara cardunculus. Ind Crops Prod, 103: 233-239.
  • Rana G, Ferrara RM, Vitale D, D’Andrea L, Palumbo AD. 2016. Carbon assimilation and water use efficiency of a perennial bioenergy crop (Cynara cardunculus L.) in Mediterranean environment. Agri Forest Meteorol, 217: 137-150.
  • Rao PS, Kumar CG, Prakasham RS, Rao AU, Reddy BVS. 2009. Sweet sorghum: breeding and bioproducts. In: Cruz VMV, Dierig DA, editors, Industrial crops: breeding for bioenergy and bioproducts. Springer, Berlin, Gemany, pp: 142.
  • Reddy BVS, Ramesh S, Reddy PS, Ramaiah B, Salimath PM, Kachapur L. 2005. Sweet sorghum a potential alternative raw material for bio-ethanol and bioenergy. Int Crops Res Inst Semi-Arid Tropics, 46: 79e86.
  • Regassa TH, Wortmann CS. 2014. Sweet Sorghum as a Bioenergy Crop: Literature Review. Biomass Bioenergy, 64: 348-355.
  • Ricaud R, Arenneaux A. 1990. Sweet sorghum for biomass and sugar production in 1990. Manuscript report from the St. Gabriel Experiment Station, 1990: 154.
  • Ricaud RB, Cochran A, Arenneaux A, Newton G. 1979. Sweet sorghum for sugar and biomass production in Louisiana. St. Gabriel Experiment Station, 1979: 113-124.
  • Rooney WL, Blumenthal J, Bean B, Mullet JE. 2007. Designing sorghum as a dedicated bioenergy feedstock. Biofuel Bioprod Biorefin, 1: 147–157.
  • Ruiz-Aceituno L, Garcia-Sarrio MJ, Alonso-Rodriguez B, Ramos L, Luz Sanz M. 2016. Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chem, 196: 1156-1162.
  • Saidur R, Abdelaziz EA, Mekhilef S. 2011. A review on electrical and thermal energy for industries. Renew Sustain Energy Rev, 15: 2073-2086.
  • Shukla S, Felderhoff TJ, Saballos A, Vermerris W. 2017. The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Res, 203: 181-191.
  • Shweta Capareda SC, Kamboj BR, Malik K, Singh K, Bhisnoi DK, Arya S. 2024. Biomass resources and biofuel technologies: A focus on Indian development. Energies, 17(2): 382.
  • Sonnante G, Pignone D, Hammer K. 2007. The domestication of artichoke and cardoon: from Roman times to the genomic age. Ann Bot, 100(5): 1095-1100.
  • Soyombo OT, Mhlongo NZ, Nwankwo EE, Scholastica UC. 2024. Bioenergy and sustainable agriculture: A review of synergies and potential conflicts. Int J Sci Res Arch, 11(01): 2082-2092.
  • Teetor VH, Duclos DV, Wittenberg ET, Young KM, Chawhuaymak J, Riley MR, Ray DT. 2011. Effects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona. Ind Crops Prod, 34(2): 1293-1300.
  • Umakanth AV, Kumar AA, Vermerris W, Tonapi VA. 2019. Sweet Sorghum for Biofuel Industry. In: Aruna C, Visarada KBRS, Venkatesh Bhat B, Tonapi VA, editors. Breeding sorghum for diverse end uses, Woodhead Publishing, Oxford, UK, pp: 255-270.
  • Venkateswaran K, Elangovan M, Sivaraj N. 2019. Origin, Domestication and Diffusion of Sorghum bicolor. In: Aruna C, Visarada KBRS, Bhat BV, editors. Breeding Sorghum for Diverse End Uses, Woodhead Publishing, Oxford, UK, pp: 15-31.
  • Venkateswaran K, Muraya M, Dwivedi SL, Upadhyaya HD. 2014. Wild sorghums-Their potential use in crop improvement. In: Wang Y, Upadhyaya HD, Chittaranjan K, editors. Genetics, genomics and breeding of sorghum, CRC Press, Ohio, US, pp: 78-111.
  • Vinutha KS, Rayaprolu L, Yadagiri K, Umakanth AV, Srinivasarao P. 2014. Sweet sorghum research and development in India: Status and prospects. Sugar Tech, 16: 133-143.
  • Wang S, Hastings A, Smith P. 2012. An optimization model for energy crop supply. GCB Bioenergy, 4: 88-95.
  • Welfle A, Röder M. 2022. Mapping the sustainability of bioenergy to maximise benefits, mitigate risks and drive progress toward the Sustainable Development Goals. Renew Energy, 191: 493-509.
  • Winchell F, Stevens CJ, Murphy C, Champion L, Fuller DQ. 2017. Evidence for sorghum domestication in fourth millennium BC Eastern Sudan spikelet morphology from ceramic impressions of the Butana group. Curr Anthropol, 58: 673-683.
  • Yadav P, Priyanka P, Kumar D, Yadav A, Yadav K. 2019. Bioenergy Crops: Recent Advances and Future Outlook. In: Rastegari AA, Yadav AN, Gupta A, editors, Prospects of Renewable Bioprocessing in Future Energy Systems, Springer Nature, Switzerland, pp: 315-336.
  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr. 2008. Plants to power: bioenergy to fuel the future. Trends Plant Sci, 13: 421-429.
Year 2024, Volume: 7 Issue: 5, 596 - 602, 15.09.2024
https://doi.org/10.47115/bsagriculture.1535854

Abstract

References

  • Abu-Reidah IM, Arraez-Roman D, Segura-Carretero A, Fernandez-Gutierrez A. 2013. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chem, 141(3): 2269-2277.
  • Acquadro A, Portis E, Scaglione D, Mauro RP, Campion B, Falavigna A, Zaccardelli R, Ronga D, Perrone D, Mauromicale G, Lanteri S. 2013. CYNERGIA project: exploitability of Cynara cardunculus L. as energy crop. Acta Hortic, 983: 109-116.
  • Ananda GKS, Myrans H, Norton SL, Gleadow R, Furtado A, Henry RJ. 2020. Wild Sorghum as a Promising Resource for Crop Improvement. Front Plant Sci, 11: 1108.
  • Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G. 2008. Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol, 99(1): 110-9.
  • Appiah-Nkansah NB, Li J, Rooney W, Wang D. 2019. A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renew Energy, 143: 1121-1132.
  • Archontoulis SV. 2011. Analysis of growth dynamics of Mediterranean bioenergy crops. PhD Thesis, Wageningen University, Wageningen, the Netherlands, pp: 235.
  • Athuman JJ. 2023. Fostering sustainable agriculture through integrated agricultural science education: General overview and lessons from studies. Res Rev Agri Sci 1: 1.
  • Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL. 2015. Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res, 8: 1500-1511.
  • Bibri SE, Krogstie J, Kaboli A, Alahi A. 2024. Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environ Sci Ecotechnol, 19: 100330.
  • Christou M, Alexopoulou E, Panoutsou C, Monti A. 2010. Overview of the markets for the energy crops in EU-27. Biofuels Bioprod Biorefin, 4: 605-619.
  • Ciancolini A. 2012. Characterization and Selection of Globe Artichoke and Cardoon Germplasm for Biomass, Food and Biocompound Production. PhD thesis, Università degli Studi della Tuscia, Italy and Institut National Polytechnique de Toulouse, France, pp: 250.
  • Cotana F, Cavalaglio G, Gelosia M, Coccia V, Petrozzi A, Ingles D, Pompili E. 2015. A comparison between SHF and SSSF processes from cardoon for ethanol production. Ind Crop Prod, 69: 424-432.
  • Dressler D, Loewen A, Nelles M. 2012. Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. Int. J Life Cycle Assess, 17: 1104-1115.
  • Ekbiç E. 2005. Sakız enginar çeşidinde meydana gelen dönüşüm üzerinde araştırmalar. Doktora Tezi, Çukurova Üniversitesi, Adana, Türkiye, pp: 87.
  • Encinar JM, González JF, Rodríguez JJ, Tejedor A. 2002. Biodiesel fuels from vegetable oils: transesterification of Cynara cardunculus L. oils with ethanol. Energ Fuel, 16: 443-450.
  • Escobar JC, Lora ES, Venturini OJ, Yanez EE, Castillo EF, Almazan O. 2009. Biofuels: Environment, technology and food security. Renew. Sustain. Energy Rev, 13(6-7): 1275-1287.
  • Fernandes MC, Ferro MD, Paulino AFC, Mendes JAS, Gravitis J, Evtuguin DV, Xavier AMRB. 2015. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour Technol, 186: 309-315.
  • Fernandez J, Curt MD, Aguado PL. 2006. Industrial applications of Cynara cardunculus L. for energy and other uses. Ind Crops Prod, 24(3): 222-229.
  • Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J. 2017. Utilization of bioresources for sustainable biofuels: A Review. Renew. Sustain Energy Rev, 73: 205-214.
  • Gominho J, Lourenco A, Palma P, Lourenco ME, Curt MD, Fernandez J, Pereira H. 2011. Large scale cultivation of Cynara cardunculus L. for biomass production–A case study. Ind Crops Prod, 33: 1-6.
  • Gresshoff PM, Rangan L, Indrasumunar A, Scott PT. 2017. A new bioenergy crop based on oil-rich seeds from the legume tree Pongamia pinnata. Energy Emis Control Technol, 5: 19-26.
  • Ierna A, Mauro RP, Mauromicale G. 2012a. Biomass, grain and energy yield in Cynara cardunculus L. as affected by fertilization, genotype and harvest time. Biomass Bioenerg, 36: 404-410.
  • Ierna A, Mauro RP, Mauromicale G. 2012b. Improved yield and nutrient efficiency in two globe artichoke genotypes by balancing nitrogen and phosphorus supply. Agron Sustain Devel, 32: 773-780.
  • Jaggard KW, Qi A, Ober ES. 2010. Possible change to arable crop yields by 2050. Philosophical transaction of the Royal Society B: Biological Sciences, 365: 2835-2851.
  • Karp A, Shield I. 2008. Bioenergy from plants and the sustainable yield challenge. New Phytologist, 179: 15-32.
  • Kellogg EA. 2013. Phylogenetic relationships of saccharinae and sorghinae. In: Paterson HA, editor. Genomics of the Saccharinae. Springer, New York, US, pp: 3-21.
  • Khawaja C, Janssen R, Rutz D, Luquet D, Trouche G, Oriol G, Reddy B, Srinivasa Rao P, Basavaraj G, Schaffert RE, Damasceno CMB. 2014. Energy Sorghum: an Alternative Energy Crop, WIP Renewable Energies, Munich, Germany.
  • Kim HK, Parajuli PB, To SF. 2013. Assessing impacts of bioenergy crops and climate change on hydrometeorology in the Yazoo River Basin, Mississippi. Agri Forest Meteorol, 169: 61-73.
  • Lingl, S. 1987. Sucrose metabolism in the primary culm of sweet sorghum during development. Crop Sci, 27: 1214e9.
  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, et al. 2009. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol, 9: 13.
  • Mask PL, Morris WC. 1991. Sweet sorghum culture and syrup production. The Alabama Cooperative Extension Service, Auburn University, Alabama, US, pp: 63.
  • Mauro RP, Portis E, Lanteri S, Mauromicale G. 2012. Genotypic and bioagronomical characterization of an early Sicilian landrace of globe artichoke. Euphytica, 186: 357-366.
  • Mauro RP, Sortino O, Pesce GR, Agnello M, Lombardo S, Pandino G, Mauromicale G. 2015. Exploitability of cultivated and wild cardoon as long-term low-input energy crops. Ital J Agron, 10: 44-46.
  • Mauromicale G, Sortino O, Pesce GR, Agnello M, Mauro RM. 2014. Suitability of cultivated and wild cardoon as a sustainable bioenergy crop for low input cultivation in low quality Mediterranean soils. Ind Crops Prod, 57: 82-89.
  • Olweny C, Abayo G, Dida M., et al. 2013. Screening of sweet sorghum (Sorghum bicolor (L.) Moench) varieties for sugar and biomass production. Sugar Tech, 15: 258-262.
  • Oyier MO, Owuoche JO, Oyoo ME, Cheruiyot E, Mulianga B, Rono J. 2017. Effect of harvesting stage on sweet sorghum (Sorghum bicolor L.) genotypes in Western Kenya. Scient World J, 2017: 8249532.
  • Pesce GR, Negrib M, Bacenettib J, Mauromicale G. 2017. The biomethane, silage and biomass yield obtainable from three accessions of Cynara cardunculus. Ind Crops Prod, 103: 233-239.
  • Rana G, Ferrara RM, Vitale D, D’Andrea L, Palumbo AD. 2016. Carbon assimilation and water use efficiency of a perennial bioenergy crop (Cynara cardunculus L.) in Mediterranean environment. Agri Forest Meteorol, 217: 137-150.
  • Rao PS, Kumar CG, Prakasham RS, Rao AU, Reddy BVS. 2009. Sweet sorghum: breeding and bioproducts. In: Cruz VMV, Dierig DA, editors, Industrial crops: breeding for bioenergy and bioproducts. Springer, Berlin, Gemany, pp: 142.
  • Reddy BVS, Ramesh S, Reddy PS, Ramaiah B, Salimath PM, Kachapur L. 2005. Sweet sorghum a potential alternative raw material for bio-ethanol and bioenergy. Int Crops Res Inst Semi-Arid Tropics, 46: 79e86.
  • Regassa TH, Wortmann CS. 2014. Sweet Sorghum as a Bioenergy Crop: Literature Review. Biomass Bioenergy, 64: 348-355.
  • Ricaud R, Arenneaux A. 1990. Sweet sorghum for biomass and sugar production in 1990. Manuscript report from the St. Gabriel Experiment Station, 1990: 154.
  • Ricaud RB, Cochran A, Arenneaux A, Newton G. 1979. Sweet sorghum for sugar and biomass production in Louisiana. St. Gabriel Experiment Station, 1979: 113-124.
  • Rooney WL, Blumenthal J, Bean B, Mullet JE. 2007. Designing sorghum as a dedicated bioenergy feedstock. Biofuel Bioprod Biorefin, 1: 147–157.
  • Ruiz-Aceituno L, Garcia-Sarrio MJ, Alonso-Rodriguez B, Ramos L, Luz Sanz M. 2016. Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chem, 196: 1156-1162.
  • Saidur R, Abdelaziz EA, Mekhilef S. 2011. A review on electrical and thermal energy for industries. Renew Sustain Energy Rev, 15: 2073-2086.
  • Shukla S, Felderhoff TJ, Saballos A, Vermerris W. 2017. The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Res, 203: 181-191.
  • Shweta Capareda SC, Kamboj BR, Malik K, Singh K, Bhisnoi DK, Arya S. 2024. Biomass resources and biofuel technologies: A focus on Indian development. Energies, 17(2): 382.
  • Sonnante G, Pignone D, Hammer K. 2007. The domestication of artichoke and cardoon: from Roman times to the genomic age. Ann Bot, 100(5): 1095-1100.
  • Soyombo OT, Mhlongo NZ, Nwankwo EE, Scholastica UC. 2024. Bioenergy and sustainable agriculture: A review of synergies and potential conflicts. Int J Sci Res Arch, 11(01): 2082-2092.
  • Teetor VH, Duclos DV, Wittenberg ET, Young KM, Chawhuaymak J, Riley MR, Ray DT. 2011. Effects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona. Ind Crops Prod, 34(2): 1293-1300.
  • Umakanth AV, Kumar AA, Vermerris W, Tonapi VA. 2019. Sweet Sorghum for Biofuel Industry. In: Aruna C, Visarada KBRS, Venkatesh Bhat B, Tonapi VA, editors. Breeding sorghum for diverse end uses, Woodhead Publishing, Oxford, UK, pp: 255-270.
  • Venkateswaran K, Elangovan M, Sivaraj N. 2019. Origin, Domestication and Diffusion of Sorghum bicolor. In: Aruna C, Visarada KBRS, Bhat BV, editors. Breeding Sorghum for Diverse End Uses, Woodhead Publishing, Oxford, UK, pp: 15-31.
  • Venkateswaran K, Muraya M, Dwivedi SL, Upadhyaya HD. 2014. Wild sorghums-Their potential use in crop improvement. In: Wang Y, Upadhyaya HD, Chittaranjan K, editors. Genetics, genomics and breeding of sorghum, CRC Press, Ohio, US, pp: 78-111.
  • Vinutha KS, Rayaprolu L, Yadagiri K, Umakanth AV, Srinivasarao P. 2014. Sweet sorghum research and development in India: Status and prospects. Sugar Tech, 16: 133-143.
  • Wang S, Hastings A, Smith P. 2012. An optimization model for energy crop supply. GCB Bioenergy, 4: 88-95.
  • Welfle A, Röder M. 2022. Mapping the sustainability of bioenergy to maximise benefits, mitigate risks and drive progress toward the Sustainable Development Goals. Renew Energy, 191: 493-509.
  • Winchell F, Stevens CJ, Murphy C, Champion L, Fuller DQ. 2017. Evidence for sorghum domestication in fourth millennium BC Eastern Sudan spikelet morphology from ceramic impressions of the Butana group. Curr Anthropol, 58: 673-683.
  • Yadav P, Priyanka P, Kumar D, Yadav A, Yadav K. 2019. Bioenergy Crops: Recent Advances and Future Outlook. In: Rastegari AA, Yadav AN, Gupta A, editors, Prospects of Renewable Bioprocessing in Future Energy Systems, Springer Nature, Switzerland, pp: 315-336.
  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr. 2008. Plants to power: bioenergy to fuel the future. Trends Plant Sci, 13: 421-429.
There are 60 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Reviews
Authors

Birgul Guden 0000-0002-7375-6533

Tugce Ozsan Kılıc 0000-0002-3265-6886

Publication Date September 15, 2024
Submission Date August 19, 2024
Acceptance Date September 12, 2024
Published in Issue Year 2024 Volume: 7 Issue: 5

Cite

APA Guden, B., & Ozsan Kılıc, T. (2024). Potential Bioenergy Crops: Sweet Sorghum and Globe Artichoke. Black Sea Journal of Agriculture, 7(5), 596-602. https://doi.org/10.47115/bsagriculture.1535854

                                                  24890