Research Article
BibTex RIS Cite

The Effect of NaCl-Salinity Applications on the Improvement of Quality Characteristics and Yield of Tomato (Lycopersicon esculentum L.) Grown in Substrate Culture

Year 2025, Volume: 8 Issue: 2, 124 - 133, 15.03.2025
https://doi.org/10.47115/bsagriculture.1509293

Abstract

Salt application in soilless cultivation systems can be considered as a strategic tool to improve tomato fruit quality. In this context, the effects of increasing the salt concentration in the nutrient solution added to the solid culture medium on yield and yield components, biophysical and organoleptic quality traits of tomato (Lycopersicon esculentum L. cv. Kardelen F1) under greenhouse conditions were studied. The salt in the nutrient solution was applied to tomato plants as sodium chloride (NaCl) at four concentrations (0, 14.1, 44.4, and 70.4 mM). Each pot received 150 mL of nutrient solution daily during the vegetative period, while 300 mL was applied daily after flowering. This study was conducted with three replicates following a randomized block design. Plants were harvested 90 days after transplanting. Low salt application in the nutrient solution (14.1 mM NaCl) increased total fruit yield, while the high salt application did not effect fruit yield compared to the control. Salt application at increasing concentrations decreased fruit size and diameter but increased the dry matter in the fruit. The salt treatment mainly positively affected the commercial and organoleptic quality parameters of the tomato fruits. In conclusion, a low level of sodium chloride (14.1 mM NaCl) in soilless culture enhanced fruit production, while moderate (44.4 mM) and high (70.4 mM) concentrations improved various fruit quality traits.

Project Number

PYO.ZRT.1908.22.015

References

  • Abdollah KK. 2015. Physiological and genetic factors influencing fruit cracking. Acta Physiol Plant, 37(1): 1718.
  • Agius C, Von Tucher S, Rozhon W. 2022. The effect of salinity on fruit quality and yield of cherry tomatoes. Horticulturae, 8(1): 59.
  • Alam AU, Rathi P, Beshai H, Sarabha GK, Deen MJ. 2021. Fruit quality monitoring with smart packaging. Sensors (Basel), 21(4): 1509.
  • Alpaslan M, Güneş A, Inal A. 1998. Deneme Tekniği [Trial Technique]. Ankara Üniversitesi Yayın No: 1501, Ziraat Fakültesi Ders Kitabı, Ankara, Türkiye, pp: 455.
  • Alsuhaibani AMA. 2018. Chemical composition and ameliorative effect of tomato on isoproterenol-induced myocardial infarction in rats. Asian J Clin Nutr, 10(1): 1-7.
  • Amit SK, Uddin MM, Rahman R, Rezwanul Islam SM, Khan MS. 2017. A review on mechanisms and commercial aspects of food preservation and processing. Agric Food Secur, 6: 51.
  • AOAC. 1990. Association of Official Analytical Chemists, Official Methods of Analysis, 13th edition. AOAC, Washington DC, USA, pp: 120.
  • Arah IK, Amaglo H, Kodzo E, Kumah EK, Hayford O. 2015. Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: A mini review. Int J Agron, 2015: 478041.
  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol Biochem, 156: 64-77.
  • Artés F, Conesa MA, Hernández S, Gil MI. 1999. Keeping quality of fresh-cut tomato. Postharvest Biol Technol, 17: 153-162.
  • Asensio E, Sanvicente I, Mallor C, Menal-Puey S. 2019. Spanish traditional tomato. Effects of genotype, location and agronomic conditions on the nutritional quality and evaluation of consumer preferences. Food Chem, 270: 452-458.
  • Ávalos-Sánchez E, López-Martínez A, Molina-Aiz FD, Reca J, Marín-Membrive P, Valera-Martínez DL. 2022. Effect of different substrates, and irrigation with water with different saline concentrations, on the development of tomato fungal diseases in an almería-type greenhouse. Agronomy, 12: 1050.
  • Azarmi R, Taleshmikail RD, Gikloo A. 2010. Effects of salinity on morphological and physiological changes and yield of tomato in hydroponics system. J Food Agric Environ, 8(2): 573-576.
  • Batu A. 2004. Determination of acceptable firmness and colour values of tomatoes. J Food Eng, 61(3): 471-475.
  • Bertin N, Génard M. 2018. Tomato quality as influenced by preharvest factors. Sci Hortic, 233: 264-276.
  • Botella MA, Del Amor F, Amoros A, Serrano M, Martinez V, Cerda A. 2000. Polyamine, etylene and other physico-chemical parameters in tomato (Lycorpersicon esculentum) fruits as affected by salinity. Physiol Plant, 109(4): 428-434.
  • Botella MÁ, Hernández V, Mestre T, Hellín P, García-Legaz MF, Rivero RM, Martínez V, Fenoll J, Flores P. 2021. Bioactive compounds of tomato fruit in response to salinity, heat and their combination. Agriculture, 11(6): 534.
  • Coyago-Cruz E, Corell M, Moriana A, Hernanz D, Benítez-González AM, Stinco CM, Meléndez-Martínez AJ. 2018. Antioxidants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chem, 240: 870-884.
  • Cuartero J, Fernández Muñoz J. 1999. Tomato and salinity. Sci Hortic, 78(1-4): 83-125.
  • Cui J, Shao G, Lu J, Keabetswe L, Hoogenboom G. 2019. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Sci Agric, 77(2): e20180390.
  • Distefano M, Mauro RP, Page D, Giuffrida F, Bertin N, Leonardi C. 2022. Aroma volatiles in tomato fruits: The role of genetic, preharvest and postharvest factors. Agronomy, 12(2): 376.
  • Dono G, Rambla JL, Frusciante S, Granell A, Diretto G, Mazzucato A. 2020. Color mutations alter the biochemical composition in the San Marzano tomato fruit. Metabolites, 10(3): 110.
  • Ehret DL, Usher K, Helmer T, Block G, Steinke D, Frey B, Kuang T, Diarra M. 2013. Tomato fruit antioxidants in relation to salinity and greenhouse climate. J Agric Food Chem, 61(5): 1138-1145.
  • El-Mogy MM, Garchery C, Stevens R. 2018. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agric Scand, B-Soil Plant Sci, 68(8): 727-737.
  • Fernández-García N, Martínez V, Carvajal M. 2004. Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. J Plant Nutr Soil Sci, 167(5): 616-622.
  • Fussy A, Papenbrock J. 2022. An overview of soil and soilless cultivation techniques—chances, challenges and the neglected question of sustainability. Plants, 11(9): 1153.
  • Gonçalves DC, Morgado CMA, De Oliveira Aguiar FC, Silva EP, De Carvalho Correa G, Dos Reis Nascimento A, Carlos R, Junior C. 2020. Postharvest behavior and lycopene content of tomatoes at different harvest times. Acta Sci Technol, 42: e48403.
  • Gül A. 2012. Topraksız tarım [Soilless Culture]. Hasad Yayıncılık Ltd. Şti., İstanbul, Türkiye, ss: 140.
  • Hobson GE, Adams P, Dixon TJ. 1983. Assessing the colour of tomato fruit during ripening. J Sci Food Agric, 34: 286-292.
  • Hoppu U, Puputti S, Aisala H, Laaksonen O, Sandell M. 2018. Individual differences in the perception of color solutions. Foods, 7(9): 154.
  • Huang C, Peng F, You Q, Xue X, Wang T, Liao J. 2016. Growth, yield and fruit quality of cherry tomato irrigated with saline water at different developmental stages. Acta Agric Scand, B-Soil Plant Sci, 66: 317-324.
  • Iglesias MJ, García-Lopez J, Collados-Luján JF, López-Ortiz F, Díaz M, Toresano F, Camacho F. 2015. Differential response to environmental and nutritional factors of high-quality tomato varieties. Food Chem, 176: 278-287.
  • Izzo L, Castaldo L, Lombardi S, Gaspari A, Grosso M, Ritieni A. 2022. Bioaccessibility and antioxidant capacity of bioactive compounds from various typologies of canned tomatoes. Front Nutr, 9: 849163.
  • Johnson RW, Dixon MA, Lee DR. 1992. Water relations of the tomato during fruit growth. Plant, Cell Environ, 15(8): 947-953.
  • Kader AA, Morris LL, Chen P. 1978. Evaluation of two objective methods and a subjective rating scale for measuring tomato fruit firmness. J Am Soc Hortic Sci, 103(1): 70-73.
  • Korkmaz A, Karagöl A, Akınoğlu G, Korkmaz H. 2018. The effects of silicon on nutrient levels and yields of tomatoes under saline stress in artificial medium culture. J Plant Nutr, 41(1): 123-135.
  • Krauss S, Schnitzler WH, Grassmann J, Woitke M. 2006. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J Agric Food Chem, 54: 441-448.
  • Ladewig P, Trejo-Téllez LI, Servín-Juárez R, Contreras-Oliva A, Gomez-Merino FC. 2021. Growth, yield and fruit quality of Mexican tomato landraces in response to salt stress. Not Bot Horti Agrobo Cluj, 49(1): 12005.
  • Lado J, Zacarías L, Rodrigo MJ. 2016. Regulation of carotenoid biosynthesis during fruit development. Subcell Biochem, 79: 161-198.
  • Lancaster JE, Lister C, Reay PF, Triggs CM. 1997. Influence of pigment composition on skin color in a wide range of fruits and vegetables. J Am Soc Hortic Sci, 122: 594-598.
  • Lara I, Heredia A, Domínguez E. 2019. Shelf life potential and the fruit cuticle: The unexpected player. Front Plant Sci, 10: 770.
  • Li YL, Stanghellini C, Challa H. 2001. Effect of electrical conductivity and transpiration on production of greenhouse tomato (Lycopersicon esculentum L.). Sci Hortic, 88(1): 11-29.
  • Lima GPP, Gómez HAG, Seabra Junior S, Maraschin M, Tecchio MA, Borges CV. 2022. Functional and nutraceutical compounds of tomatoes as affected by agronomic practices, postharvest management, and processing methods: A mini review. Front Nutr, 9: 868492.
  • Llorente B, Martinez-Garcia JF, Stange C, Rodriguez-Concepcion M. 2017. Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light, Curr Opin Plant Biol, 37: 49-55.
  • Lu T, Yu H, Wang T, Zhang T, Shi C, Jiang W. 2022. Influence of the electrical conductivity of the nutrient solution in different phenological stages on the growth and yield of cherry tomato. Horticulturae, 8: 378.
  • Lucke T, Walker C, Beecham S. 2019. Experimental designs of field-based constructed floating wetland studies: A review. Sci Total Environ, 660: 199-208.
  • Ma Y, Dias MC, Freitas H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci, 11: 591911.
  • Mareri L, Parrotta L, Cai G. 2022. Environmental stress and plants. Int J Mol Sci, 23(10): 5416.
  • Martínez JP, Fuentes R, Farías K, Lizana C, Alfaro JF, Fuentes L, Calabrese N, Bigot S, Quinet M, Lutts S. 2020. Effects of salt stress on fruit antioxidant capacity of wild (Solanum chilense) and domesticated (Solanum lycopersicum var. cerasiforme) tomatoes. Agronomy, 10(10): 1481.
  • Mascarello G, Pinto A, Parise N, Crovato S, Ravarotto L. 2015. The perception of food quality. Profiling Italian consumers. Appetite, 89: 175-182.
  • Mcguire RG. 1992. Reporting of objective color measurements. HortScience, 27(12): 1254.
  • Moya C, Oyanedel E, Verdugo G, Flores MF, Urrestarazu, M, Álvaro JE. 2017. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. HortScience, 52(6): 868-872.
  • Nakahara H, Uemura Y, Nakashima Y, Mineda E, Nahashima N, Matsuzoe N. 2019. Evaluating the taste of tomato cultivated under salt-stress conditions by component change, sensory evaluation, and taste sensor. Environ Control Biol, 57(4): 99-106.
  • Nangare DD, Singh Y, Kumar PS, Minhas PS. 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric Water Manag, 171: 73-79.
  • Petrescu DC, Vermeir I, Petrescu-Mag RM. 2019. Consumer understanding of food quality, healthiness, and environmental impact: A cross-national perspective. Int J Environ Res Public Health, 17(1): 169.
  • Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martínez JP, Lutts S. 2019. Tomato fruit development and metabolism. Front Plant Sci, 10: 1554.
  • Rana N, Ghabru A, Vaidya D. 2019. Defensive function of fruits and vegetables. J Pharmacogn Phytochem, 8(3): 1872-1877.
  • Rodríguez F, Pedreschi R, Fuentealba C, de Kartzow A, Olaeta JA, Alvaro JE. 2019. The increase in electrical conductivity of nutrient solution enhances compositional and sensory properties of tomato fruit cv. Patrón. Sci Hortic, 244: 388-398.
  • Ruiz MS, Yasuor H, Ben-Gal A, Yermiyahu U, Saranga Y, Elbaum R. 2015. Salinity induced fruit hypodermis thickening alters the texture of tomato (Solanum lycopersicum Mill) fruits. Sci Hortic, 192: 244-249.
  • Sajdakowska M, Gębski J, Gutkowska K, Żakowska-Biemans S. 2018. Importance of health aspects in Polish consumer choices of dairy products. Nutrients, 10: 1007.
  • Sakamoto Y, Watanabe S, Nakashima T, Okano K. 1999. Effects of salinity at two ripening stages on the fruit quality of single-truss tomato grown in hydroponics. J Hortic Sci Biotechnol, 74(6): 690-693.
  • Sánchez-González M, Sánchez-Guerrero MC, Medrano E, Porras ME, Baeza EJ, Lorenzo P. 2015. Influence of pre-harvest factors on quality of a winter cycle high commercial value tomato cultivar. Sci Hortic, 189(3): 104-111.
  • Sánchez-González MJ, Schouten RE, Tijskens LMM, Cruz Sanchez-Guerrero M, Medrano E, Del Rio-Celestino M, Lorenzo P. 2016. Salinity and ripening on/off the plant effects on lycopene synthesis and chlorophyll breakdown in hybrid Raf tomato. Sci Hortic, 211: 203-212.
  • Schwarz D, Kläring HP, Ingram KT, Hung YC. 2001. Model-based control of nutrient solution concentration influences tomato growth and fruit quality. J Am Soc Hortic Sci, 126: 778-784.
  • Shen M, Shi L, Gao Z. 2018. Beyond the food label itself: How does color affect attention to information on food labels and preference for food attributes? Food Qual Prefer, 64(6): 47-55.
  • Shrivastava P, Kumar R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci, 22(2): 123-131.
  • Sonneveld C, Straver N. 1994. Nutrient solutions for vegetables and flowers grown in water or substrates, Serie, Voedingsoplossingen Glasstuinbouw, No:8, PBG Naaldwijk-PBG Aalsmeer, Noord Holland, Nederland, 10th ed., pp: 1-45.
  • Sonneveld C, Van Der Burg AMM. 1991. Sodium chloride salinity in fruit vegetable crops in soilless culture. Neth J Agric Sci, 39: 115-122.
  • Talens P, Mora L, Bramley PM, Fraser PD. 2016. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a Detiolated-1 (DET-1) down-regulated genetically modified genotype. Food Chem, 213: 735-741.
  • Thole V, Vain P, Yang R-Y, Almeida Barros Da Silva J, Enfissi EMA, Nogueira M, Price EJ, Alseekh S, Fernie AR, Fraser PD, Hanson P, Martin C. 2020. Analysis of tomato post-harvest properties: Fruit color, shelf life, and fungal susceptibility. Curr Protoc Plant Biol, 5(2): e20108.
  • Tomas M, Beekwilder J, Hall RD, Sagdic O, Boyacıoğlu D, Capanoğlu E. 2017. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants. Food Chem, 220: 51-58.
  • Toscano S, Trivellini A, Cocetta G, Bulgari R, Francini A, Romano D, Ferrante A. 2019. Effect of preharvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. Front Plant Sci, 10: 1212.
  • Tüzel Y, Gül A, Tüzel IH, Öztekin GB. 2019. Different soilless culture systems and their management. J Agric Food Environ Sci, 73(3): 7-12.
  • Tzortzakis N, Nicola S, Savvas D, Voogt W. 2020. Editorial: Soilless cultivation through an intensive crop production scheme. Management strategies, challenges and future directions. Front Plant Sci, 11: 363.
  • Tzortzakis N, Pitsikoulaki G, Stamatakis A, Chrysargyris A. 2022. Ammonium to total nitrogen ratio interactive effects with salinity application on Solanum lycopersicum growth, physiology, and fruit storage in a closed hydroponic system Agronomy, 12(2): 386.
  • Urrestarazu M, Morales I, La Malfa T, Checa R, Wamser AF, Alvaro JE. 2015. Effects of fertigation duration on the pollution, water consumption, and productivity of soilless vegetable cultures. HortScience, 50(6): 819-825.
  • Van Meulebroek L, Hanssens J, Steppe K, Vanhaecke L. 2016. Metabolic fingerprinting to assess the impact of salinity on carotenoid content in developing tomato fruits. Int J Mol Sci, 17(6): 821.
  • Wang YP, Clevenger JP, Illa-Berenguer E, Meulia T, Van Der Knaap E, Sun L. 2019. A comparison of sun, ovate, fs8.1 and auxin application on tomato fruit shape and gene expression. Plant Cell Physiol, 60(5): 1067-1081.
  • Wu S, Zhang B, Keyhaninejad N, Rodríguez GR, Kim HJ, Chakrabarti M, Illa-Berenguer E, Taitano NK, Gonzalo MJ, Díaz A, Pan Y, Leisner CP, Halterman D, Buell CR, Weng Y, Jansky SH, Van Eck H, Willemsen J, Monforte AJ, Meulia T, Van Der Knaap E. 2018. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat Commun, 9(1): 4734.
  • Wu X, Yu L, Pehrsson PR. 2022. Are processed tomato products as nutritious as fresh tomatoes? Scoping review on the effects of industrial processing on nutrients and bioactive compounds in tomatoes. Adv Nutr, 13(1): 138-151.
  • Zhang P, Jiang S, Dai Y, Zhang Z, Senge M. 2022. Combined treatment of salinity stress and fruit thinning effect on tomato. Front Nutr, 9: 857977.
  • Zhang P, Senge M, Dai Y. 2016. Effects on salinity stress on growth, yield, fruit quality and water use efficiency of tomato under soilless cultivation. Rev Agric Sci, 4: 46-55.
  • Zhang P, Senge M, Dai Y. 2017. Effects of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Commun Soil Sci Plant Anal, 48(6): 624-634.

The Effect of NaCl-Salinity Applications on the Improvement of Quality Characteristics and Yield of Tomato (Lycopersicon esculentum L.) Grown in Substrate Culture

Year 2025, Volume: 8 Issue: 2, 124 - 133, 15.03.2025
https://doi.org/10.47115/bsagriculture.1509293

Abstract

Salt application in soilless cultivation systems can be considered as a strategic tool to improve tomato fruit quality. In this context, the effects of increasing the salt concentration in the nutrient solution added to the solid culture medium on yield and yield components, biophysical and organoleptic quality traits of tomato (Lycopersicon esculentum L. cv. Kardelen F1) under greenhouse conditions were studied. The salt in the nutrient solution was applied to tomato plants as sodium chloride (NaCl) at four concentrations (0, 14.1, 44.4, and 70.4 mM). Each pot received 150 mL of nutrient solution daily during the vegetative period, while 300 mL was applied daily after flowering. This study was conducted with three replicates following a randomized block design. Plants were harvested 90 days after transplanting. Low salt application in the nutrient solution (14.1 mM NaCl) increased total fruit yield, while the high salt application did not effect fruit yield compared to the control. Salt application at increasing concentrations decreased fruit size and diameter but increased the dry matter in the fruit. The salt treatment mainly positively affected the commercial and organoleptic quality parameters of the tomato fruits. In conclusion, a low level of sodium chloride (14.1 mM NaCl) in soilless culture enhanced fruit production, while moderate (44.4 mM) and high (70.4 mM) concentrations improved various fruit quality traits.

Supporting Institution

Ondokuz Mayis University Research Fund

Project Number

PYO.ZRT.1908.22.015

Thanks

The corresponding author, G.A., thanks colleagues for their support and help through the period of this research.

References

  • Abdollah KK. 2015. Physiological and genetic factors influencing fruit cracking. Acta Physiol Plant, 37(1): 1718.
  • Agius C, Von Tucher S, Rozhon W. 2022. The effect of salinity on fruit quality and yield of cherry tomatoes. Horticulturae, 8(1): 59.
  • Alam AU, Rathi P, Beshai H, Sarabha GK, Deen MJ. 2021. Fruit quality monitoring with smart packaging. Sensors (Basel), 21(4): 1509.
  • Alpaslan M, Güneş A, Inal A. 1998. Deneme Tekniği [Trial Technique]. Ankara Üniversitesi Yayın No: 1501, Ziraat Fakültesi Ders Kitabı, Ankara, Türkiye, pp: 455.
  • Alsuhaibani AMA. 2018. Chemical composition and ameliorative effect of tomato on isoproterenol-induced myocardial infarction in rats. Asian J Clin Nutr, 10(1): 1-7.
  • Amit SK, Uddin MM, Rahman R, Rezwanul Islam SM, Khan MS. 2017. A review on mechanisms and commercial aspects of food preservation and processing. Agric Food Secur, 6: 51.
  • AOAC. 1990. Association of Official Analytical Chemists, Official Methods of Analysis, 13th edition. AOAC, Washington DC, USA, pp: 120.
  • Arah IK, Amaglo H, Kodzo E, Kumah EK, Hayford O. 2015. Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: A mini review. Int J Agron, 2015: 478041.
  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol Biochem, 156: 64-77.
  • Artés F, Conesa MA, Hernández S, Gil MI. 1999. Keeping quality of fresh-cut tomato. Postharvest Biol Technol, 17: 153-162.
  • Asensio E, Sanvicente I, Mallor C, Menal-Puey S. 2019. Spanish traditional tomato. Effects of genotype, location and agronomic conditions on the nutritional quality and evaluation of consumer preferences. Food Chem, 270: 452-458.
  • Ávalos-Sánchez E, López-Martínez A, Molina-Aiz FD, Reca J, Marín-Membrive P, Valera-Martínez DL. 2022. Effect of different substrates, and irrigation with water with different saline concentrations, on the development of tomato fungal diseases in an almería-type greenhouse. Agronomy, 12: 1050.
  • Azarmi R, Taleshmikail RD, Gikloo A. 2010. Effects of salinity on morphological and physiological changes and yield of tomato in hydroponics system. J Food Agric Environ, 8(2): 573-576.
  • Batu A. 2004. Determination of acceptable firmness and colour values of tomatoes. J Food Eng, 61(3): 471-475.
  • Bertin N, Génard M. 2018. Tomato quality as influenced by preharvest factors. Sci Hortic, 233: 264-276.
  • Botella MA, Del Amor F, Amoros A, Serrano M, Martinez V, Cerda A. 2000. Polyamine, etylene and other physico-chemical parameters in tomato (Lycorpersicon esculentum) fruits as affected by salinity. Physiol Plant, 109(4): 428-434.
  • Botella MÁ, Hernández V, Mestre T, Hellín P, García-Legaz MF, Rivero RM, Martínez V, Fenoll J, Flores P. 2021. Bioactive compounds of tomato fruit in response to salinity, heat and their combination. Agriculture, 11(6): 534.
  • Coyago-Cruz E, Corell M, Moriana A, Hernanz D, Benítez-González AM, Stinco CM, Meléndez-Martínez AJ. 2018. Antioxidants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chem, 240: 870-884.
  • Cuartero J, Fernández Muñoz J. 1999. Tomato and salinity. Sci Hortic, 78(1-4): 83-125.
  • Cui J, Shao G, Lu J, Keabetswe L, Hoogenboom G. 2019. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Sci Agric, 77(2): e20180390.
  • Distefano M, Mauro RP, Page D, Giuffrida F, Bertin N, Leonardi C. 2022. Aroma volatiles in tomato fruits: The role of genetic, preharvest and postharvest factors. Agronomy, 12(2): 376.
  • Dono G, Rambla JL, Frusciante S, Granell A, Diretto G, Mazzucato A. 2020. Color mutations alter the biochemical composition in the San Marzano tomato fruit. Metabolites, 10(3): 110.
  • Ehret DL, Usher K, Helmer T, Block G, Steinke D, Frey B, Kuang T, Diarra M. 2013. Tomato fruit antioxidants in relation to salinity and greenhouse climate. J Agric Food Chem, 61(5): 1138-1145.
  • El-Mogy MM, Garchery C, Stevens R. 2018. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agric Scand, B-Soil Plant Sci, 68(8): 727-737.
  • Fernández-García N, Martínez V, Carvajal M. 2004. Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. J Plant Nutr Soil Sci, 167(5): 616-622.
  • Fussy A, Papenbrock J. 2022. An overview of soil and soilless cultivation techniques—chances, challenges and the neglected question of sustainability. Plants, 11(9): 1153.
  • Gonçalves DC, Morgado CMA, De Oliveira Aguiar FC, Silva EP, De Carvalho Correa G, Dos Reis Nascimento A, Carlos R, Junior C. 2020. Postharvest behavior and lycopene content of tomatoes at different harvest times. Acta Sci Technol, 42: e48403.
  • Gül A. 2012. Topraksız tarım [Soilless Culture]. Hasad Yayıncılık Ltd. Şti., İstanbul, Türkiye, ss: 140.
  • Hobson GE, Adams P, Dixon TJ. 1983. Assessing the colour of tomato fruit during ripening. J Sci Food Agric, 34: 286-292.
  • Hoppu U, Puputti S, Aisala H, Laaksonen O, Sandell M. 2018. Individual differences in the perception of color solutions. Foods, 7(9): 154.
  • Huang C, Peng F, You Q, Xue X, Wang T, Liao J. 2016. Growth, yield and fruit quality of cherry tomato irrigated with saline water at different developmental stages. Acta Agric Scand, B-Soil Plant Sci, 66: 317-324.
  • Iglesias MJ, García-Lopez J, Collados-Luján JF, López-Ortiz F, Díaz M, Toresano F, Camacho F. 2015. Differential response to environmental and nutritional factors of high-quality tomato varieties. Food Chem, 176: 278-287.
  • Izzo L, Castaldo L, Lombardi S, Gaspari A, Grosso M, Ritieni A. 2022. Bioaccessibility and antioxidant capacity of bioactive compounds from various typologies of canned tomatoes. Front Nutr, 9: 849163.
  • Johnson RW, Dixon MA, Lee DR. 1992. Water relations of the tomato during fruit growth. Plant, Cell Environ, 15(8): 947-953.
  • Kader AA, Morris LL, Chen P. 1978. Evaluation of two objective methods and a subjective rating scale for measuring tomato fruit firmness. J Am Soc Hortic Sci, 103(1): 70-73.
  • Korkmaz A, Karagöl A, Akınoğlu G, Korkmaz H. 2018. The effects of silicon on nutrient levels and yields of tomatoes under saline stress in artificial medium culture. J Plant Nutr, 41(1): 123-135.
  • Krauss S, Schnitzler WH, Grassmann J, Woitke M. 2006. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J Agric Food Chem, 54: 441-448.
  • Ladewig P, Trejo-Téllez LI, Servín-Juárez R, Contreras-Oliva A, Gomez-Merino FC. 2021. Growth, yield and fruit quality of Mexican tomato landraces in response to salt stress. Not Bot Horti Agrobo Cluj, 49(1): 12005.
  • Lado J, Zacarías L, Rodrigo MJ. 2016. Regulation of carotenoid biosynthesis during fruit development. Subcell Biochem, 79: 161-198.
  • Lancaster JE, Lister C, Reay PF, Triggs CM. 1997. Influence of pigment composition on skin color in a wide range of fruits and vegetables. J Am Soc Hortic Sci, 122: 594-598.
  • Lara I, Heredia A, Domínguez E. 2019. Shelf life potential and the fruit cuticle: The unexpected player. Front Plant Sci, 10: 770.
  • Li YL, Stanghellini C, Challa H. 2001. Effect of electrical conductivity and transpiration on production of greenhouse tomato (Lycopersicon esculentum L.). Sci Hortic, 88(1): 11-29.
  • Lima GPP, Gómez HAG, Seabra Junior S, Maraschin M, Tecchio MA, Borges CV. 2022. Functional and nutraceutical compounds of tomatoes as affected by agronomic practices, postharvest management, and processing methods: A mini review. Front Nutr, 9: 868492.
  • Llorente B, Martinez-Garcia JF, Stange C, Rodriguez-Concepcion M. 2017. Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light, Curr Opin Plant Biol, 37: 49-55.
  • Lu T, Yu H, Wang T, Zhang T, Shi C, Jiang W. 2022. Influence of the electrical conductivity of the nutrient solution in different phenological stages on the growth and yield of cherry tomato. Horticulturae, 8: 378.
  • Lucke T, Walker C, Beecham S. 2019. Experimental designs of field-based constructed floating wetland studies: A review. Sci Total Environ, 660: 199-208.
  • Ma Y, Dias MC, Freitas H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci, 11: 591911.
  • Mareri L, Parrotta L, Cai G. 2022. Environmental stress and plants. Int J Mol Sci, 23(10): 5416.
  • Martínez JP, Fuentes R, Farías K, Lizana C, Alfaro JF, Fuentes L, Calabrese N, Bigot S, Quinet M, Lutts S. 2020. Effects of salt stress on fruit antioxidant capacity of wild (Solanum chilense) and domesticated (Solanum lycopersicum var. cerasiforme) tomatoes. Agronomy, 10(10): 1481.
  • Mascarello G, Pinto A, Parise N, Crovato S, Ravarotto L. 2015. The perception of food quality. Profiling Italian consumers. Appetite, 89: 175-182.
  • Mcguire RG. 1992. Reporting of objective color measurements. HortScience, 27(12): 1254.
  • Moya C, Oyanedel E, Verdugo G, Flores MF, Urrestarazu, M, Álvaro JE. 2017. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. HortScience, 52(6): 868-872.
  • Nakahara H, Uemura Y, Nakashima Y, Mineda E, Nahashima N, Matsuzoe N. 2019. Evaluating the taste of tomato cultivated under salt-stress conditions by component change, sensory evaluation, and taste sensor. Environ Control Biol, 57(4): 99-106.
  • Nangare DD, Singh Y, Kumar PS, Minhas PS. 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric Water Manag, 171: 73-79.
  • Petrescu DC, Vermeir I, Petrescu-Mag RM. 2019. Consumer understanding of food quality, healthiness, and environmental impact: A cross-national perspective. Int J Environ Res Public Health, 17(1): 169.
  • Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martínez JP, Lutts S. 2019. Tomato fruit development and metabolism. Front Plant Sci, 10: 1554.
  • Rana N, Ghabru A, Vaidya D. 2019. Defensive function of fruits and vegetables. J Pharmacogn Phytochem, 8(3): 1872-1877.
  • Rodríguez F, Pedreschi R, Fuentealba C, de Kartzow A, Olaeta JA, Alvaro JE. 2019. The increase in electrical conductivity of nutrient solution enhances compositional and sensory properties of tomato fruit cv. Patrón. Sci Hortic, 244: 388-398.
  • Ruiz MS, Yasuor H, Ben-Gal A, Yermiyahu U, Saranga Y, Elbaum R. 2015. Salinity induced fruit hypodermis thickening alters the texture of tomato (Solanum lycopersicum Mill) fruits. Sci Hortic, 192: 244-249.
  • Sajdakowska M, Gębski J, Gutkowska K, Żakowska-Biemans S. 2018. Importance of health aspects in Polish consumer choices of dairy products. Nutrients, 10: 1007.
  • Sakamoto Y, Watanabe S, Nakashima T, Okano K. 1999. Effects of salinity at two ripening stages on the fruit quality of single-truss tomato grown in hydroponics. J Hortic Sci Biotechnol, 74(6): 690-693.
  • Sánchez-González M, Sánchez-Guerrero MC, Medrano E, Porras ME, Baeza EJ, Lorenzo P. 2015. Influence of pre-harvest factors on quality of a winter cycle high commercial value tomato cultivar. Sci Hortic, 189(3): 104-111.
  • Sánchez-González MJ, Schouten RE, Tijskens LMM, Cruz Sanchez-Guerrero M, Medrano E, Del Rio-Celestino M, Lorenzo P. 2016. Salinity and ripening on/off the plant effects on lycopene synthesis and chlorophyll breakdown in hybrid Raf tomato. Sci Hortic, 211: 203-212.
  • Schwarz D, Kläring HP, Ingram KT, Hung YC. 2001. Model-based control of nutrient solution concentration influences tomato growth and fruit quality. J Am Soc Hortic Sci, 126: 778-784.
  • Shen M, Shi L, Gao Z. 2018. Beyond the food label itself: How does color affect attention to information on food labels and preference for food attributes? Food Qual Prefer, 64(6): 47-55.
  • Shrivastava P, Kumar R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci, 22(2): 123-131.
  • Sonneveld C, Straver N. 1994. Nutrient solutions for vegetables and flowers grown in water or substrates, Serie, Voedingsoplossingen Glasstuinbouw, No:8, PBG Naaldwijk-PBG Aalsmeer, Noord Holland, Nederland, 10th ed., pp: 1-45.
  • Sonneveld C, Van Der Burg AMM. 1991. Sodium chloride salinity in fruit vegetable crops in soilless culture. Neth J Agric Sci, 39: 115-122.
  • Talens P, Mora L, Bramley PM, Fraser PD. 2016. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a Detiolated-1 (DET-1) down-regulated genetically modified genotype. Food Chem, 213: 735-741.
  • Thole V, Vain P, Yang R-Y, Almeida Barros Da Silva J, Enfissi EMA, Nogueira M, Price EJ, Alseekh S, Fernie AR, Fraser PD, Hanson P, Martin C. 2020. Analysis of tomato post-harvest properties: Fruit color, shelf life, and fungal susceptibility. Curr Protoc Plant Biol, 5(2): e20108.
  • Tomas M, Beekwilder J, Hall RD, Sagdic O, Boyacıoğlu D, Capanoğlu E. 2017. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants. Food Chem, 220: 51-58.
  • Toscano S, Trivellini A, Cocetta G, Bulgari R, Francini A, Romano D, Ferrante A. 2019. Effect of preharvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. Front Plant Sci, 10: 1212.
  • Tüzel Y, Gül A, Tüzel IH, Öztekin GB. 2019. Different soilless culture systems and their management. J Agric Food Environ Sci, 73(3): 7-12.
  • Tzortzakis N, Nicola S, Savvas D, Voogt W. 2020. Editorial: Soilless cultivation through an intensive crop production scheme. Management strategies, challenges and future directions. Front Plant Sci, 11: 363.
  • Tzortzakis N, Pitsikoulaki G, Stamatakis A, Chrysargyris A. 2022. Ammonium to total nitrogen ratio interactive effects with salinity application on Solanum lycopersicum growth, physiology, and fruit storage in a closed hydroponic system Agronomy, 12(2): 386.
  • Urrestarazu M, Morales I, La Malfa T, Checa R, Wamser AF, Alvaro JE. 2015. Effects of fertigation duration on the pollution, water consumption, and productivity of soilless vegetable cultures. HortScience, 50(6): 819-825.
  • Van Meulebroek L, Hanssens J, Steppe K, Vanhaecke L. 2016. Metabolic fingerprinting to assess the impact of salinity on carotenoid content in developing tomato fruits. Int J Mol Sci, 17(6): 821.
  • Wang YP, Clevenger JP, Illa-Berenguer E, Meulia T, Van Der Knaap E, Sun L. 2019. A comparison of sun, ovate, fs8.1 and auxin application on tomato fruit shape and gene expression. Plant Cell Physiol, 60(5): 1067-1081.
  • Wu S, Zhang B, Keyhaninejad N, Rodríguez GR, Kim HJ, Chakrabarti M, Illa-Berenguer E, Taitano NK, Gonzalo MJ, Díaz A, Pan Y, Leisner CP, Halterman D, Buell CR, Weng Y, Jansky SH, Van Eck H, Willemsen J, Monforte AJ, Meulia T, Van Der Knaap E. 2018. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat Commun, 9(1): 4734.
  • Wu X, Yu L, Pehrsson PR. 2022. Are processed tomato products as nutritious as fresh tomatoes? Scoping review on the effects of industrial processing on nutrients and bioactive compounds in tomatoes. Adv Nutr, 13(1): 138-151.
  • Zhang P, Jiang S, Dai Y, Zhang Z, Senge M. 2022. Combined treatment of salinity stress and fruit thinning effect on tomato. Front Nutr, 9: 857977.
  • Zhang P, Senge M, Dai Y. 2016. Effects on salinity stress on growth, yield, fruit quality and water use efficiency of tomato under soilless cultivation. Rev Agric Sci, 4: 46-55.
  • Zhang P, Senge M, Dai Y. 2017. Effects of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Commun Soil Sci Plant Anal, 48(6): 624-634.
There are 83 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Güney Akınoğlu 0000-0003-4624-2876

Ahmet Korkmaz 0000-0001-5595-0618

Salih Demirkaya 0000-0002-7374-0160

Songül Rakıcıoğlu 0000-0002-8013-6439

Zerrin Civelek 0000-0002-8303-9407

Project Number PYO.ZRT.1908.22.015
Publication Date March 15, 2025
Submission Date July 2, 2024
Acceptance Date November 17, 2024
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Akınoğlu, G., Korkmaz, A., Demirkaya, S., Rakıcıoğlu, S., et al. (2025). The Effect of NaCl-Salinity Applications on the Improvement of Quality Characteristics and Yield of Tomato (Lycopersicon esculentum L.) Grown in Substrate Culture. Black Sea Journal of Agriculture, 8(2), 124-133. https://doi.org/10.47115/bsagriculture.1509293

                                                  24890