Research Article
BibTex RIS Cite

Integrated Management of Meloidogyne incognita on Tomato Using Combinations of Commercial Abamectin and Plant Activator

Year 2025, Volume: 8 Issue: 2, 143 - 151, 15.03.2025
https://doi.org/10.47115/bsagriculture.1571516

Abstract

One of the main pests of tomatoes is root knot nematodes and causes significant yield losses. The abamectin is a bio-based pesticide and plant activators is used stimulating systemic acquired resistance mechanisms. Determining their suppressive effects on nematodes and understanding their interactions may be important for better use in integrated management. The effect of abamectin (Streptomyces avermitilis, Abamax®) and plant activators (harpin and Lactobacillus acidiophilus) singly or in combination was tested against Meloidogyne incognita on tomato under controlled conditions. The experiment was established 5 days after transplanting of 35 days of tomatoes. ProAct Plus® (Harpin, 0.15 g/l), ISR-2000® (L. acidophilus, 1 ml/l) and Crop-Set® (L. acidophilus, 0.6 ml/l) were applied to the leaves by spraying, while Abamax® was applied to the soil. Nematode inoculation (1000 second juvenile larvae (J2)) was planned 72 hours after the first application of activators. The activators were applied to tomatoes 2 more times with 14 days intervals. After sixty days, plant height and fresh weight, root height and fresh weight, number of galls and egg masses, gall index, J2 soil density and lignification of leaves, stem and roots were evaluated. While the gall index was 4/0-5 index in plants treated only with nematodes, it was found to be 1.2/0-5 index in Abamax®. While 1.6 was found in Proact Plus®, 2.0 was detected in ISR2000® and Cropset®. No galls or egg masses were found in ProAct Plus®±Abamax®, ISR-2000®±Abamax® and Crop-Set®±Abamax®. The positive effect of abamectin alone on plant development was found to be higher than plant activators. Root fresh weight increased significantly in abamectin and plant activator combinations. Plant activators caused an increase in lignification and the highest level was found in Proact Plus®. Lignification was higher in combinations with abamectin. The highest lignification was in Abamax®±Proact Plus®. Combinations of harpin and L. acidophilus activators with abamectin may be a potential antagonism strategy against root-knot nematodes.

Ethical Statement

Ethics committee approval was not required for this study because there was no study on animals or humans.

Supporting Institution

The study was supported the TUBITAK (BİDEB) 2209-A University Students Research Projects Program in 2023/1.

Project Number

1919B012301069

Thanks

The study was supported the TUBITAK (BİDEB) 2209-A University Students Research Projects Program in 2023/1. We would like to thank in this program for supporting the study.

References

  • Akbudak N, Tezcan H. 2006. Bitkisel üretimde ve bitki korumada yeni bir etken madde: Harpin. Uludağ Üniv Zir Fak Derg, 20(2): 39-43.
  • Azlay L, El Boukhari MEM, Mayad EH, Barakate M. 2022. Biological management of root-knot nematodes (Meloidogyne spp.): a review. Organic Agri, 2022: 1-19.
  • Bai SH, Ogbourne S. 2016. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere, 154: 204-214.
  • Barutçu E. 2006. Domateste patates Y virüsü (PVY) dayanıklılığının genetiği. Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Denizli, Türkiye, ss: 65.
  • Becker JO, Becker JS, Morton HV, Hofer D. 2006. Early protection against root-knot nematodes through nematicidal seed coating provides season-long benefits for cucumbers. Cucurbitaceae, Asheville, North Carolina, USA, pp: 395- 402.
  • Becker WF. 1999. The effect of abamectin on garlic infected by Ditylenchus dipsaci. Nematologia Brasileira 23(2): 1-8
  • Bessi R, Sujimoto FR, Inomoto MM. 2010. Seed treatment affects Meloidogyne incognita penetration, colonization and reproduction on cotton. Ciênc Rural, 40: 1428-1430.
  • Boina DR, Onagbola EO, Salyani M, Stelinski LL. 2009. Influence of posttreatment temperature on the toxicity of insecticides against Diaphorina citri (Hemiptera: Psyllidae). J Econ Entomol, 102: 685-691.
  • Burkhart CN. 2000. Ivermectin: an assessment of its pharmacology, microbiology and safety. Vet Hum Toxicol, 42: 30-35
  • Chaube HS, Pundhir VS. 2005. Crop diseases and their management. PHI Learning Pvt. Ltd., New Delhi, India, pp: 724.
  • Chukwudebe AC, Feely WF, Burnett TJ, Crouch LS, Wislocki PG. 1996. Uptake of emamectin benzoate residues from soil by rotational crops. J Agric Food Chem 44: 4015-4021.
  • Collins HP, Navare DA, Riga E, Pierce FJ. 2006. Effect of foliar applied plant elicitors on microbial and nematode populations in the root zone of potato. Commun Soil Sci Plant Analysis, 37(11-12): 1747 1759.
  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der ploeg LH, et al. 1994. Cloning of an avermectin-sensitive glutamate-gated chiloride channel from Caenorhabditis elegans. Nature, 371: 707-711
  • Degenkolb T, Vilcinskas A. 2016. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Applied Microbiol Biotechnol, 100: 3799-3812.
  • Dong L, Huang C, Huang L, Li X, Zuo Y. 2012. Screening plants resistant against Meloidogyne incognita and integrated management of plant resources for nematode control. Crop Protect, 33: 34-39.
  • Durrant WE, Dong X. 2004. Systemic acquired resistance. Annu Rev Phytopathol, 42: 185-209.
  • El-Ashry RM, Ali MA, Elsobki AE, Aioub AA. 2021. Integrated management of Meloidogyne incognita on tomato using combinations of abamectin, Purpureocillium lilacinum, rhizobacteria, and botanicals compared with nematicide. Egyptian J Biological Pest Control, 31, 1-10.
  • French NM, Rock L, Kirkpatrick ARTL, Hope AR, Wei Z, Bothell WA. 2006. Harpınea Gene Transgenıc Cotton Reduces Reproductıon By Root Knot Nematodes. Beltwide Cotton Conferences, San Antonio, Texas - January 3 – 6.
  • Gozzo F. 2003. Systemic acquired resistance in crop protection: from nature to a chemical approach. J agricultural and food chemistry, 51(16): 4487-4503.
  • Göze Özdemir FG, Tosun B, Şanlı A, Karadoğan T. 2022. Bazı Apiaceae uçucu yağlarının Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae)'ya karşı nematoksik etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 59(3): 529-539.
  • Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, Krabshuis J, Lemair T, Kaufmann P, de Paula JA, Fedorak R, Shanahan F, Sanders M E, Szajewska H, Ramakrishna BS, Karakan T, Kim N. and World Gastroenterology Organization. 2012. World Gastroenterology Organisation global guidelines: probiotics and prebiotics October (2011). J. Clin. Gastroenterol. 46:468-481
  • Hamed HA, Moustafa YA, Abdel-Aziz SM. 2011. In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant. Life Sci. J. 8:462-468.
  • Hamida AO, El-Gindi AY, Hoda HA, Youssef MM, Asmahan ML. 2006. Evaluation of the nematicidal effects of a biotechnological product (Abamectin) on Meloidogyne incognita, root-knot nematode infecting cowpea plants. Pakistan J Nematol, 24: 75-79.
  • Hirsch PR, Mauchline TH, Mendum TA, Kerry BR. 2000. Detection of the nematophagous fungus Verticillium chlamydosporium in nematode-infested plant roots using PCR. Mycological Res, 104(4): 435-439.
  • Jang SE, Hyun YJ, Oh YJ, Choi KB, Kim T, Yeo IH, Han MJ, Kim DH. 2011. Adhesion activity of Lactobacillus plantarum PM 008 isolated from kimchi on the intestine of mice. J Bacteriol Virol, 41: 83-90.
  • Jansson RK, Rabatin S. 1998. Potential of foliar, dip, and injection applications of avermectins for control of plant-parasitic nematodes. J Nematology, 30(1): 65.
  • Jayakumar J. 2009. Bio-efficacyof Streptomyces avermitilis culture filtrates against root knot nematode, Meloidogyne incognita and reniform nematodes, Rotylenchulus reniforms. Karnataka J Agri Sci, 22: 567-571.
  • Jones J T, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Perry RN. 2013. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molec Plant Pathol, 14(9): 946-961.
  • Khalil MS. 2012. A comparison study with alternative biorational agents to suppress the root-knot nematode populations and galls formation in tomato plants. Inter J Nematol, 22: 112-116.
  • Khalil MS. 2013. Abamectin and azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. J. Plant Pathol Microbiol, 4(4): 1-7.
  • Kim Y, Mylonakis E. 2012. Caenorhabditis elegans immune conditioning with the probiotic bacterium L. acidophilus strain NCFM enhances gram positive immune responses. Infect Immunity, 80: 2500– 2508.
  • Kirkpatrick TL, Hope AR, Lawrence KS, Lawrence GW, Mueller JD, Blackville SC, French NM. 2006. Greenhouse evaluation of experimental harpin-based seed and foliar treatments on root knot nematodes in cotton. Beltwide Cotton Conferences, January 3 - 6, San Antonio, Texas, USA, pp: 30-35.
  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Silva H. 2000. Nitric oxide and salicylic acid signaling in plant defense. Proceede National Acad Sci, 97(16): 8849-8855.
  • Koca YO. 2003. İki bitki aktivatörünün patateste bazı tarımsal özellikler üzerine etkileri. Yüksek Lisans Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı, İzmir, Türkiye, ss: 55.
  • Konappa NM, Maria M, Uzma F, Krishnamurthy S, Nayaka SC, Niranjana SR, Chowdappa S. 2016. Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Scientia Horticult, 207: 183-192.
  • Korayem AM, Mahmoud MAY, Moawad MMM. 2008. Effect of chitin and abamectin on Meloidogyne incognita infesting rape seed. J Plant Prot Res, 48: 365-370.
  • Kormin S, Rusul G, Radu S. Ling FH. 2001. Bacteriocin-producing lactic acid bacteria isolated from traditional fermented food. Malays J Med Sci, 8: 63-68.
  • Kumar KK, Arthurs S. 2021. Recent advances in the biological control of citrus nematodes: a review. Biol Cont, 157: 104593.
  • Kyndt T, Vieira P, Gheysen G, de Almeida-Engler J. 2013. Nematode feeding sites: unique organs in plant roots. Planta, 238: 807-818.
  • Li B et al. 2018. Modifying the formulation of abamectin to promote its efcacy on southern root-knot nematode (Meloidogyne incognita) under blending-of-soil and root-irrigation conditions. J Agric Food Chem, 66: 799–805.
  • Li X, Wang X, Zhang S, Liu D, Duan Y, Dong W. 2012. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PloS One, 7(6): e39650.
  • Lim JH, Yoon SM, Tan PL, Yang S, Kim SH, Park HJ. 2018. Probiotic properties of Lactobacillus plantarum LRCC5193, a plant-origin lactic acid bacterium isolated from kimchi and its use in chocolates. J Food Sci, 83:2802-2811
  • Lindgren SE, Dobrogosz WJ. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS microbiol. Rev, 7(1-2): 149-163.
  • Lisa M, Breitenbach FR, Miller RP. 2007. The effect of N-Hibit seed treatment on soybean yield at Kasson MN. 2007. University of Minnesota-Extension. Available at: http://www.extension.umn.edu/agriculture/cropsresearch/south/2007/docs/2007-n-hibit-seed-treatment-soybean.pdf. (accessed date: September 10, 2020).
  • Massoud MA, Saad AFS, Khalil MS, Zakaria M, Selim S. 2023. Comparative biological activity of abamectin formulations on root-knot nematodes (Meloidogyne spp.) infecting cucumber plants: in vivo and in vitro. Sci Rep, 13(1): 12418.
  • Ntalli NG, Ferrari F, Giannakou I, Menkissoglu‐Spiroudi U. 2011. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag Sci, 67(3): 341-351.
  • Omura S, K Shiomi. 2007. Discovery, chemistry, and chemical biology of microbial products. Pure Appl Chem, 79: 581-591.
  • Ozdemir E, Gozel U. 2017. Efficiency of some plant essential oils on root-knot nematode Meloidogyne incognita. J Agri Sci Tech A, 7(3): 178-183.
  • Qiao K, Liu X, Wang H, Xia X, Ji X, et al. 2012. Effect of abamectin on root-knot nematodes and tomato yield. Pest Manag Sci, 68: 853-857.
  • Qiao K, Duan HM, Wang HY, Wang Y, Wang KY, Wei M. 2014. The efficacy of the reduced rates of 1,3-D + abamectin for control of Meloidogyne incognita in tomato production in China. Sci Horticult, 178:248–252.
  • Qiu D, Xu N, Zhang Q, Zhou W, Wang Y, Zhang Z, Qian H. 2022. Negative effects of abamectin on soil microbial communities in the short term. Front Microbiol, 13: 1053153.
  • Quentin M, Abad P, Favery B. 2013. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Front Plant Sci, 4: 53.
  • Roder JD, Stair EL. 1998. An overviev of ivermectin toxicosis. Vet Hum Toxicol, 40: 369-370
  • Saad ASA, Massoud MA, Ibrahim HS, Khalil MS. 2012. Activity of nemathorin, natural product and bioproducts against root-knot nematodes on tomatoes. Arch Phytopathol Plant Prot, 45: 955-962.
  • Saravanakumar D, Charles VN, Kumarb R. 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot, 26: 556-565.
  • Sasanelli N, Toderas I, Veronico P, Iurcu-Straistaru E, Rusu S, Melillo MT, Caboni P. 2020. Abamectin efficacy on the potato Cyst nematode Globodera pallida. Plants, 9(1).
  • Sasanelli N, Toderaş I, Iurcu-Straistaru E, Bivol A, Rusu Ş, Konrat A, Andoni C. 2020. In vitro effect of abamectin from Streptomyces avermitilis on the survival of the cyst nematodes Globodera pallida, Heterodera carotae and Heterodera schachtii. Series B, Horticulture, 64(1): 1-11.
  • Seo HJ, Park AR, Kim S, Yeon J, Yu NH, Ha S, Kim JC. 2019. Biological control of root-knot nematodes by organic acid-producing Lactobacillus brevis wikim0069 isolated from kimchi. Plant Pathol J, 35(6): 662.
  • Shaver BR, Agudelo P, Martin S B. 2016. Use of abamectin and azoxystrobin for managing stubby-Root nematode (Trichodorus obtusus Cobb) damage to zoysiagrass. Crop Sci, 56: 1330–1336.
  • Stewart GR, Perry RN, Wright DJ. 1994. Immunocytochemical studies on the occurrence of gamma-aminobutyric acid (GABA) in the nervous system of the nematodes Panagrellus redivivus, Meloidogyne incognita and Globodera rostochiensis. Fund App Nematol, 17: 433-439.
  • Sticher L, Mauch-Mani B, Métraux AJ. 1997. Systemic acquired resistance. Annu Rev Phytopathol, 35(1): 235-270.
  • Stiles ME, Holzapfel WH. 1997. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol, 36: 1-29
  • Suraporn S, Sangsuk W, et al. 2015. Effects of probiotic bacteria on the growth parameters of the Thai silkworm, B. mori. Thai J Agri Sci, 48 (1): 29-33.
  • Sener C. 2015. Bazı bi̇tki̇ akti̇vatörleri̇ni̇n bi̇berde patates Y vi̇rüsüne karşı etki̇leri̇ni̇n beli̇rlenmesi̇. Doktora Tezi, Bursa Uludağ Universitesi, Bursa, Türkiye, ss: 92.
  • Tosun N, Ergün A. 2002. Bitkisel üretimde ve tarimsal savaşimda yeni bir yaklaşim olarak bitki aktivatörlerinin rolü. Tarım ve Köyişleri Bakanlığı Ege Tarımsal Araştırma Enstitüsü Müdürlüğü Yayın No: 109, TATEK/TYUAP Tarımsal Araştırma Yayım ve Koordinasyonu 2002 Yılı Tarla Bitkileri Grubu Bilgi Alışveriş Toplantısı Bildirileri, Ankara, Türkiye, ss: 251-263.
  • Trias R, Bañeras L, Montesinos E, Badosa E. 2008. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol, 11: 231-236.
  • Tylka G, Marett C. 2008. Field testing of N-HibitTM seed treatment in Iowa. Available at: http://crops.extension.iastate.edu/cropnews/2008/05/field-testing-nhibit%E2%84%A2-seed-treatment-iowa (accesed date: March 12, 2023).
  • Urmann K, Arshavsky-Graham S, Walter JG, Scheper T, Segal E. 2016. Whole-cell detection of live Lactobacillus acidophilus on aptamer-decorated porous silicon biosensors. Analyst, 141: 5432-5440
  • Vallad GE, Goodman RM. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci, 44(6): 1920-1934.
  • Van Loon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol, 36(1): 453-483.
  • Wei Z, Beer V. 1996. Harpin from Erwinia amylovora induces plant resistance. Act Hort, 411: 221-224.
  • Wei Z, Laby RL, Zumoff CH, Nauer DW, He SY, Collmer A, Beer SV. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Sci, 257: 85-88.
  • Yeon J, Park A R, Kim Y J, Seo HJ, Yu NH, Ha S, Park HW, Kim JC. 2019. Control of root-knot nematodes by a mixture of maleic acid and copper sulfate. Appl Soil Ecol, 141:61-68.

Integrated Management of Meloidogyne incognita on Tomato Using Combinations of Commercial Abamectin and Plant Activator

Year 2025, Volume: 8 Issue: 2, 143 - 151, 15.03.2025
https://doi.org/10.47115/bsagriculture.1571516

Abstract

One of the main pests of tomatoes is root knot nematodes and causes significant yield losses. The abamectin is a bio-based pesticide and plant activators is used stimulating systemic acquired resistance mechanisms. Determining their suppressive effects on nematodes and understanding their interactions may be important for better use in integrated management. The effect of abamectin (Streptomyces avermitilis, Abamax®) and plant activators (harpin and Lactobacillus acidiophilus) singly or in combination was tested against Meloidogyne incognita on tomato under controlled conditions. The experiment was established 5 days after transplanting of 35 days of tomatoes. ProAct Plus® (Harpin, 0.15 g/l), ISR-2000® (L. acidophilus, 1 ml/l) and Crop-Set® (L. acidophilus, 0.6 ml/l) were applied to the leaves by spraying, while Abamax® was applied to the soil. Nematode inoculation (1000 second juvenile larvae (J2)) was planned 72 hours after the first application of activators. The activators were applied to tomatoes 2 more times with 14 days intervals. After sixty days, plant height and fresh weight, root height and fresh weight, number of galls and egg masses, gall index, J2 soil density and lignification of leaves, stem and roots were evaluated. While the gall index was 4/0-5 index in plants treated only with nematodes, it was found to be 1.2/0-5 index in Abamax®. While 1.6 was found in Proact Plus®, 2.0 was detected in ISR2000® and Cropset®. No galls or egg masses were found in ProAct Plus®±Abamax®, ISR-2000®±Abamax® and Crop-Set®±Abamax®. The positive effect of abamectin alone on plant development was found to be higher than plant activators. Root fresh weight increased significantly in abamectin and plant activator combinations. Plant activators caused an increase in lignification and the highest level was found in Proact Plus®. Lignification was higher in combinations with abamectin. The highest lignification was in Abamax®±Proact Plus®. Combinations of harpin and L. acidophilus activators with abamectin may be a potential antagonism strategy against root-knot nematodes.

Ethical Statement

Ethics committee approval was not required for this study because there was no study on animals or humans.

Supporting Institution

The study was supported the TUBITAK (BİDEB) 2209-A University Students Research Projects Program in 2023/1.

Project Number

1919B012301069

Thanks

The study was supported the TUBITAK (BİDEB) 2209-A University Students Research Projects Program in 2023/1. We would like to thank in this program for supporting the study.

References

  • Akbudak N, Tezcan H. 2006. Bitkisel üretimde ve bitki korumada yeni bir etken madde: Harpin. Uludağ Üniv Zir Fak Derg, 20(2): 39-43.
  • Azlay L, El Boukhari MEM, Mayad EH, Barakate M. 2022. Biological management of root-knot nematodes (Meloidogyne spp.): a review. Organic Agri, 2022: 1-19.
  • Bai SH, Ogbourne S. 2016. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere, 154: 204-214.
  • Barutçu E. 2006. Domateste patates Y virüsü (PVY) dayanıklılığının genetiği. Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Denizli, Türkiye, ss: 65.
  • Becker JO, Becker JS, Morton HV, Hofer D. 2006. Early protection against root-knot nematodes through nematicidal seed coating provides season-long benefits for cucumbers. Cucurbitaceae, Asheville, North Carolina, USA, pp: 395- 402.
  • Becker WF. 1999. The effect of abamectin on garlic infected by Ditylenchus dipsaci. Nematologia Brasileira 23(2): 1-8
  • Bessi R, Sujimoto FR, Inomoto MM. 2010. Seed treatment affects Meloidogyne incognita penetration, colonization and reproduction on cotton. Ciênc Rural, 40: 1428-1430.
  • Boina DR, Onagbola EO, Salyani M, Stelinski LL. 2009. Influence of posttreatment temperature on the toxicity of insecticides against Diaphorina citri (Hemiptera: Psyllidae). J Econ Entomol, 102: 685-691.
  • Burkhart CN. 2000. Ivermectin: an assessment of its pharmacology, microbiology and safety. Vet Hum Toxicol, 42: 30-35
  • Chaube HS, Pundhir VS. 2005. Crop diseases and their management. PHI Learning Pvt. Ltd., New Delhi, India, pp: 724.
  • Chukwudebe AC, Feely WF, Burnett TJ, Crouch LS, Wislocki PG. 1996. Uptake of emamectin benzoate residues from soil by rotational crops. J Agric Food Chem 44: 4015-4021.
  • Collins HP, Navare DA, Riga E, Pierce FJ. 2006. Effect of foliar applied plant elicitors on microbial and nematode populations in the root zone of potato. Commun Soil Sci Plant Analysis, 37(11-12): 1747 1759.
  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der ploeg LH, et al. 1994. Cloning of an avermectin-sensitive glutamate-gated chiloride channel from Caenorhabditis elegans. Nature, 371: 707-711
  • Degenkolb T, Vilcinskas A. 2016. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Applied Microbiol Biotechnol, 100: 3799-3812.
  • Dong L, Huang C, Huang L, Li X, Zuo Y. 2012. Screening plants resistant against Meloidogyne incognita and integrated management of plant resources for nematode control. Crop Protect, 33: 34-39.
  • Durrant WE, Dong X. 2004. Systemic acquired resistance. Annu Rev Phytopathol, 42: 185-209.
  • El-Ashry RM, Ali MA, Elsobki AE, Aioub AA. 2021. Integrated management of Meloidogyne incognita on tomato using combinations of abamectin, Purpureocillium lilacinum, rhizobacteria, and botanicals compared with nematicide. Egyptian J Biological Pest Control, 31, 1-10.
  • French NM, Rock L, Kirkpatrick ARTL, Hope AR, Wei Z, Bothell WA. 2006. Harpınea Gene Transgenıc Cotton Reduces Reproductıon By Root Knot Nematodes. Beltwide Cotton Conferences, San Antonio, Texas - January 3 – 6.
  • Gozzo F. 2003. Systemic acquired resistance in crop protection: from nature to a chemical approach. J agricultural and food chemistry, 51(16): 4487-4503.
  • Göze Özdemir FG, Tosun B, Şanlı A, Karadoğan T. 2022. Bazı Apiaceae uçucu yağlarının Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae)'ya karşı nematoksik etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 59(3): 529-539.
  • Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, Krabshuis J, Lemair T, Kaufmann P, de Paula JA, Fedorak R, Shanahan F, Sanders M E, Szajewska H, Ramakrishna BS, Karakan T, Kim N. and World Gastroenterology Organization. 2012. World Gastroenterology Organisation global guidelines: probiotics and prebiotics October (2011). J. Clin. Gastroenterol. 46:468-481
  • Hamed HA, Moustafa YA, Abdel-Aziz SM. 2011. In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant. Life Sci. J. 8:462-468.
  • Hamida AO, El-Gindi AY, Hoda HA, Youssef MM, Asmahan ML. 2006. Evaluation of the nematicidal effects of a biotechnological product (Abamectin) on Meloidogyne incognita, root-knot nematode infecting cowpea plants. Pakistan J Nematol, 24: 75-79.
  • Hirsch PR, Mauchline TH, Mendum TA, Kerry BR. 2000. Detection of the nematophagous fungus Verticillium chlamydosporium in nematode-infested plant roots using PCR. Mycological Res, 104(4): 435-439.
  • Jang SE, Hyun YJ, Oh YJ, Choi KB, Kim T, Yeo IH, Han MJ, Kim DH. 2011. Adhesion activity of Lactobacillus plantarum PM 008 isolated from kimchi on the intestine of mice. J Bacteriol Virol, 41: 83-90.
  • Jansson RK, Rabatin S. 1998. Potential of foliar, dip, and injection applications of avermectins for control of plant-parasitic nematodes. J Nematology, 30(1): 65.
  • Jayakumar J. 2009. Bio-efficacyof Streptomyces avermitilis culture filtrates against root knot nematode, Meloidogyne incognita and reniform nematodes, Rotylenchulus reniforms. Karnataka J Agri Sci, 22: 567-571.
  • Jones J T, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Perry RN. 2013. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molec Plant Pathol, 14(9): 946-961.
  • Khalil MS. 2012. A comparison study with alternative biorational agents to suppress the root-knot nematode populations and galls formation in tomato plants. Inter J Nematol, 22: 112-116.
  • Khalil MS. 2013. Abamectin and azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. J. Plant Pathol Microbiol, 4(4): 1-7.
  • Kim Y, Mylonakis E. 2012. Caenorhabditis elegans immune conditioning with the probiotic bacterium L. acidophilus strain NCFM enhances gram positive immune responses. Infect Immunity, 80: 2500– 2508.
  • Kirkpatrick TL, Hope AR, Lawrence KS, Lawrence GW, Mueller JD, Blackville SC, French NM. 2006. Greenhouse evaluation of experimental harpin-based seed and foliar treatments on root knot nematodes in cotton. Beltwide Cotton Conferences, January 3 - 6, San Antonio, Texas, USA, pp: 30-35.
  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Silva H. 2000. Nitric oxide and salicylic acid signaling in plant defense. Proceede National Acad Sci, 97(16): 8849-8855.
  • Koca YO. 2003. İki bitki aktivatörünün patateste bazı tarımsal özellikler üzerine etkileri. Yüksek Lisans Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı, İzmir, Türkiye, ss: 55.
  • Konappa NM, Maria M, Uzma F, Krishnamurthy S, Nayaka SC, Niranjana SR, Chowdappa S. 2016. Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Scientia Horticult, 207: 183-192.
  • Korayem AM, Mahmoud MAY, Moawad MMM. 2008. Effect of chitin and abamectin on Meloidogyne incognita infesting rape seed. J Plant Prot Res, 48: 365-370.
  • Kormin S, Rusul G, Radu S. Ling FH. 2001. Bacteriocin-producing lactic acid bacteria isolated from traditional fermented food. Malays J Med Sci, 8: 63-68.
  • Kumar KK, Arthurs S. 2021. Recent advances in the biological control of citrus nematodes: a review. Biol Cont, 157: 104593.
  • Kyndt T, Vieira P, Gheysen G, de Almeida-Engler J. 2013. Nematode feeding sites: unique organs in plant roots. Planta, 238: 807-818.
  • Li B et al. 2018. Modifying the formulation of abamectin to promote its efcacy on southern root-knot nematode (Meloidogyne incognita) under blending-of-soil and root-irrigation conditions. J Agric Food Chem, 66: 799–805.
  • Li X, Wang X, Zhang S, Liu D, Duan Y, Dong W. 2012. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PloS One, 7(6): e39650.
  • Lim JH, Yoon SM, Tan PL, Yang S, Kim SH, Park HJ. 2018. Probiotic properties of Lactobacillus plantarum LRCC5193, a plant-origin lactic acid bacterium isolated from kimchi and its use in chocolates. J Food Sci, 83:2802-2811
  • Lindgren SE, Dobrogosz WJ. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS microbiol. Rev, 7(1-2): 149-163.
  • Lisa M, Breitenbach FR, Miller RP. 2007. The effect of N-Hibit seed treatment on soybean yield at Kasson MN. 2007. University of Minnesota-Extension. Available at: http://www.extension.umn.edu/agriculture/cropsresearch/south/2007/docs/2007-n-hibit-seed-treatment-soybean.pdf. (accessed date: September 10, 2020).
  • Massoud MA, Saad AFS, Khalil MS, Zakaria M, Selim S. 2023. Comparative biological activity of abamectin formulations on root-knot nematodes (Meloidogyne spp.) infecting cucumber plants: in vivo and in vitro. Sci Rep, 13(1): 12418.
  • Ntalli NG, Ferrari F, Giannakou I, Menkissoglu‐Spiroudi U. 2011. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag Sci, 67(3): 341-351.
  • Omura S, K Shiomi. 2007. Discovery, chemistry, and chemical biology of microbial products. Pure Appl Chem, 79: 581-591.
  • Ozdemir E, Gozel U. 2017. Efficiency of some plant essential oils on root-knot nematode Meloidogyne incognita. J Agri Sci Tech A, 7(3): 178-183.
  • Qiao K, Liu X, Wang H, Xia X, Ji X, et al. 2012. Effect of abamectin on root-knot nematodes and tomato yield. Pest Manag Sci, 68: 853-857.
  • Qiao K, Duan HM, Wang HY, Wang Y, Wang KY, Wei M. 2014. The efficacy of the reduced rates of 1,3-D + abamectin for control of Meloidogyne incognita in tomato production in China. Sci Horticult, 178:248–252.
  • Qiu D, Xu N, Zhang Q, Zhou W, Wang Y, Zhang Z, Qian H. 2022. Negative effects of abamectin on soil microbial communities in the short term. Front Microbiol, 13: 1053153.
  • Quentin M, Abad P, Favery B. 2013. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Front Plant Sci, 4: 53.
  • Roder JD, Stair EL. 1998. An overviev of ivermectin toxicosis. Vet Hum Toxicol, 40: 369-370
  • Saad ASA, Massoud MA, Ibrahim HS, Khalil MS. 2012. Activity of nemathorin, natural product and bioproducts against root-knot nematodes on tomatoes. Arch Phytopathol Plant Prot, 45: 955-962.
  • Saravanakumar D, Charles VN, Kumarb R. 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot, 26: 556-565.
  • Sasanelli N, Toderas I, Veronico P, Iurcu-Straistaru E, Rusu S, Melillo MT, Caboni P. 2020. Abamectin efficacy on the potato Cyst nematode Globodera pallida. Plants, 9(1).
  • Sasanelli N, Toderaş I, Iurcu-Straistaru E, Bivol A, Rusu Ş, Konrat A, Andoni C. 2020. In vitro effect of abamectin from Streptomyces avermitilis on the survival of the cyst nematodes Globodera pallida, Heterodera carotae and Heterodera schachtii. Series B, Horticulture, 64(1): 1-11.
  • Seo HJ, Park AR, Kim S, Yeon J, Yu NH, Ha S, Kim JC. 2019. Biological control of root-knot nematodes by organic acid-producing Lactobacillus brevis wikim0069 isolated from kimchi. Plant Pathol J, 35(6): 662.
  • Shaver BR, Agudelo P, Martin S B. 2016. Use of abamectin and azoxystrobin for managing stubby-Root nematode (Trichodorus obtusus Cobb) damage to zoysiagrass. Crop Sci, 56: 1330–1336.
  • Stewart GR, Perry RN, Wright DJ. 1994. Immunocytochemical studies on the occurrence of gamma-aminobutyric acid (GABA) in the nervous system of the nematodes Panagrellus redivivus, Meloidogyne incognita and Globodera rostochiensis. Fund App Nematol, 17: 433-439.
  • Sticher L, Mauch-Mani B, Métraux AJ. 1997. Systemic acquired resistance. Annu Rev Phytopathol, 35(1): 235-270.
  • Stiles ME, Holzapfel WH. 1997. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol, 36: 1-29
  • Suraporn S, Sangsuk W, et al. 2015. Effects of probiotic bacteria on the growth parameters of the Thai silkworm, B. mori. Thai J Agri Sci, 48 (1): 29-33.
  • Sener C. 2015. Bazı bi̇tki̇ akti̇vatörleri̇ni̇n bi̇berde patates Y vi̇rüsüne karşı etki̇leri̇ni̇n beli̇rlenmesi̇. Doktora Tezi, Bursa Uludağ Universitesi, Bursa, Türkiye, ss: 92.
  • Tosun N, Ergün A. 2002. Bitkisel üretimde ve tarimsal savaşimda yeni bir yaklaşim olarak bitki aktivatörlerinin rolü. Tarım ve Köyişleri Bakanlığı Ege Tarımsal Araştırma Enstitüsü Müdürlüğü Yayın No: 109, TATEK/TYUAP Tarımsal Araştırma Yayım ve Koordinasyonu 2002 Yılı Tarla Bitkileri Grubu Bilgi Alışveriş Toplantısı Bildirileri, Ankara, Türkiye, ss: 251-263.
  • Trias R, Bañeras L, Montesinos E, Badosa E. 2008. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol, 11: 231-236.
  • Tylka G, Marett C. 2008. Field testing of N-HibitTM seed treatment in Iowa. Available at: http://crops.extension.iastate.edu/cropnews/2008/05/field-testing-nhibit%E2%84%A2-seed-treatment-iowa (accesed date: March 12, 2023).
  • Urmann K, Arshavsky-Graham S, Walter JG, Scheper T, Segal E. 2016. Whole-cell detection of live Lactobacillus acidophilus on aptamer-decorated porous silicon biosensors. Analyst, 141: 5432-5440
  • Vallad GE, Goodman RM. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci, 44(6): 1920-1934.
  • Van Loon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol, 36(1): 453-483.
  • Wei Z, Beer V. 1996. Harpin from Erwinia amylovora induces plant resistance. Act Hort, 411: 221-224.
  • Wei Z, Laby RL, Zumoff CH, Nauer DW, He SY, Collmer A, Beer SV. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Sci, 257: 85-88.
  • Yeon J, Park A R, Kim Y J, Seo HJ, Yu NH, Ha S, Park HW, Kim JC. 2019. Control of root-knot nematodes by a mixture of maleic acid and copper sulfate. Appl Soil Ecol, 141:61-68.
There are 73 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Fatma Gül Göze Özdemir 0000-0003-1969-4041

Harun Çimenkaya 0009-0001-3211-2045

Project Number 1919B012301069
Publication Date March 15, 2025
Submission Date October 21, 2024
Acceptance Date December 4, 2024
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Göze Özdemir, F. G., & Çimenkaya, H. (2025). Integrated Management of Meloidogyne incognita on Tomato Using Combinations of Commercial Abamectin and Plant Activator. Black Sea Journal of Agriculture, 8(2), 143-151. https://doi.org/10.47115/bsagriculture.1571516

                                                  24890