Research Article
BibTex RIS Cite

Mitochondrial Haplogroup Distribution in Elite Turkish Athletes

Year 2020, Volume: 14 Issue: 3, 494 - 502, 10.12.2020

Abstract

An individual’s athletic ability is influenced by genetic and environmental factors. Some mitochondrial haplogroups and polymorphisms have been shown to be associated with human performance. The aim of this study is to asses whether the frequency distribution of mitochondrial haplogroups is an association between elite Turkish wrestlers and non-athletes. Sequencing of the hypervariable region I in the mtDNA control region was performed in 126 individuals, consisting of 52 elite Turkish athletes and 74 healthy non-athletes. The sequences in the elite Turkish wrestlers and non-athletes were compared with the revised Cambridge Reference Sequence. The mitochondrial haplogroups were assigned with the human mtDNA database and 15 major mitochondrial haplogroups were identified in elite Turkish wrestlers. It was determined that the most common haplogroups in elite Turkish wrestlers compared with non-athlete group are H, U and K haplogroups. The mtDNA haplogroup frequencies of elite Turkish wrestlers and non-athletes were compared using Fisher's exact test. No statistically significant difference was found between elite Turkish wrestlers and non-athletes (p=0.4186). However, significant differences were determined in the K and U3 haplogroups among elite Turkish wrestlers compared to the non-athletic group (p ˂ 0.05).

Supporting Institution

Gazi University

Project Number

02/2010-33

References

  • 1. Lucia A., Moran M., Zihong H., Ruiz J.R. (2010). Elite athletes: are the genes the champions?. International Journal of Sports Physiology and Performance. 5, 98-102.
  • 2. Thompson PD., Moyna N., Seip R., Price T., Clarkson P., Angelopoulos T., Gordon P., Pescatello L., Visich P., Zoeller R., Devaney JM., Gordish H., Bilbie S., Hoffman EP. (2004). Functional polymorphisms associated with human muscle size and strength. Medicine and Science in Sports and Exercise. 36(7), 1132-1139.
  • 3. Bouchard C., Rankinen T., Timmons JA. (2011). Genomics and genetics in the biology of adaptation to exercise. Comprehensive Physiology. 1(3), 1603-1648.
  • 4. De Moor MH., Spector TD., Cherkas LF., Falchi M., Hottenga JJ., Boomsma DI. (2007). Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Research and Human Genetics. 10(6), 812-820.
  • 5. Bray MS., Hagberg JM., Pérusse L., Rankinen T., Roth SM., Wolfarth B., Bouchard C. (2009). The human gene map for performance and health-related fitness phenotypes: The 2006–2007 update. Medicine and Science in Sports and Exercise. 41(1), 35-73.
  • 6. Gineviciene V,, Pranculis A,, Jakaitiene A,, Milasius K,, Kucinskas V. (2011). Genetic variation of the human ACE and ACTN3 genes and their association with functional muscle properties in Lithuanian elite athletes. Medicina (Kaunas). 47(5), 284-290.
  • 7. Eynon N., Hanson ED., Lucia A., Houweling PJ., Garton F., North KN., Bishop DJ. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sports Medicine. 43, 803-817.
  • 8. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J., Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. (1981). Sequence and organization of the human mitochondrial genome. Nature. 290, 457-465. 9. Horai S., Hayasaka K. (1990). Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. American Journal of Human Genetics. 46, 828-842.
  • 10. Shokolenko IN,, Alexeyev MF. (2015). Mitochondrial DNA: A disposable genome? Biochimica et Biophysica Acta. 1852(9), 1805-1809.
  • 11. Giles RE., Blanc H., Cann HM., Wallace DC. (1980). Maternal inheritance of human mitochondrial DNA. Proceedings of the National Academy of Sciences (Proceedings of the National Academy of Sciences of the United States of America). 77(11), 6715-6719.
  • 12. Ballard JW., Dean MD. (2001). The mitochondrial genome: mutation, selection and recombination. Current Opinion in Genetics & Development. 11(6), 667-672. 13.
  • 13. Blau S., Catelli L., Garrone F., Hartman D., Romanini C., Romero M, Vullo CM. (2014). The contributions of anthropology and mitochondrial DNA analysis to the identification of the human skeletal remains of the Australian outlaw Edward ‘Ned’ Kelly. Forensic Science International. 240, e11-e21.
  • 14. Kabekkodu SP., Bhat S., Mascarenhas R., Mallya S., Bhat M., Pandey D., Kushtagi P., Thangaraj K,, Gopinath PM,, Satyamoorthy K. (2014). Mitochondrial DNA variation analysis in cervical cancer. Mitochondrion. 16, 73-82.
  • 15. Kurtulus Ulkuer M., Ulkuer U., Baris I. (2015). Evaluation of SNPs in the mitochondrial DNA using NanoChip microarray in Turkish Population. International Journal of Medical Genetics. 15(3), 121-129.
  • 16. Castro MG., Terrados N., Reguero JR., Alvarez V., Coto E. (2007). Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion. 7, 354-57.
  • 17. Ahmetov II., Egorova ES., Gabdrakhmanova LJ., Fedotovskaya ON. (2016). Genes and athletic performance: An update. Medicine and Sport Science. 61, 41-54.
  • 18. Scott RA., Fuku N., Onywera VO., Boit M., Wilson RH., Tanaka M., Goodwin WH., Pitsiladis YP. (2009). Mitochondrial haplogroups associated with elite Kenyan athlete status. Medicine and Science in Sports and Exercise. 41(1), 123-128.
  • 19. Williams AG., Folland JP. (2008). Similarity of polygenic profiles limits the potential for elite human physical performance. The Journal of Physiology. 586(1), 113-121.
  • 20. Yvert T., Miyamoto-Mikami E., Murakami H., Miyachi M., Kawahara T, Fuku N. (2016). Lack of replication of associations between multiple genetic polymorphisms and endurance athlete status in Japanese population. Physiological Reports. 4(20), e13003.
  • 21. Miyamoto-Mikami E., Murakami H., Tsuchie H., Takahashi H., Ohiwa N., Miyachi M. (2017). Lack of association between genotype score and sprint/power performance in the Japanese population. Journal of Science and Medicine in Sport. 20, 98-103.
  • 22. Ruiz JR., Arteta D., Buxens A., Artieda M., Gómez-Gallego F., Santiago C, Yvert T., Morán M., Lucia A. (2010). Can we identify a power-oriented polygenic profile? Journal of Applied Physiology. 108, 561-566.
  • 23. Hughes DC., Day SH., Ahmetov II., Williams AG. (2011). Genetics of muscle strength and power: polygenic profile similarity limits skeletal muscle performance. Journal of Sports Sciences. 29, 1425-1434.
  • 24. Turgut G., Turgut S., Genc O., Atalay A., Atalay EO. (2004). The angiotensin converting enzyme I/D polymorphism in Turkish athletes and sedentary controls. Acta Medica (Hradec Kralove). 47(2), 133-136.
  • 25. Yamak B., Yuce M., Bagci H., Imamoglu O. (2015). Association between sport performance and alpha-actinin-3 gene R577X polymorphism. International Journal of Human Genetics. 15(1), 13-19.
  • 26. Sambrook, J., Fritsch, E.F., Maniatis T. (1989). Molecular cloning–a laboratory manual, 2nd edition. New York, Cold Spring Harbor Laboratory Press.
  • 27. Parson W., Parsons TJ., Scheithauer R., Holland MM. (1998). Population data for 101 Austrian Caucasian mitochondrial DNA D-loop sequences: Application of mtDNA sequence analysis to a forensic case. International Journal of Legal Medicine. 111, 124-132.
  • 28. Andrews RM., Kubacka I., Chinnery PF., Lightowlers RN., Turnbull DM., Howell N. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genetics. 23, 147.
  • 29. Sievers F., Wilm A., Dineen D., Gibson TJ., Karplus K. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 7, 539.
  • 30. Brandon MC., Ruiz-Pesini E., Mishmar D., Procaccio V., Lott MT., Nguyen KC., Spolim S., Patil U., Baldi P., Wallace DC. (2009). MITOMASTER: a bioinformatics tool for the analysis of mitochondrial DNA sequences. Human Mutation. 30(1), 1-6.
  • 31. Nogales-Gadea G., Pinós T., Ruiz JR., Marzo PF., Fiuza-Luces C., López-Gallardo E., Ruiz-Pesini E., Martín MA., Arenas J., Morán M., Andreu AL., Lucia A. (2011). Are mitochondrial haplogroups associated with elite athletic status? A study on a Spanish cohort. Mitochondrion. 11, 905-908.
  • 32. Mikami E., Fuku N., Kong QP., Takahashi H., Ohiwa N., Murakami H., Miyachi M., Higuchi M., Tanaka M., Pitsiladis YP., Kawahara T. (2013). Comprehensive analysis of common and rare mitochondrial DNA variants in elite Japanese athletes: a case–control study. Journal of Human Genetics. 58(12), 780-787.
  • 33. Kiiskilä J., Moilanen JS., Kytövuori L., Niemi AK., Kari Majamaa K. (2019). Analysis of functional variants in mitochondrial DNA of Finnish athletes. BMC Genomics. 20(1), 784.
  • 34. Thompson MA. (2017). Physiological and biomechanical mechanisms of distance specific human running performance. Integrative and Comparative Biology. 57(2), 293-300.
  • 35. Niemi AK., Majamaa K. (2005). Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. European Journal of Human Genetics. 13, 965-969.   36. Maruszak A., Adamczyk JG., Siewierski M., Sozanski H., Gajewski A., Żekanowski C. (2014). Mitochondrial DNA variation is associated with elite athletic status in the Polish population. Scandinavian Journal of Medicine & Science in Sports. 24, 311-318.
  • 37. Arjmand S., Khaledi N., Fayazmilani R., Lotfi AS., Tavana H. (2017). Association of mitochondrial DNA haplogroups with elite athletic status in Iranian population. Meta Gene. 11, 81-4.
  • 38. Wallace DC. (2010). Bioenergetics, the origins of complexity, and the ascent of man. Proceedings of the National Academy of Sciences of the United States of America. 107, 8947-8953.
  • 39. Mikami E., Fuku N., Takahashi H., Ohiwa N., Scott RA., Pitsiladis YP., Higuchi M., Kawahara T., Tanaka M. (2011). Mitochondrial haplogroups associated with elite Japanese athlete status. British Journal of Sports Medicine. 45(15), 179-1183.
  • 40. Fuku N., Murakami H., Lemitsu M., Sanada K., Tanaka M., Miyachi M. (2012). Mitochondrial macrohaplogroup associated with muscle power in healthy adults. International Journal of Sports Medicine. 33(5), 410-414.

MITOCHONDRIAL HAPLOGROUP DISTRIBUTION IN TURKISH ELITE ATHLETES

Year 2020, Volume: 14 Issue: 3, 494 - 502, 10.12.2020

Abstract

Bir bireyin atletik yeteneği genetik ve çevresel faktörlerin etkisindedir. Bazı mitokondriyal haplogrup ve polimorfizmlerin insan performansı ile ilişkisi gösterilmiştir. Bu çalışmanın amacı; mitokondriyal haplogrupların frekans dağılımının elit Türk güreşçiler ve sporcu olmayanlar arasında bir ilişkinin olup olmadığını değerlendirmektir. mtDNA kontrol bölgesindeki hiperdeğişken bölge I dizilemesi 52 elit Türk sporcu ve 74 sağlıklı atlet olmayan bireyden oluşan 126 kişide yapıldı. Elit Türk güreşçiler ve sporcu olmayanların dizileri revize edilmiş Cambridge Referans Dizisi ile karşılaştırıldı. Mitokondriyal haplogruplar insan mtDNA veri tabanı kullanılarak atandı ve elit Türk güreşçilerinde 15 major mitokondriyal haplogrup tespit edildi. Türk güreşçileri atlet olmayan grupla kıyaslandığında; elit Türk güreşçilerinde en yaygın haplogrupların H, U ve K haplogrupları olduğu belirlendi. Elit Türk güreşçiler ile atlet olmayanların mitokondriyal haplogrup frekansları Fisher exact testi kullanılarak karşılaştırıldı. Elit Türk güreşçiler ve sporcu olmayanlar arasında istatistiksel olarak anlamlı bir fark bulunmadı (p = 0.4186). Buna karşın, atletik olmayan gruba göre elit Türk güreşçiler arasında K ve U3 haplogruplarında önemli farklılıklar tespit edildi (p ˂ 0.05).

Project Number

02/2010-33

References

  • 1. Lucia A., Moran M., Zihong H., Ruiz J.R. (2010). Elite athletes: are the genes the champions?. International Journal of Sports Physiology and Performance. 5, 98-102.
  • 2. Thompson PD., Moyna N., Seip R., Price T., Clarkson P., Angelopoulos T., Gordon P., Pescatello L., Visich P., Zoeller R., Devaney JM., Gordish H., Bilbie S., Hoffman EP. (2004). Functional polymorphisms associated with human muscle size and strength. Medicine and Science in Sports and Exercise. 36(7), 1132-1139.
  • 3. Bouchard C., Rankinen T., Timmons JA. (2011). Genomics and genetics in the biology of adaptation to exercise. Comprehensive Physiology. 1(3), 1603-1648.
  • 4. De Moor MH., Spector TD., Cherkas LF., Falchi M., Hottenga JJ., Boomsma DI. (2007). Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Research and Human Genetics. 10(6), 812-820.
  • 5. Bray MS., Hagberg JM., Pérusse L., Rankinen T., Roth SM., Wolfarth B., Bouchard C. (2009). The human gene map for performance and health-related fitness phenotypes: The 2006–2007 update. Medicine and Science in Sports and Exercise. 41(1), 35-73.
  • 6. Gineviciene V,, Pranculis A,, Jakaitiene A,, Milasius K,, Kucinskas V. (2011). Genetic variation of the human ACE and ACTN3 genes and their association with functional muscle properties in Lithuanian elite athletes. Medicina (Kaunas). 47(5), 284-290.
  • 7. Eynon N., Hanson ED., Lucia A., Houweling PJ., Garton F., North KN., Bishop DJ. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sports Medicine. 43, 803-817.
  • 8. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J., Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. (1981). Sequence and organization of the human mitochondrial genome. Nature. 290, 457-465. 9. Horai S., Hayasaka K. (1990). Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. American Journal of Human Genetics. 46, 828-842.
  • 10. Shokolenko IN,, Alexeyev MF. (2015). Mitochondrial DNA: A disposable genome? Biochimica et Biophysica Acta. 1852(9), 1805-1809.
  • 11. Giles RE., Blanc H., Cann HM., Wallace DC. (1980). Maternal inheritance of human mitochondrial DNA. Proceedings of the National Academy of Sciences (Proceedings of the National Academy of Sciences of the United States of America). 77(11), 6715-6719.
  • 12. Ballard JW., Dean MD. (2001). The mitochondrial genome: mutation, selection and recombination. Current Opinion in Genetics & Development. 11(6), 667-672. 13.
  • 13. Blau S., Catelli L., Garrone F., Hartman D., Romanini C., Romero M, Vullo CM. (2014). The contributions of anthropology and mitochondrial DNA analysis to the identification of the human skeletal remains of the Australian outlaw Edward ‘Ned’ Kelly. Forensic Science International. 240, e11-e21.
  • 14. Kabekkodu SP., Bhat S., Mascarenhas R., Mallya S., Bhat M., Pandey D., Kushtagi P., Thangaraj K,, Gopinath PM,, Satyamoorthy K. (2014). Mitochondrial DNA variation analysis in cervical cancer. Mitochondrion. 16, 73-82.
  • 15. Kurtulus Ulkuer M., Ulkuer U., Baris I. (2015). Evaluation of SNPs in the mitochondrial DNA using NanoChip microarray in Turkish Population. International Journal of Medical Genetics. 15(3), 121-129.
  • 16. Castro MG., Terrados N., Reguero JR., Alvarez V., Coto E. (2007). Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion. 7, 354-57.
  • 17. Ahmetov II., Egorova ES., Gabdrakhmanova LJ., Fedotovskaya ON. (2016). Genes and athletic performance: An update. Medicine and Sport Science. 61, 41-54.
  • 18. Scott RA., Fuku N., Onywera VO., Boit M., Wilson RH., Tanaka M., Goodwin WH., Pitsiladis YP. (2009). Mitochondrial haplogroups associated with elite Kenyan athlete status. Medicine and Science in Sports and Exercise. 41(1), 123-128.
  • 19. Williams AG., Folland JP. (2008). Similarity of polygenic profiles limits the potential for elite human physical performance. The Journal of Physiology. 586(1), 113-121.
  • 20. Yvert T., Miyamoto-Mikami E., Murakami H., Miyachi M., Kawahara T, Fuku N. (2016). Lack of replication of associations between multiple genetic polymorphisms and endurance athlete status in Japanese population. Physiological Reports. 4(20), e13003.
  • 21. Miyamoto-Mikami E., Murakami H., Tsuchie H., Takahashi H., Ohiwa N., Miyachi M. (2017). Lack of association between genotype score and sprint/power performance in the Japanese population. Journal of Science and Medicine in Sport. 20, 98-103.
  • 22. Ruiz JR., Arteta D., Buxens A., Artieda M., Gómez-Gallego F., Santiago C, Yvert T., Morán M., Lucia A. (2010). Can we identify a power-oriented polygenic profile? Journal of Applied Physiology. 108, 561-566.
  • 23. Hughes DC., Day SH., Ahmetov II., Williams AG. (2011). Genetics of muscle strength and power: polygenic profile similarity limits skeletal muscle performance. Journal of Sports Sciences. 29, 1425-1434.
  • 24. Turgut G., Turgut S., Genc O., Atalay A., Atalay EO. (2004). The angiotensin converting enzyme I/D polymorphism in Turkish athletes and sedentary controls. Acta Medica (Hradec Kralove). 47(2), 133-136.
  • 25. Yamak B., Yuce M., Bagci H., Imamoglu O. (2015). Association between sport performance and alpha-actinin-3 gene R577X polymorphism. International Journal of Human Genetics. 15(1), 13-19.
  • 26. Sambrook, J., Fritsch, E.F., Maniatis T. (1989). Molecular cloning–a laboratory manual, 2nd edition. New York, Cold Spring Harbor Laboratory Press.
  • 27. Parson W., Parsons TJ., Scheithauer R., Holland MM. (1998). Population data for 101 Austrian Caucasian mitochondrial DNA D-loop sequences: Application of mtDNA sequence analysis to a forensic case. International Journal of Legal Medicine. 111, 124-132.
  • 28. Andrews RM., Kubacka I., Chinnery PF., Lightowlers RN., Turnbull DM., Howell N. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genetics. 23, 147.
  • 29. Sievers F., Wilm A., Dineen D., Gibson TJ., Karplus K. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 7, 539.
  • 30. Brandon MC., Ruiz-Pesini E., Mishmar D., Procaccio V., Lott MT., Nguyen KC., Spolim S., Patil U., Baldi P., Wallace DC. (2009). MITOMASTER: a bioinformatics tool for the analysis of mitochondrial DNA sequences. Human Mutation. 30(1), 1-6.
  • 31. Nogales-Gadea G., Pinós T., Ruiz JR., Marzo PF., Fiuza-Luces C., López-Gallardo E., Ruiz-Pesini E., Martín MA., Arenas J., Morán M., Andreu AL., Lucia A. (2011). Are mitochondrial haplogroups associated with elite athletic status? A study on a Spanish cohort. Mitochondrion. 11, 905-908.
  • 32. Mikami E., Fuku N., Kong QP., Takahashi H., Ohiwa N., Murakami H., Miyachi M., Higuchi M., Tanaka M., Pitsiladis YP., Kawahara T. (2013). Comprehensive analysis of common and rare mitochondrial DNA variants in elite Japanese athletes: a case–control study. Journal of Human Genetics. 58(12), 780-787.
  • 33. Kiiskilä J., Moilanen JS., Kytövuori L., Niemi AK., Kari Majamaa K. (2019). Analysis of functional variants in mitochondrial DNA of Finnish athletes. BMC Genomics. 20(1), 784.
  • 34. Thompson MA. (2017). Physiological and biomechanical mechanisms of distance specific human running performance. Integrative and Comparative Biology. 57(2), 293-300.
  • 35. Niemi AK., Majamaa K. (2005). Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. European Journal of Human Genetics. 13, 965-969.   36. Maruszak A., Adamczyk JG., Siewierski M., Sozanski H., Gajewski A., Żekanowski C. (2014). Mitochondrial DNA variation is associated with elite athletic status in the Polish population. Scandinavian Journal of Medicine & Science in Sports. 24, 311-318.
  • 37. Arjmand S., Khaledi N., Fayazmilani R., Lotfi AS., Tavana H. (2017). Association of mitochondrial DNA haplogroups with elite athletic status in Iranian population. Meta Gene. 11, 81-4.
  • 38. Wallace DC. (2010). Bioenergetics, the origins of complexity, and the ascent of man. Proceedings of the National Academy of Sciences of the United States of America. 107, 8947-8953.
  • 39. Mikami E., Fuku N., Takahashi H., Ohiwa N., Scott RA., Pitsiladis YP., Higuchi M., Kawahara T., Tanaka M. (2011). Mitochondrial haplogroups associated with elite Japanese athlete status. British Journal of Sports Medicine. 45(15), 179-1183.
  • 40. Fuku N., Murakami H., Lemitsu M., Sanada K., Tanaka M., Miyachi M. (2012). Mitochondrial macrohaplogroup associated with muscle power in healthy adults. International Journal of Sports Medicine. 33(5), 410-414.
There are 38 citations in total.

Details

Primary Language English
Subjects Sports Medicine
Journal Section Research Articles
Authors

Melahat Kurtuluş 0000-0002-4950-2242

Mehmet Gunay 0000-0003-0047-2203

Çağrı Çelenk 0000-0003-2448-3011

Abdurrahman Olğaç 0000-0001-8470-4942

Tahsin Kesici This is me 0000-0002-7721-6390

Project Number 02/2010-33
Publication Date December 10, 2020
Submission Date November 3, 2020
Acceptance Date December 8, 2020
Published in Issue Year 2020 Volume: 14 Issue: 3

Cite

APA Kurtuluş, M., Gunay, M., Çelenk, Ç., Olğaç, A., et al. (2020). Mitochondrial Haplogroup Distribution in Elite Turkish Athletes. Beden Eğitimi Ve Spor Bilimleri Dergisi, 14(3), 494-502.

16227

16228

16229

16230