Review
BibTex RIS Cite

HAREKET HASTALIĞI VE SANAL ORTAM

Year 2022, Volume: 16 Issue: 1, 22 - 39, 16.03.2022

Abstract

Yeni teknolojilerin benimsenmesi ve teknolojinin yaşam üzerindeki etkisinin artmasıyla hareket hastalığı araştırmalarının sanal ortamlarda yoğunlaşmaya başladığı görülmektedir. Bununla birlikte görsel olarak uyarılan hareket hastalığının neden olduğu göz yorgunluğu, baş ağrısı, baş dönmesi, mide bulantısı ve postural kontrol kaybı gibi istenmeyen semptomlar bireyleri etkilemeye devam etmektedir. Sanal gerçeklik teknolojilerinin kullanımının olası faydaları göz önüne alındığında kullanım alanlarını sınırlayan olumsuz etkilerini anlamak oldukça önem taşımaktadır. Bu çalışmada; hareket hastalığının etiyolojisi hakkında genel bir bilgi verilerek, teknolojiye bağlı olarak gelişen hareket hastalığının bireyler üzerindeki olası etkilerinin araştırıldığı çalışmalardan elde edilen bulguların sunulması amaçlanmıştır. Hareket hastalığı ile ilgili verilerin belirlenen anahtar kelimeler ile taranarak konuyla bağlantılı olan çalışmaların seçilmesiyle oluşturulmuş geleneksel bir derlemedir. Sonuç olarak; yaşamın çoğu alanının bir parçası haline gelen sanal gerçeklik cihazlarının kullanımındaki artışın görsel olarak uyarılan hareket hastalığının oluşumunu ve etkilerini arttırdığı, bireyleri bedensel ve bilişsel problemlerle karşı karşıya bıraktığı, yaşam kalitesi ve iş verimliliğinde olumsuz etkiler oluşturduğu görülmüştür. Sanal gerçeklik teknolojilerinin kullanım alanlarının artması ve kişiler üzerinde oluşturduğu olumsuz etkilerin önemi göz önüne alındığında görsel olarak uyarılan hareket hastalığı oluşumuna bağlı kısıtlamaların anlaşılması giderek daha önemli olacaktır. Hareket hastalığının oluşumunun erken bir aşamada tespit edilmesine yardımcı olmak için bulunacak etkili yöntemlerle sanal gerçeklik teknolojilerinin kullanımının yaygınlaştığı çoğu alanda güvenli kullanımı için katkı sağlayacağı düşünülmektedir. Bu anlamda hareket hastalığının ortaya çıkardığı olumsuz etkilerin anlaşılabilmesi ve en aza indirilebilmesi için daha fazla araştırmaya ihtiyaç olduğu anlaşılmaktadır.

References

  • Johnson DM. (2005). Introduction to and review of simulator sickness research. U.S. Army Research Institute for the Behavioral and Social Sciences. Research Report. 1-59.
  • Zhang LL., Wang JQ., Qi RR., Pan LL., Li M., Cai YL. (2016). Motion sickness: current knowledge and recent advance. CNS Neuroscience & Therapeutics. 22(1), 15-24.
  • Benson AJ. (1999). Motion sickness. İçinde: Nicholson AN., Rainford DS., Ernsting J. (editor). Aviation medicine. Butterworth Heinemann. Oxford, 455-471.
  • Kennedy RS., Frank LH. (1985). A review of motion sickness with special reference to simulator sickness, Tech Rep Navtraequipcen.1-45. Orlando. Florida
  • Reason JT., Brand JJ. (1975). Motion sickness. Academic Press. London. 83-310.
  • Bakwin H. (1949). Motion sickness in children. The Journal of Pediatrics. 35(3), 390-393.
  • Ebenholtz SM. (1992). Motion sickness and oculomotor systems in virtual environments. Presence. 1(3), 302-305.
  • Shupak A., Gordon CR. (2006). Motion sickness: advances in pathogenesis, prediction, prevention and treatment. Aviation, Space, and Environmental Medicine. 77(12),1213-1223.
  • Hettinger LJ., Riccio GE. (1992). Visually induced motion sickness in virtual environments. Presence: Teleoperators and Virtual Environments. 1(3), 306-310.
  • Keshavarz B., Hecht H. (2012). Stereoscopic viewing enhances visually induced motion sickness but sound does not. Presence. 21(2), 213-228.
  • Kobayashi N., Yamazaki H., Ishikawa M., Momose Y. (2015). Effects of visual induced motion sickness of stereoscopic 3D interactive video, 2015 IEEE 4th Global Conference on Consumer Electronics. 664-65. Osaka. Japan
  • Nesbitt K., Davis S., Blackmore K., Nalivaiko E. (2017). Correlating reaction time and nausea measures with traditional measures of cybersickness. Displays. 48, 1-8.
  • Kennedy RS., Drexler J., Kennedy RC. (2010). Research in visually induced motion sickness. Applied Ergonomics. 41(4), 494-503.
  • Benzeroual K., Allison RB. (2013). Cyber (motion) sickness in active stereoscopic 3D gaming, International Conference on 3D Imaging. 1-7. Liege. Belgium
  • Munafo J., Diedrick M., Stoffregen TA. (2017). The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental Brain Research. 235(3), 889-901.
  • Zyda M. (2005). From visual simulation to virtual reality to games. Computer. 38(9), 25-32.
  • Fitzgerald D., Foody J., Kelly D., Ward T., Markham C., McDonald J., Caulfield B. (2007). Development of a wearable motion capture suit and virtual reality biofeedback system for the instruction and analysis of sports rehabilitation exercises, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 4870-4874. Lyon. France
  • Kiefer W., DiCesare C., Bonnette S., Kitchen K., Gadd B., Thomas S., Barber Foss KD., Myer GD., Riley MA., Silva P. (2017). Sport-specific virtual reality to identify profiles of anterior cruciate ligament injury risk during unanticipated cutting, 2017 International Conference on Virtual Rehabilitation. 1-8. Canada
  • Ginja GA. (2018). Applications of virtual reality in the practice of para-badminton, 20th Symposium on Virtual and Augmented Reality. 230-232. Foz do Iguaçu. Brazil
  • Liu H., Z. Wang Z., Mousas C., Kao D. (2020). Virtual reality racket sports: virtual drills for exercise and training, In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 566-576. Recife. Porto de Galinhas
  • Mahalil AM,. Yusof N., Ibrahim. (2020). A literature review on the usage of Technology Acceptance Model for analysing a virtual reality's cycling sport applications with enhanced realism fidelity, 8th International Conference on Information Technology and Multimedia. 237-242. Selangor. Malaysia
  • Viirre E., Clark JB. (2017). Airsickness and space sickness. Aeromedical Psychology. 195-213.
  • Golding JF. (2006). Motion sickness susceptibility. Autonomic Neuroscience. 129,(1-2), 67-76.
  • Reason JT. (1970). Motion sickness: a special case of sensory rearrangement. Advancement of Science. 26(130), 386-393.
  • Kato K., Kitazaki S. (2006). A study for understanding carsickness based on the sensory conflict theory. SAE Technical Paper. 01-0096.
  • Wang XC., Shi ZH., Bian K., Zhang L., Xue JH., Yang GQ., Ge XS., Zhang ZM. (2014). The comparison of sensitivity of motion sickness between retinal degeneration fast mice and normal mice. Journal of Comparative Physiology A. 200(4), 327-332.
  • Benson AJ. (1999). Operational aviation medicine. In: Ernsting J., Nicholson AN., Rainford DJ. (editor). Aviation medicine. 3rd edition. Butterworths. London, 464.
  • Gianaros PJ., Muth ER., Mordkoff JT., Levine ME., Stern RM. (2001). A questionnaire for the assessment of the multiple dimensions of motion sickness. Aviation, Space, and Environmental Medicine. 72(2),115-119.
  • Golding JF., Gresty MA. (2013). Motion sickness and disorientation in vehicles. Oxford testbook of vertigo and imbalance. Oxford University Press. 293-305.
  • Owen N., Leadbetter AG., Yardley L. (1998). Relationship between postural control and motion sickness in healthy subjects. Brain Research Bulletin. 47(5), 471-474.
  • Bos JE. (2011). Nuancing the relationship between motion sickness and postural stability. Displays. 32(4), 189-193.
  • Bos JE., Ledegang WD., Lubeck AJA., Stins JF. (2013). Cinerama sickness and postural instability. Ergonomics. 56, 1430-1436.
  • Chen YC., Dong X., Chen FC., Stoffregen TA. (2012). Control of a virtual avatar influences postural activity and motion sickness. Ecological Psychology. 24(4), 279-299.
  • Stoffregen TA., Smart LJ. (1998). Postural instability precedes motion sickness. Brain Research Bulletin. 47(5), 437-448.
  • Brainard A., Gresham C. (2014). Prevention and treatment of motion sickness. American Family Physician. 90(1), 41-46.
  • Dobie T., McBride D., Dobie TJ., May J. (2001). The effects of age and sex on susceptibility to motion sickness. Aviation, Space, and Environmental Medicine. 72(1), 13-20.
  • Lawther A., Griffin MJ. (1988). Motion sickness and motion characteristics of vessels at sea. Ergonomics. 31(10), 1373-1394.
  • Henriques IF., de Oliveira DWD., Oliveira-Ferreira F., Andrade PMO. (2014). Motion sickness prevalence in school children. European Journal of Pediatrics. 173(11), 1473-1482.
  • Irwin JA. (1881). The pathology of sea-sickness. The Lancet. 118(3039), 907-909.
  • Benson AJ. (1984). Motion sickness. In: Dix MR., Hood JD. (editor). Vertigo. John Wiley & Sons Ltd. Chichester. England, 391-425.
  • Lubeck AJA., Bos JE., Stins JF. (2015). Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway. Displays. 38, 55-61.
  • Nürnberger M., Klingner C., Witte OW., Brodoehl S. (2021). Mismatch of visual-vestibular information in virtual reality: is motion sickness part of the brains attempt to reduce the prediction error?. Frontiers in Human Neuroscience. 648(15),757-735.
  • Wei-Te T., Chen C-H. (2020). A haptic feedback device reduces dizziness in users watching a virtual reality video, In 2020 The 4th International Conference on Education and Multimedia Technology. 223-225. Japan.
  • Stoffregen TA., Riccio GE. (1988). An ecological theory of orientation and the vestibular system. Psychological Review. 95(1), 3-14.
  • Riccio GE., Stoffregen TA. (1991). An ecological theory of motion sickness and postural instability. Ecological Psychology. 3(3), 195-240.
  • Stoffregen TA. (2011). Motion sickness considered as a movement disorder. Science & Motricité. 74, 19-30.
  • Krueger M. (1992). Artificial reality. 2nd Edition. Addison-Wesley Publishing.
  • Stanney K., Salvendy G., Deisinger J., DiZio P., Ellis S., Ellison J., Fogleman G., Gallimore J., Singer M., Hettinger L., Kennedy R., Lackner J., Lawson B., Maida J., Mead A., Mon-Williams M., Newman D., Piantanida T., Reeves L., Riedel O., Stoffregen TA., Wann J., Welch R., Wilson J., Witmer B. (1998). After effects and sense of presence in virtual environments: formulation of a research and development agenda. International Journal of Human-Computer Interaction. 10(2), 135-187.
  • Kennedy RS., Fowlkes JE., Lilienthal MG. (1993). Postural and performance changes following exposures to flight simulators. Aviation, Space, and Environmental Medicine. 64, 912-920.
  • Stoffregen TA., Chen Y-C., Koslucher FC. (2014). Motion control, motion sickness, and the postural dynamics of mobile devices. Experimental Brain Research. 232(4), 1389-1397.
  • Vinson NG., Lapointe JF., Parush A., Roberts S. (2012). Cybersickness induced by desktop virtual reality, Proceedings of the 2012 Graphics Interface Conference. 69-75. Canada
  • Ujike H., Ukai K., Nihei K. (2008). Survey on motion sickness-like symptoms provoked by viewing a video movie during junior high school class. Displays. 29(2), 81-89.
  • Maino DM., Chase C. (2011). Asthenopia: a technology induced visual impairment. Review of Optometry. 148(6), 28-36.
  • Reason JT. (1978). Motion sickness adaptation: a neural mismatch model. Journal of the Royal Society of Medicine. 71(11), 819-829.
  • Read JC., Bohr I. (2014). User experience while viewing stereoscopic 3D television. Ergonomics. 57(8),1140-1153.
  • Solimini AG. (2013). Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness. PLoS One. 8(2), e56160.
  • Bonato F., Bubka A., Palmisano SW., Phillip D., Moreno G. (2008). Vection change exacerbates simulator sickness in virtual environments. Presence: Teleoperators and Virtual Environments. 17(3), 283-292.
  • Villard SJ., Flanagan MB., Albanese GM., Stoffregen TA. (2008). Postural instability and motion sickness in a virtual moving room. Human Factors. 50(2), 332-345.
  • Yang SN., Schlieski T., Selmins B., Cooper SC., Doherty RA., Corriveau PJ., Sheedy JE. (2012). stereoscopic viewing and reported perceived ımmersion and symptoms. optometry and vision science. Optometry and Vision Science. 89(7), 1068-1080.
  • Baranowski AM., Keller K., Neumann J., Hecht H. (2016). Genre-dependent effects of 3D film on presence, motion sickness, and protagonist perception. Displays. 44, 53-59.
  • Wibirama S., Nugrohoa HA., Hamamotob K. (2018). Depth gaze and ECG based frequency dynamics during motion sickness in stereoscopic 3D movie. Entertainmet Computting. 26, 117-127.
  • Stanney KM., Kingdon KS., Nahmens I., Kennedy RS. (2003). What to expect from immersive virtual environment exposure: influences of age, gender, body mass index, and past experience. Human Factors. 45(3), 504-520.
  • Murph D. (2007). Therapists, army using wii to rehabilitate patients. https://www.engadget.com/2007-10-03-therapists-army-using-wii-to-rehabilitate-patients.html. [Erişim tarihi: 03.01.2021]
  • Sharar SR., Miller W., Teeley A., Soltani M., Hoffman HG., Jensen MP., Patterson DR. (2008). Applications of virtual reality for pain management in burn-injured patients. Expert Review of Neurotherapeutics. 8(11), 1667-1674.
  • Treleaven J., Battershill J., Cole D., Fadelli C., Freestone S., Lang K., Sarig-Bahat H. (2015). Simulator sickness incidence and susceptibility during neck motion-controlled virtual reality tasks. Virtual Reality. 19(3), 267-275.
  • Ling Y., Nefs HT., Brinkman W., Qu C., Heynderickx I. (2013) The relationship between individual characteristics and experienced presence. Computers Human Behaviors. 29(4), 1519-1530.
  • Oskarsson PA., Nählinder S. (2006). Evaluation of symptoms and effects of virtual reality based flight simulation and enhanced sensitivity of postural stability measueres, In Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2683-2687. Sage CA. Los Angeles
  • Merhi O., Faugloire E., Flanagan M., Stoffregen TA. (2007). Motion sickness, console video games, and head-mounted displays. Human Factors. 49(5), 920-934.
  • Chang CH., Pan WW., Tseng LY, Stoffregen TA. (2012). Postural activity and motion sickness during video game play in children and adults. Experimental Brain Research. 217(2), 299-309.
  • Dong X., Yoshida K., Stoffregen TA. (2011). Control of a virtual vehicle influences postural activity and motion sickness. Journal of Experimental Psychology: Applied. 17(2), 128-138.
  • Chardonnet JR., Mirzaei MA, Mérienne F. (2017). Features of the postural sway signal as indicators to estimate and predict visually induced motion sickness in virtual reality. International Journal of Human–Computer Interaction. 33(10), 771-785.
  • Rolnick A., Lubow R. (1991). Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics. 34(7), 867-879.
  • Sharples S., Cobb S., Moody A., Wilson JR. (2008). Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems. Displays. 29(2), 58-69.
  • Teaford MA., Cook IVHE., Hassebrock JA., Thomas RD., Smart Jr LJ. (2020). Perceptual validation of nonlinear postural predictors of visually ınduced motion sickness. Frontiers in Psychology. 11, 1533.
  • Palmisano S., Arcioni B., Stapley, PJ. (2018). Predicting vection and visuall induced motion sickness based on spontaneous postural activity. Experimental Brain Research. 236(1), 315-329.
  • Smart LJ., Otten EW., Stoffregen TA. (2007). It’s turtles all the way down: a comparative analysis of visually induced motion sickness. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 51(27), 1631-1634.
  • Yokota Y., Aoki M., Mizuta K., Ito Y., Isu N. (2005). Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta Otolaryngol. 125(3), 280-285.
  • Stanney K., Fidopiastis C., Foster L. (2020). Virtual reality is sexist: but it does not have to be. Frontiers in Robotics and AI. 7, 4.

MOTION SICKNESS AND VIRTUAL ENVIRONMENT

Year 2022, Volume: 16 Issue: 1, 22 - 39, 16.03.2022

Abstract

With the adoption of new technologies and the increasing effect of technology on life, it is seen that motion sickness researchers have started to concentrate on virtual environments. However, undesirable symptoms such as eyestrain, headache, dizziness, nausea, and loss of postural control caused by visually induced motion sickness continue to affect individuals. Considering the possible benefits of the use of virtual reality technologies, it is very important to understand the negative effects that limit the usage areas. This study; by giving general information about the etiology of motion sickness, it is aimed to present the findings obtained from studies investigating the possible effects of motion sickness, which develops due to technology, on individuals. It is a traditional compilation created by scanning the data related to motion sickness with the determined keywords and selecting the studies related to the subject. As a result; it has been observed that the increase in the use of virtual reality devices, which have become a part of most areas of life, increases the occurrence and effects of visually induced motion sickness, exposes individuals to physical and cognitive problems, and creates negative effects on quality of life and work efficiency. Considering the increasing use of virtual reality technologies and the importance of their negative effects on people, it will be more and more important to understand the limitations associated with the formation of visually induced motion sickness. It is thought that effective methods to help detect the formation of motion sickness at an early stage will contribute to the safe use of virtual reality technologies in many areas where the use of virtual reality technologies is widespread. In this sense, it is understood that more research is needed to understand and minimize the negative effects of motion sickness.

References

  • Johnson DM. (2005). Introduction to and review of simulator sickness research. U.S. Army Research Institute for the Behavioral and Social Sciences. Research Report. 1-59.
  • Zhang LL., Wang JQ., Qi RR., Pan LL., Li M., Cai YL. (2016). Motion sickness: current knowledge and recent advance. CNS Neuroscience & Therapeutics. 22(1), 15-24.
  • Benson AJ. (1999). Motion sickness. İçinde: Nicholson AN., Rainford DS., Ernsting J. (editor). Aviation medicine. Butterworth Heinemann. Oxford, 455-471.
  • Kennedy RS., Frank LH. (1985). A review of motion sickness with special reference to simulator sickness, Tech Rep Navtraequipcen.1-45. Orlando. Florida
  • Reason JT., Brand JJ. (1975). Motion sickness. Academic Press. London. 83-310.
  • Bakwin H. (1949). Motion sickness in children. The Journal of Pediatrics. 35(3), 390-393.
  • Ebenholtz SM. (1992). Motion sickness and oculomotor systems in virtual environments. Presence. 1(3), 302-305.
  • Shupak A., Gordon CR. (2006). Motion sickness: advances in pathogenesis, prediction, prevention and treatment. Aviation, Space, and Environmental Medicine. 77(12),1213-1223.
  • Hettinger LJ., Riccio GE. (1992). Visually induced motion sickness in virtual environments. Presence: Teleoperators and Virtual Environments. 1(3), 306-310.
  • Keshavarz B., Hecht H. (2012). Stereoscopic viewing enhances visually induced motion sickness but sound does not. Presence. 21(2), 213-228.
  • Kobayashi N., Yamazaki H., Ishikawa M., Momose Y. (2015). Effects of visual induced motion sickness of stereoscopic 3D interactive video, 2015 IEEE 4th Global Conference on Consumer Electronics. 664-65. Osaka. Japan
  • Nesbitt K., Davis S., Blackmore K., Nalivaiko E. (2017). Correlating reaction time and nausea measures with traditional measures of cybersickness. Displays. 48, 1-8.
  • Kennedy RS., Drexler J., Kennedy RC. (2010). Research in visually induced motion sickness. Applied Ergonomics. 41(4), 494-503.
  • Benzeroual K., Allison RB. (2013). Cyber (motion) sickness in active stereoscopic 3D gaming, International Conference on 3D Imaging. 1-7. Liege. Belgium
  • Munafo J., Diedrick M., Stoffregen TA. (2017). The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental Brain Research. 235(3), 889-901.
  • Zyda M. (2005). From visual simulation to virtual reality to games. Computer. 38(9), 25-32.
  • Fitzgerald D., Foody J., Kelly D., Ward T., Markham C., McDonald J., Caulfield B. (2007). Development of a wearable motion capture suit and virtual reality biofeedback system for the instruction and analysis of sports rehabilitation exercises, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 4870-4874. Lyon. France
  • Kiefer W., DiCesare C., Bonnette S., Kitchen K., Gadd B., Thomas S., Barber Foss KD., Myer GD., Riley MA., Silva P. (2017). Sport-specific virtual reality to identify profiles of anterior cruciate ligament injury risk during unanticipated cutting, 2017 International Conference on Virtual Rehabilitation. 1-8. Canada
  • Ginja GA. (2018). Applications of virtual reality in the practice of para-badminton, 20th Symposium on Virtual and Augmented Reality. 230-232. Foz do Iguaçu. Brazil
  • Liu H., Z. Wang Z., Mousas C., Kao D. (2020). Virtual reality racket sports: virtual drills for exercise and training, In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 566-576. Recife. Porto de Galinhas
  • Mahalil AM,. Yusof N., Ibrahim. (2020). A literature review on the usage of Technology Acceptance Model for analysing a virtual reality's cycling sport applications with enhanced realism fidelity, 8th International Conference on Information Technology and Multimedia. 237-242. Selangor. Malaysia
  • Viirre E., Clark JB. (2017). Airsickness and space sickness. Aeromedical Psychology. 195-213.
  • Golding JF. (2006). Motion sickness susceptibility. Autonomic Neuroscience. 129,(1-2), 67-76.
  • Reason JT. (1970). Motion sickness: a special case of sensory rearrangement. Advancement of Science. 26(130), 386-393.
  • Kato K., Kitazaki S. (2006). A study for understanding carsickness based on the sensory conflict theory. SAE Technical Paper. 01-0096.
  • Wang XC., Shi ZH., Bian K., Zhang L., Xue JH., Yang GQ., Ge XS., Zhang ZM. (2014). The comparison of sensitivity of motion sickness between retinal degeneration fast mice and normal mice. Journal of Comparative Physiology A. 200(4), 327-332.
  • Benson AJ. (1999). Operational aviation medicine. In: Ernsting J., Nicholson AN., Rainford DJ. (editor). Aviation medicine. 3rd edition. Butterworths. London, 464.
  • Gianaros PJ., Muth ER., Mordkoff JT., Levine ME., Stern RM. (2001). A questionnaire for the assessment of the multiple dimensions of motion sickness. Aviation, Space, and Environmental Medicine. 72(2),115-119.
  • Golding JF., Gresty MA. (2013). Motion sickness and disorientation in vehicles. Oxford testbook of vertigo and imbalance. Oxford University Press. 293-305.
  • Owen N., Leadbetter AG., Yardley L. (1998). Relationship between postural control and motion sickness in healthy subjects. Brain Research Bulletin. 47(5), 471-474.
  • Bos JE. (2011). Nuancing the relationship between motion sickness and postural stability. Displays. 32(4), 189-193.
  • Bos JE., Ledegang WD., Lubeck AJA., Stins JF. (2013). Cinerama sickness and postural instability. Ergonomics. 56, 1430-1436.
  • Chen YC., Dong X., Chen FC., Stoffregen TA. (2012). Control of a virtual avatar influences postural activity and motion sickness. Ecological Psychology. 24(4), 279-299.
  • Stoffregen TA., Smart LJ. (1998). Postural instability precedes motion sickness. Brain Research Bulletin. 47(5), 437-448.
  • Brainard A., Gresham C. (2014). Prevention and treatment of motion sickness. American Family Physician. 90(1), 41-46.
  • Dobie T., McBride D., Dobie TJ., May J. (2001). The effects of age and sex on susceptibility to motion sickness. Aviation, Space, and Environmental Medicine. 72(1), 13-20.
  • Lawther A., Griffin MJ. (1988). Motion sickness and motion characteristics of vessels at sea. Ergonomics. 31(10), 1373-1394.
  • Henriques IF., de Oliveira DWD., Oliveira-Ferreira F., Andrade PMO. (2014). Motion sickness prevalence in school children. European Journal of Pediatrics. 173(11), 1473-1482.
  • Irwin JA. (1881). The pathology of sea-sickness. The Lancet. 118(3039), 907-909.
  • Benson AJ. (1984). Motion sickness. In: Dix MR., Hood JD. (editor). Vertigo. John Wiley & Sons Ltd. Chichester. England, 391-425.
  • Lubeck AJA., Bos JE., Stins JF. (2015). Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway. Displays. 38, 55-61.
  • Nürnberger M., Klingner C., Witte OW., Brodoehl S. (2021). Mismatch of visual-vestibular information in virtual reality: is motion sickness part of the brains attempt to reduce the prediction error?. Frontiers in Human Neuroscience. 648(15),757-735.
  • Wei-Te T., Chen C-H. (2020). A haptic feedback device reduces dizziness in users watching a virtual reality video, In 2020 The 4th International Conference on Education and Multimedia Technology. 223-225. Japan.
  • Stoffregen TA., Riccio GE. (1988). An ecological theory of orientation and the vestibular system. Psychological Review. 95(1), 3-14.
  • Riccio GE., Stoffregen TA. (1991). An ecological theory of motion sickness and postural instability. Ecological Psychology. 3(3), 195-240.
  • Stoffregen TA. (2011). Motion sickness considered as a movement disorder. Science & Motricité. 74, 19-30.
  • Krueger M. (1992). Artificial reality. 2nd Edition. Addison-Wesley Publishing.
  • Stanney K., Salvendy G., Deisinger J., DiZio P., Ellis S., Ellison J., Fogleman G., Gallimore J., Singer M., Hettinger L., Kennedy R., Lackner J., Lawson B., Maida J., Mead A., Mon-Williams M., Newman D., Piantanida T., Reeves L., Riedel O., Stoffregen TA., Wann J., Welch R., Wilson J., Witmer B. (1998). After effects and sense of presence in virtual environments: formulation of a research and development agenda. International Journal of Human-Computer Interaction. 10(2), 135-187.
  • Kennedy RS., Fowlkes JE., Lilienthal MG. (1993). Postural and performance changes following exposures to flight simulators. Aviation, Space, and Environmental Medicine. 64, 912-920.
  • Stoffregen TA., Chen Y-C., Koslucher FC. (2014). Motion control, motion sickness, and the postural dynamics of mobile devices. Experimental Brain Research. 232(4), 1389-1397.
  • Vinson NG., Lapointe JF., Parush A., Roberts S. (2012). Cybersickness induced by desktop virtual reality, Proceedings of the 2012 Graphics Interface Conference. 69-75. Canada
  • Ujike H., Ukai K., Nihei K. (2008). Survey on motion sickness-like symptoms provoked by viewing a video movie during junior high school class. Displays. 29(2), 81-89.
  • Maino DM., Chase C. (2011). Asthenopia: a technology induced visual impairment. Review of Optometry. 148(6), 28-36.
  • Reason JT. (1978). Motion sickness adaptation: a neural mismatch model. Journal of the Royal Society of Medicine. 71(11), 819-829.
  • Read JC., Bohr I. (2014). User experience while viewing stereoscopic 3D television. Ergonomics. 57(8),1140-1153.
  • Solimini AG. (2013). Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness. PLoS One. 8(2), e56160.
  • Bonato F., Bubka A., Palmisano SW., Phillip D., Moreno G. (2008). Vection change exacerbates simulator sickness in virtual environments. Presence: Teleoperators and Virtual Environments. 17(3), 283-292.
  • Villard SJ., Flanagan MB., Albanese GM., Stoffregen TA. (2008). Postural instability and motion sickness in a virtual moving room. Human Factors. 50(2), 332-345.
  • Yang SN., Schlieski T., Selmins B., Cooper SC., Doherty RA., Corriveau PJ., Sheedy JE. (2012). stereoscopic viewing and reported perceived ımmersion and symptoms. optometry and vision science. Optometry and Vision Science. 89(7), 1068-1080.
  • Baranowski AM., Keller K., Neumann J., Hecht H. (2016). Genre-dependent effects of 3D film on presence, motion sickness, and protagonist perception. Displays. 44, 53-59.
  • Wibirama S., Nugrohoa HA., Hamamotob K. (2018). Depth gaze and ECG based frequency dynamics during motion sickness in stereoscopic 3D movie. Entertainmet Computting. 26, 117-127.
  • Stanney KM., Kingdon KS., Nahmens I., Kennedy RS. (2003). What to expect from immersive virtual environment exposure: influences of age, gender, body mass index, and past experience. Human Factors. 45(3), 504-520.
  • Murph D. (2007). Therapists, army using wii to rehabilitate patients. https://www.engadget.com/2007-10-03-therapists-army-using-wii-to-rehabilitate-patients.html. [Erişim tarihi: 03.01.2021]
  • Sharar SR., Miller W., Teeley A., Soltani M., Hoffman HG., Jensen MP., Patterson DR. (2008). Applications of virtual reality for pain management in burn-injured patients. Expert Review of Neurotherapeutics. 8(11), 1667-1674.
  • Treleaven J., Battershill J., Cole D., Fadelli C., Freestone S., Lang K., Sarig-Bahat H. (2015). Simulator sickness incidence and susceptibility during neck motion-controlled virtual reality tasks. Virtual Reality. 19(3), 267-275.
  • Ling Y., Nefs HT., Brinkman W., Qu C., Heynderickx I. (2013) The relationship between individual characteristics and experienced presence. Computers Human Behaviors. 29(4), 1519-1530.
  • Oskarsson PA., Nählinder S. (2006). Evaluation of symptoms and effects of virtual reality based flight simulation and enhanced sensitivity of postural stability measueres, In Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2683-2687. Sage CA. Los Angeles
  • Merhi O., Faugloire E., Flanagan M., Stoffregen TA. (2007). Motion sickness, console video games, and head-mounted displays. Human Factors. 49(5), 920-934.
  • Chang CH., Pan WW., Tseng LY, Stoffregen TA. (2012). Postural activity and motion sickness during video game play in children and adults. Experimental Brain Research. 217(2), 299-309.
  • Dong X., Yoshida K., Stoffregen TA. (2011). Control of a virtual vehicle influences postural activity and motion sickness. Journal of Experimental Psychology: Applied. 17(2), 128-138.
  • Chardonnet JR., Mirzaei MA, Mérienne F. (2017). Features of the postural sway signal as indicators to estimate and predict visually induced motion sickness in virtual reality. International Journal of Human–Computer Interaction. 33(10), 771-785.
  • Rolnick A., Lubow R. (1991). Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics. 34(7), 867-879.
  • Sharples S., Cobb S., Moody A., Wilson JR. (2008). Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems. Displays. 29(2), 58-69.
  • Teaford MA., Cook IVHE., Hassebrock JA., Thomas RD., Smart Jr LJ. (2020). Perceptual validation of nonlinear postural predictors of visually ınduced motion sickness. Frontiers in Psychology. 11, 1533.
  • Palmisano S., Arcioni B., Stapley, PJ. (2018). Predicting vection and visuall induced motion sickness based on spontaneous postural activity. Experimental Brain Research. 236(1), 315-329.
  • Smart LJ., Otten EW., Stoffregen TA. (2007). It’s turtles all the way down: a comparative analysis of visually induced motion sickness. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 51(27), 1631-1634.
  • Yokota Y., Aoki M., Mizuta K., Ito Y., Isu N. (2005). Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta Otolaryngol. 125(3), 280-285.
  • Stanney K., Fidopiastis C., Foster L. (2020). Virtual reality is sexist: but it does not have to be. Frontiers in Robotics and AI. 7, 4.
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Sports Medicine
Journal Section Case Report
Authors

Yağmur Kocaoğlu 0000-0001-6811-4205

Publication Date March 16, 2022
Submission Date February 1, 2022
Acceptance Date March 15, 2022
Published in Issue Year 2022 Volume: 16 Issue: 1

Cite

APA Kocaoğlu, Y. (2022). HAREKET HASTALIĞI VE SANAL ORTAM. Beden Eğitimi Ve Spor Bilimleri Dergisi, 16(1), 22-39.

16227

16228

16229

16230