Review
BibTex RIS Cite

Bioactive Nanoparticles Synthesized By Green Method

Year 2021, Volume: 4 Issue: 1, 29 - 42, 01.01.2021
https://doi.org/10.34248/bsengineering.816084

Abstract

Nanotechnology has become one of the promising technologies applied in all fields of science. Biotechnologically produced metallic nanoparticles (NP) attract attention in scientific application and technology platforms due to their extensive in applications biomedical and physicochemical fields. In recent years, the side effects caused by the use of synthetic drugs the medical and economic problems caused by them have made the use of plants in the treatment popular again. Non-toxic, ecological, metal-based and size of less than 100 nm NPs (such as gold, silver, palladium, manganese, zinc) using obtained plant extracts from plants by different methods can be synthesized. As the size and shape of the NPs change, the physical, chemical, bioactive, optical, electrical, catalytic and toxicity properties of the particles also change. Biological synthesis, also known as green synthesis; It is the preferred practical method for obtaining NPs easily and ecologically without the need for high pressure, high temperatures values and toxic chemicals. Green synthesis of NPs is performed using different biomaterials such as bacteria, fungi, yeast, viruses, microalgae and plant biomass/extract. Plant-mediated biosynthesis of metallic NPs occurs through biomolecules (such as proteins, vitamins, amino acids, enzymes, organic acids, polysaccharides and citrates) containing organic functional groups in the plant. Increasing application of NPs in medical fields requires a better understanding of the mechanisms of biological interactions and potential toxicities of their. In this review, synthesis ways of NPs including physical, chemical and green synthesis are explained. In addition, the particle characterization methods given in current studies in the literature and the properties of particles such as antibacterial, antifungal and antiviral activity are discussed in detail.

References

  • Aboelfetoh EF, El-Shenody RA, Ghobara MM. 2017. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess,189(7): 349.
  • Ahamed M, AlSalhi MS, Siddiqui MKJ. 2010. Silver nanoparticle applications and human health. Clin Chim Acta, 411(23-24): 1841-1848.
  • Ahmed S, Chaudhry SA, Ikram S. 2017. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B, 166: 272-284.
  • Ambika S, Sundrarajan M. 2015. Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: spectroscopic investigation of interaction between ZnO nanoparticles and human serum albümin. J Photochem Photobiol B, 149: 143-148.
  • Asghar MA, Zahir E, Shahid SM, Khan MN, Iqbal J, Walker G. 2018. Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. Lebensm Wiss Technol, 90: 98-107.
  • Bahadar CH, Maqbool F, Niaz K, Abdollahi M. 2016. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J, 20(1): 1-11.
  • Banu H, Renuka N, Faheem SM, Ismail R, Singh V, Saadatmand Z, Khan SS, Narayanan K, Raheem A, Premkumar K, Vasanthakumar G. 2018. Gold and silver NPs biomimetically synthesized using date palm pollen extract-induce apoptosis and regulate p53 and Bcl-2 expression in human breast adenocarcinoma cells. Biol Trace Elem Res, 186(1): 122-134.
  • Bao Z, Lan CQJC, Biointerfaces SB. 2018. Mechanism of light-dependent biosynthesis of silver nanoparticles mediated by cell extract of Neochloris oleoabundans. Colloids Surf B Biointerfaces, 170: 251-257.
  • Bäuerlein E. 2003. Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of ınorganic nano‐and microstructures. Angew Chem, 42: 614-641.
  • Beattie IR, Haverkamp RG. 2011. Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics, 3(6): 628-632.
  • Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M. 2015. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci, 6(5): 1-12. Bhardwaj AK, Shukla A, Maurya S, Singh SC, Uttam KN, Sundaram S, Singh MP, Gopal R. 2018. Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: photon energy as key for size and distribution control. J Photochem Photobiol B, Biol, 88: 42-49.
  • Bhati-Kushwaha H, Malik CP. 2013. Biopotential of Verbesina encelioides (stem and leaf powders) in silver nanoparticle fabrication. Turk J Biol, 37(6): 645-654.
  • Bianchi ME, Manfredi AA. 2014. How macrophages ring the inflammation alarm. Proc Natl Acad Sci USA, 111(8): 2866–2867.
  • Bogunia-Kubik K, Sugisaka M. 2002. From molecular biology to nanotechnology and nanomedicine. Biosystems, 65(2-3): 123-138.
  • Bolla JM, Alibert-Franco S, Handzlik J, Chevalier J, Mahamoud A, Boyer G, Kieć-Kononowicz K, Pagès JM. 2011. Strategies for bypassing the membrane barrier in multidrug resistant gram-negative bacteria. FEBS Lett, 585(11): 1682-1690.
  • Brust M, Walker M, Bethell D, Schiffrin J, Whyman R. 1994. Synthesis of thiol derivatised gold nanoparticles in a two-phase liquid/liquid system. J Chem Soc Chem Comm, 7(7): 789-912.
  • Cai J, Cheng-Jun Y, Xiu-Tai Y, Li-Ping Z. 2019. Biosynthesis of copper oxide nanoparticles and their potential synergistic effect on alloxan induced oxidative stress conditions during cardiac injury in Sprague–Dawley rats. J Photochem Photobiol B Biol, 198: 11557. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B, 112(43): 13608-13619.
  • Cha HS, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA. Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano.2015;9:9097-9105.
  • Chandra H, Patel D, Kumari P, Jangwan JS, Yadav S. 2019. Phytomediated synthesis of zinc oxide nanoparticle of Berberis aristata: characterisation, antioxidant activity and antibacterial activity with special reference to urinary tract infection. Mater Sci Eng C, 102: 212-220.
  • Çiftci H, Demir G, Er Çalışkan Ç, Yurter K, Burgucu O, Acar Ş, Öztürk İC, Şen SM. 2019. Hemşirelik öğrencilerine nanoteknoloji konusunda verilen eğitimin etkinliğinin değerlendirilmesi. BSJ Health Sci, 2(3): 65-70.
  • Crespo K, Baronetti J, Quinteros M, Paez P, Paraje M. 2017. Intra-and extracellular biosynthesis and characterization of iron nanoparticles from prokaryotic microorganisms with anticoagulant activity. Pharm Res, 34(3): 591-598.
  • Dahoumane A, Wujcik EK, Jeffryes C. 2016. Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems. Enzym Microb Technol, 95: 13-27.
  • Dauthal P, Mukhopadhyay M. 2016. Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res, 55(36): 9557-9577.
  • Deepika S, Selvaraj CI, Roopan SM. 2020. Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell line. Mater Sci Eng C, 106: 110279.
  • Devatha CP, Jagadeesh K, Patil M. 2018. Effect of Green synthesized iron nanoparticles by Azardirachta Indica in different proportions on antibacterial activity. Env Nanotechnol. Monit Manag, 9: 85-94.
  • Devi LS, Joshi SR. 2012. Antimicrobial and synergistic effects of silver nanoparticles synthesized using: soil fungi of high altitudes of Eastern Himalaya. Mycobiology, 40(1): 27-34.
  • Dhas ST. 2014. Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells. Spectrochim Acta A Mol Biomol Spectrosc, 133: 102-106.
  • Dobrucka R, Długaszewska J. 2016. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci, 23(4):517-523.
  • Dujardin E, Peet C, Stubbs G, Culver JN, Mann S. 2003. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett, 3: 413-417.
  • Elamawi RM, Al-Harbi RE, Hendi AA. 2018. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian J Biological Pest Control, 28(1): 28.
  • Fawcett D, Verduin JJ, Shah M, Sharma SB, Poinern GEJ. 2017. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci, 2017(4): 1-15.
  • Feynman R. 1959. There’s plenty of room at the bottom" at California institute of technology. Caltech Eng Sci, 23: 22-36.
  • Ganguli AK, Ahmad T, Vaidya S, Ahmed J. 2008. Microemulsion route to the synthesis of nanoparticles. Pure Appl Chem, 80(11): 2451-2477. Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM. 2014. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine, 9: 2399–2407.
  • Ghorbani HR, Safekordi AA, Attar H, Rezayat M. 2011. Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q, 25(3): 317–326.
  • Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. 2014. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol, 98(19): 8083-8097.
  • Gopalu K, Matheswaran J, Govindan SK, Evgeny K. 2020. Hylotelephium telephium flower extract-mediated biosynthesis of CuO and ZnO nanoparticles with promising antioxidant and antibacterial properties for healthcare applications. Adv Charac Powder Mater, 72: 1264-1272.
  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G. 2008. Silver, gold and biometallic nanopartricles production using single-cell protein (Spirulina plantensis). Geitler J Mater Sci, 43: 5115-5122.
  • Gowri M, Latha N, Rajan M. 2019. Copper oxide nanoparticles synthesized using Eupatorium odoratum, Acanthospermum hispidum leaf extracts, and its antibacterial effects against pathogens: a comparative study. Bio Nano Sci, 9: 545-552.
  • Gunalan S, Sivaraj R, Venckatesh R. 2012. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A Mol Biomol Spectrosc, 97: 1140-1144.
  • Gunawan C, Lim M. 2014. Nanoparticle-protein corona complexes govern the biological fates and functions of nanoparticles the biological fates and functions of nanoparticles. J Mater Chem B, 15(2): 2060-2083.
  • Gurunathan S et al. 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces, 74(1): 328-335.
  • Han G, Ghosh P, Rotello VM. 2007. Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol, 620: 48-56.
  • Hanafy NA, Leporatti S, El-Kemary MA. 2019. Mucoadhesive hydrogel nanoparticles as smart biomedical drug delivery system. Appl Sci, 9(5): 825.
  • He X, Shi H. 2012. Size and shape effects on magnetic properties of Ni nanoparticles. Particuology, 10 (4): 497–502.
  • Hemanth Kumar NK, Andia JD, Manjunatha S, Murali M, Amruthesh KN, Jagannath S. 2019. Antimitotic and DNA-binding potential of biosynthesized ZnO-NPs from leaf extract of Justicia wynaadensis (Nees) Heyne - A medicinal herb. Biocatal. Agric Biotechnol, 18: 101024.
  • Huang X, Jain PK, El-Sayed IV, El-Sayed M. 2007. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2(5): 681-693.
  • Hulkoti NI, Taranath TC. 2014. Biosynthesis of nanoparticles using microbes—a review Colloids Surf B: Biointerfaces, 121: 474-483.
  • Hussain I, Singh NB, Singh A, Singh H, Singh SC. 2016. Green synthesis of nanoparticles and its potential application. Biotechnol Lett, 38(4): 545-560.
  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA. 2007. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc, 67(3-4): 1003-1006.
  • Husseiny SM, Salah TA, Anter HA. 2015. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-suef Univ J Basic Appl Sci, 4(3): 225-231.
  • Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG. 2012. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J, 279(7): 1327-1333.
  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci, 9: 385-406.
  • Iravani S. 2011. Green synthesis of metal nanoparticles using plants. Green Chem, 13: 2638-2650.
  • Ismail AFM, Ahmed MM, Salem AAM. 2015. Biosynthesis of silver nanoparticles using mushroom extracts: induction of apoptosis in HepG2 and MCF-7 cells via caspases stimulation and regulation of BAX and Bcl-2 gene expressions. J Pharm Biomed Sci, 5(1): 1-9.
  • Iv M, Telischak N, Feng D, Holdsworth SJ, Yeom KW, Daldrup-Link HE. 2015. Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine (Lond), 10(6): 993-1018.
  • Jacob JM, Sharma S, Balakrishnan RM. 2017. Exploring the fungal protein cadre in the biosynthesis of PbSe quantum dots. J Hazard Mater, 324: 54-61.
  • Jagtap U, Bapat VA. 2013. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crop Prod,46: 132-137.
  • Jamdagni P, Khatri P, Rana JS. 2018. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci, 30(2): 168-175.
  • Jeevanandam J, Chan YS, Danquah MK. 2016. Biosynthesis of metal and metal oxide nanoparticles. Chem Bio Eng Rev, 3(2): 55–67. Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK. 2014. Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol, 24(4): 522-533.
  • Jo JH, Singh P, Kim YJ, Wang C, Mathiyalagan R, Jin CG, Yang DC. 2016. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif Cells Nanomed Biotechnol, 44(6): 1576-1581.
  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. 2008. Biosynthesis of silver nanoparticles by Bacillus licheniformis. Coll Surf B Biointerf, 65: 150-153.
  • Karnani RL, Chowdhary A. 2013. Biosynthesis of silver nanoparticle by eco-friendly method. Ind J Nano Sci, 1(2): 25-31.
  • Kasemets K, Ivask A, Dubourguier HC, Kahru A. 2009. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro, 23(6): 1116-1122.
  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B. 2009. Studies on silver nanoparticles synthesised by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces, 71(1): 133-137.
  • Kefeni KK, Msagati TAM, Mamba BB. 2017. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device. Mat Sci Eng B-Solid, 215: 37–55.
  • Khan AU, Khan M, Malik N, Cho MH, Khan MM. 2019. Recent progress of algae and blue-green algae-assisted synthesis of gold nanoparticles for various applications. Bioprocess Biosyst Eng, 42: 1-15.
  • Khan AU, Malik N, Khan M, Cho MH, Khan MM. 2018. Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst Eng, 41(1): 1-20.
  • Khan I, Saeed K, Khan I. 2019. Nanoparticles: properties, applications and toxicities. Arab J Chem, 12(7): 908-931.
  • Khlebtsov N, Dykman L. 2011. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev, 40(3): 1647-1671.
  • Khodashenas B, Ghorbani HR. 2014. Synthesis of copper nanoparticles: an overview of the various methods. Kor J Chem Eng, 31: 1105-1109.
  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ. 2007.Antimicrobial effects of silver nanoparticles. Nanomed NBM, 3(1): 95-101.
  • Korbekandi H, Iravani S, Abbass A, Hashim E. 2015. Silver Nanoparticles, Nanotechnology and Nanomaterials.The Delivery of Nanoparticles. ISBN 978-953-51-0615-9.
  • Kumar PV, Kala SMJ, Prakash K. 2019. Green synthesis derived Pt-nanoparticles using Xanthium strumarium leaf extract and their biological studies. J Environ Chem Eng, 7(3): 103146.
  • Kumari S, Tyagi M, Jagadevan S. 2019. Mechanistic removal of environmental contaminants using biogenic nano-materials. Int J Environ Sci Technol, 16(5): 1-16.
  • Kusumaningrum HP, Zainuri M, Marhaendrajaya I, Subagio A. 2018. Nanosilver microalgae biosynthesis: cell appearance based on SEM and EDX methods. J Phy: Conference Series, 1025: 012084.
  • Lazar V. 2011. Quorum sensing in biofilms—how to destroy the bacterial citadels or their cohesion/power? Anaerobe, 17: 280-285.
  • Lin W, Huang YW, Zhou XD, MaI Y. 2006. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol, 217(3): 252-259.
  • Lines MG. 2008. Nanomaterials for practical functional uses. J Alloys Compounds, 449(1-2): 242-245. Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W, Gu Q. 2018. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and mechanisms investigation J Hazard Mater, 347: 141-149.
  • Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S, Chen S, Meng F. 2004. Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chem Phys Chem.24(5):, 68-75.
  • Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. 2011. Protein−Nanoparticle interactions: opportunities and challenges. Chem Rev, 111(9): 5610-5637.
  • Malarkodi C, Rajeshkumar S, Paulkumar K,Vanaja M, Gnanajobitha G, Annadurai G. 2014. Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorgan Chem Appl, 2014: 10.
  • Malik MA, Wani MY, Hashim MA. 2012. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update Arabian J Chem, 5: 397-417.
  • Manivasagan P, Venkatesan J. Sivakumar K, Kim SK. 2016. Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review. Crit Rev in Microbiol, 42(2): 209–221.
  • Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla Gullón J, Cabrera CR, Feliu JM. 2014. Synthesis of Pt nanoparticles in water-in-oil microemulsion: effect of HCl on their surface structure. J Am Chem Soc, 136(4): 1280-1283.
  • Mehdi F, Kourosh R, Ahmad Z, Hossein A, Fakhraddin N, Rasoul K. 2017. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv Powder Technol, 28(1): 122-130.
  • Menon S, Rajeshkumar A, Kumar V. 2017. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technol, 3(4): 516-527.
  • Menon S, Shrudhi Devi KS, Santhiya R, Rajeshkumar S, Kumar V. 2018. Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B Biointerfaces, 170: 280-292.
  • Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, Kim YS, Shin HS, Yun SI. 2011. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactumand their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbial Biotechnol, 92(3): 617-630.
  • Mittal AK, Chisti Y, Banerjee UC. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv, 31: 346-356.
  • Moghaddam AB, Namvar F, Moniri M, Tahir PM, Azizi S, Mohamad R. 2015.Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules, 20(9): 16540-16565.
  • Mohanpuria P, Rana N, Yadav S. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res, 10(3): 507–517.
  • Nagajyothi PC, Pandurangan M, Kim DH, Sreekanth TVM, Shim J. 2017. Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. J Cluster Sci, 28(1): 245-257.
  • Nair B, Pradeep T. 2002. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Design, 2(4): 293-298.
  • Narayanan KB, Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Adv Coll Interf Sci, 156(1-2): 1-13.
  • Nath D, Banerjee P. 2013. Green nanotechnology – a new hope for medical biology. Environ Toxicol Pharmacol, 36(3): 997-1014.
  • Nayak BK, Nanda A, Prabhakar V. 2018. Biogenic synthesis of silver nanoparticle from wasp nest soil fungus, Penicillium italicum and its analysis against multi drug resistance pathogens. Biocatal Agric Biotechnol, 16: 412-418.
  • Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. 2013. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev, 42 (3): 1147-1235.
  • Nikalje AP. 2015. Nanotechnology and its applications in medicine. Med Chem, 5(2): 81-89.
  • Noruzi M, Zare D, Khoshnevisan K, Davoodi D. 2011. Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim Acta Part A, 79(5): 1461-1465.
  • Oza G, Pandey S, Mewada A, Kalita G, Sharon M. 2012. Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Adv Appl Sci Res, 3(3): 1405.
  • Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol, 73(6): 1712-1720.
  • Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W. 2009. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5(18): 2067-2076.
  • Parveen K, Banse V, Ledwani L. 2016. Green synthesis of nanoparticles: Their Advantages and Disadvantages. 2nd International Conference on Emerging Technologies: Micro to Nano, India.
  • Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger MA. 2014. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf A Physicochem Eng Asp, 457: 263-274.
  • Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G. 2014. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J, 2014(7): 1-9.
  • Pereira L, Mehboob F, Stams AJ, Mota MM, Rijnaarts HH, Alves MM. 2015. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit Rev Biotechnol, 35(1): 114-128.
  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK. 2009. Influence of biomass and gold salt concentration on nanoparticles synthesis by the tropical marine yeast Yerrowia lipolytica NCIM 3589. Colloids Surf B, 74(1): 309-316.
  • Prasad R, Pandey R, Barman I. 2016. Engineering tailored nanoparticles with microbes: quo vadis? Wiley Interdiscip Rev Nanomed Nanobiotechnol, 8(2): 316-330.
  • Prema P, Iniya P, Immanuel G. 2016. Microbial mediated synthesis, characterization, antibacterial and synergistic effect of gold nanoparticles using Klebsiella pneumoniae (MTCC-4030). RSC Adv, 6(6): 4601-4607.
  • Premkumar J, Sudhakar T, Dhakal A, Shrestha JB, Krishnakumar S, Balashanmugam P. 2018. Synthesis of silver nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatal Agric Biotechnol, 15: 311-316.
  • Quester K, Avalos-Borja M, Castro-Longoria E. 2013. Biosynthesis and microscopic study of metallic nanoparticles. Micron, 54: 1-27.
  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM. 2008. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol, 24: 192–196.
  • Rai M, Ingle AP, Birla S, Yadav A, Santos CA. 2015. Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol, 42(5): 696-719.
  • Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 27(1): 76-83.
  • Rajendran K, Sen S. 2016. Optimization of process parameters for the rapid biosynthesis of hematite nanoparticles. J Photochem Photobiol B Biol, 159: 82-87.
  • Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. 2013. Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Nanosci Nanotechnol Int J, 3: 21-25.
  • Ramimoghadam D, Bagheri S, Hamid SBA. 2014. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater, 368: 207–229. Ramkumar VS, Pugazhendhi A, Prakash S, Ahila NK, Vinoj G, Selvam S, Kumar G, Kannapiran E, Rajendran RB. 2017. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed Pharmacother, 92: 479-490.
  • Rana A, Yadav K, Jagadevan S. 2020. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J of Cleaner Prod, 272: 122880.
  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. 2007. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett, ;90: 2139021-2139023.
  • Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G. 2001. Growth of silver colloidal particles obtained by citrate reduction to increase the raman enhancement factor. Langmuir, 17(3): 574-577.
  • Rodriguez-Sanchez L, Blanco MC, Lopez-Quintela MA. 2000. Electrochemical synthesis of silver nanoparticles. J Phys Chem B, 104: 9683-9688.
  • Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. 2019. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv, 9: 2673-2702.
  • Roy S, Das TK. 2016. Effect of biosynthesised silver nanoparticles on the growth and some biochemical parameters of Aspergillus foetidus. J Env Chem Eng, 4(2): 1574-1583.
  • Şahin B, Aygün A, Gündüz H, Şahin K, Demir E, Akocak S, Şen F. 2018. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloid Surf B, 163: 119-124.
  • Saif S, Tahir A, Chen Y. 2016. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6 (11): 209.
  • Santhoshkumar J, Kumar SV, Rajeshkumar S. 2017. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Res Efficient Technol, 3(4): 459-465. Sathishkumar G, Logeshwaran V, Sarathbabu S, Jha PK, Jeyaraj M, Rajkuberan C, Senthilkumar N, Sivaramakrishnan S. 2018. Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artif Cell Nanomed. Biotechnol, 46(3): 589-598.
  • Savi GD, Bortoluzzi AJ, Scussel VM. 2013. Antifungal properties of zinc-compounds against toxigenic fungi and mycotoxin. Int J Food Sci Technol, 48(9): 1834-1840.
  • Schrofel A, Kratosova G, Krautova M, Dobrocka E, Vavra I. 2011. Biosynthesis of gold nanoparticles using diatoms–silica-gold and EPS-gold bionanocomposite formation. J Nanoparticle Res, 13:3207-3216.
  • SchwartzAlbiez R, Monteiro RC, Rodriguez M, Binder CJ, Shoenfeld Y. 2009. Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clin Exp Immunol, 158(1): 43-50.
  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. 2015. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel), 8(11): 7278–7308.
  • Shankar SS, Rai A, Ahmad A, Sastry M. 2004. Rapid synthesis of Au Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Coll Interf Sci, 275(2): 496-502.
  • Sharma A, Goyal AK, Rath G. 2018.Recent advances in metal nanoparticles in cancer therapy. J Drug Target, 26(8): 617-32.
  • Sharma A, Sharma S, Sharma K, Siva PK, Vashishtha A, Singh P, Kumar R, Rathi B, Agrawal V. 2016. Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol, 28: 1759-1774.
  • Sharma VK, Yngard RA, Lin Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci, 145(1–2): 83–96.
  • Shin SW, Song IH, Um SH. 2015. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials, 5(3): 1351-1365.
  • Shukla AK, Iravani S. 2017. Metallic nanoparticles: green synthesis and spectroscopic characterization. Environ Chem Lett, 15(2): 223-231. Singh P, Ahn S, Kang JP, Veronika S, Huo Y, Singh H, Chokkaligam M, El-Agamy Farh M, Aceituno VC, Kim YJ, Yang DC. 2018. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artif. Cells, Nanomed Biotechnol, 46(8): 2022-2032.
  • Singh P, Kim YJ, Zhang D, Yang DC. 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnol, 34(7): 588– 599. Singh P, Kim YJ, Zhang DB, Yang DC. 2016. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol, 34(7): 588-599.
  • Sneed BT, Young AP, Tsung CK. 2015. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale, 7: 12248-12265.
  • Sneha K, Sathishkumar M, Kim S, Yun YS. 2010. Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Proc Biochem, 45(9): 1450-1458.
  • Starowicz M, Starowicz P, Zukrowski J, Przewoźnik J, Lemański A, Kapusta C, Banaś J. 2011. Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. J Nanopart Res, 13(12): 7167-7176.
  • Sukanya MK, Saju KA, Praseetha PK, Sakthivel G. 2013. Therapeutic potential of biologically reduced silver nanoparticles from Actinomycete cultures. J Nanosci, 2013: 1–8.
  • Sulaiman GM, Tawfeeq AT, Naji AS. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif Cells Nanomed Biotechnol. 2018;46(6):1215-1229.
  • Sumera A, Muhammad BT, Tahir I, Arslan L, Muhammad A. 2018. Green synthesis and characterization of novel iron particles by using different extracts. J Alloy Compd, 732: 935-944.
  • Surya C, John NAA, Pandiyan V, Ravikumar S, Amutha P, Sobral AJ, Krishnakumar B. 2019. Costus speciosus leaf extract assisted CS-Pt-TiO2composites: synthesis, characterization and their bio and photocatalytic applications. J Mol Struct, 1195(5): 787-795.
  • Tan Y, Dai Y, Li Y, Zhua D. 2003. Preparation of gold platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J Mater Chem, 13: 1069-1075.
  • Terra ALM, Kosinski RDC, Moreira JB, Costa JAV, Morais MGD. 2019. Microalgae biosynthesis of silver nanoparticles for application in the control of agricultural pathogens. J Environ Sci Health, Part B, 54(8): 709-716.
  • Thakkar KN, Mhatre SS, Parikh, RY. 2010. Biological synthesis of metallic nanoparticles. Nanomedicine: NBM, 6: 257-262.
  • Toledo LdASd, Rosseto HC, Bruschi ML. 2018. Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. Pharmaceut Dev Technol, 23(4): 316-323.
  • Umadevi M, Bindhu MR, Sathe VA. 2013. Novel synthesis of malic acid capped silver nanoparticles using Solanum lycopersicums fruit extract. J Mater Sci Technol, 29(4): 317-322.
  • Vennila K, Chitra L, Balagurunathan R, Palvannan T. 2018. Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract. Adv Nat Sci Nanosci Nanotechnol, 9(1): 015005. Wahab R, Dwivedi S, Khan F, Mishra YK, Hwang IH, Shin HS, Musarrat J, Al-Khedhairy AA. 2014. Statistical analysis of gold nanoparticle-induced oxidative stress and apoptosis in myoblast (C2C12) cells. Colloids Surf B: Biointerfaces, 123: 664-672.
  • Walkey CD, Chan WCW. 2012. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev, 41(7): 2780-2799.
  • Wang Z, Colombi Ciacchi L, Wei G. 2017. Recent advances in the synthesis of graphene-based nanomaterials for controlled drug delivery. Appl Sci, 7(11): 1175.
  • Wynn TA, Vannella KM. 2016. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 44(3): 450-462. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T,
  • Sioutas C, Yeh JI, Wiesner MR, Nel AE. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano. Lett, 6: 1794-1807.
  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M. 2015. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett, 37(11): 2099-2120. Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, Arjaria N, Roopan SM, Rahuman AA, Singh N. 2015. Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob Agents Chemother, 59(8): 4782-4799.
  • Zhang X, Qu Y, Shen W, Wang J, Li H, Zhang Z, Li S, Zhou J. 2016. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A., 497: 280-285.
  • Zheng J. 2015. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine, 10(17): 2781–2794.

Yeşil Yöntemle Sentezlenen Biyoaktif Nanopartiküller

Year 2021, Volume: 4 Issue: 1, 29 - 42, 01.01.2021
https://doi.org/10.34248/bsengineering.816084

Abstract

Nanoteknoloji, bilimin tüm alanlarında uygulanan umut verici teknolojilerden biri haline gelmiştir. Biyoteknolojik olarak üretilen metalik nanopartikülller (NP), biyomedikal ve fizyokimyasal alanlardaki kapsamlı uygulamaları nedeniyle bilimsel uygulama ve teknoloji platformlarında ilgi görmektedir. Son yıllarda sentetik ilaçların kullanımı sonucu meydana gelen yan etkiler ve bunların yol açtığı medikal ve ekonomik sorunlar tedavilerde bitki kullanımını tekrar popüler hale getirmiştir. Bitkilerden değişik yöntemlerle elde edilen bitki ekstraktları ile 100 nm’den daha küçük boyutta, ekolojik, toksik olmayan metal esaslı (altın, gümüş, palladyum, mangan, çinko gibi) NP’ler sentezlenebilmektedir. NP’lerin boyutları ve şekilleri değiştikçe partiküllerin fiziksel, kimyasal, biyoaktif, optik, elektriksel, katalitik ve toksisite özellikleri de değişmektedir. Yeşil sentez olarak da bilinen biyolojik sentez; yüksek basınca, yüksek sıcaklık değerlerine ve toksik kimyasallara gerek duyulmadan NP’lerin kolay ve ekolojik olarak elde edilmesinde kullanılan pratik yöntemdir. NP’lerin yeşil sentezi bakteri, mantar, maya, virüs, mikroalg ve bitki biyokütlesi/özü gibi farklı biyomateryaller kullanılarak gerçekleştirilmektedir. Metalik NP’lerin bitki aracılı biyosentezi, bitkide bulunan organik fonksiyonel gruplar içeren biyomoleküller (proteinler, vitaminler, amino asitler, enzimler, polisakkaritler, sitratlar, organik asitler gibi) aracılığıyla gerçekleşir. Medikal alanlarda NP’lerin artan uygulaması, NP’lerin biyolojik etkileşimlerinin mekanizmalarının ve potansiyel toksisitelerinin daha iyi anlaşılmasını gerekli kılmaktadır. Bu derlemede, fiziksel, kimyasal ve yeşil sentez dâhil NP’lerin sentez yolları açıklanmaktadır. Ayrıca literatürde güncel çalışmalarda verilen partikül karakterizasyonu yöntemleri ve partiküllerin antibakteriyel, antifungal ve antiviral aktivite gibi özellikleri ayrıntılı olarak tartışılmaktadır.

References

  • Aboelfetoh EF, El-Shenody RA, Ghobara MM. 2017. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess,189(7): 349.
  • Ahamed M, AlSalhi MS, Siddiqui MKJ. 2010. Silver nanoparticle applications and human health. Clin Chim Acta, 411(23-24): 1841-1848.
  • Ahmed S, Chaudhry SA, Ikram S. 2017. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B, 166: 272-284.
  • Ambika S, Sundrarajan M. 2015. Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: spectroscopic investigation of interaction between ZnO nanoparticles and human serum albümin. J Photochem Photobiol B, 149: 143-148.
  • Asghar MA, Zahir E, Shahid SM, Khan MN, Iqbal J, Walker G. 2018. Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. Lebensm Wiss Technol, 90: 98-107.
  • Bahadar CH, Maqbool F, Niaz K, Abdollahi M. 2016. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J, 20(1): 1-11.
  • Banu H, Renuka N, Faheem SM, Ismail R, Singh V, Saadatmand Z, Khan SS, Narayanan K, Raheem A, Premkumar K, Vasanthakumar G. 2018. Gold and silver NPs biomimetically synthesized using date palm pollen extract-induce apoptosis and regulate p53 and Bcl-2 expression in human breast adenocarcinoma cells. Biol Trace Elem Res, 186(1): 122-134.
  • Bao Z, Lan CQJC, Biointerfaces SB. 2018. Mechanism of light-dependent biosynthesis of silver nanoparticles mediated by cell extract of Neochloris oleoabundans. Colloids Surf B Biointerfaces, 170: 251-257.
  • Bäuerlein E. 2003. Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of ınorganic nano‐and microstructures. Angew Chem, 42: 614-641.
  • Beattie IR, Haverkamp RG. 2011. Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics, 3(6): 628-632.
  • Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M. 2015. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci, 6(5): 1-12. Bhardwaj AK, Shukla A, Maurya S, Singh SC, Uttam KN, Sundaram S, Singh MP, Gopal R. 2018. Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: photon energy as key for size and distribution control. J Photochem Photobiol B, Biol, 88: 42-49.
  • Bhati-Kushwaha H, Malik CP. 2013. Biopotential of Verbesina encelioides (stem and leaf powders) in silver nanoparticle fabrication. Turk J Biol, 37(6): 645-654.
  • Bianchi ME, Manfredi AA. 2014. How macrophages ring the inflammation alarm. Proc Natl Acad Sci USA, 111(8): 2866–2867.
  • Bogunia-Kubik K, Sugisaka M. 2002. From molecular biology to nanotechnology and nanomedicine. Biosystems, 65(2-3): 123-138.
  • Bolla JM, Alibert-Franco S, Handzlik J, Chevalier J, Mahamoud A, Boyer G, Kieć-Kononowicz K, Pagès JM. 2011. Strategies for bypassing the membrane barrier in multidrug resistant gram-negative bacteria. FEBS Lett, 585(11): 1682-1690.
  • Brust M, Walker M, Bethell D, Schiffrin J, Whyman R. 1994. Synthesis of thiol derivatised gold nanoparticles in a two-phase liquid/liquid system. J Chem Soc Chem Comm, 7(7): 789-912.
  • Cai J, Cheng-Jun Y, Xiu-Tai Y, Li-Ping Z. 2019. Biosynthesis of copper oxide nanoparticles and their potential synergistic effect on alloxan induced oxidative stress conditions during cardiac injury in Sprague–Dawley rats. J Photochem Photobiol B Biol, 198: 11557. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B, 112(43): 13608-13619.
  • Cha HS, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA. Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano.2015;9:9097-9105.
  • Chandra H, Patel D, Kumari P, Jangwan JS, Yadav S. 2019. Phytomediated synthesis of zinc oxide nanoparticle of Berberis aristata: characterisation, antioxidant activity and antibacterial activity with special reference to urinary tract infection. Mater Sci Eng C, 102: 212-220.
  • Çiftci H, Demir G, Er Çalışkan Ç, Yurter K, Burgucu O, Acar Ş, Öztürk İC, Şen SM. 2019. Hemşirelik öğrencilerine nanoteknoloji konusunda verilen eğitimin etkinliğinin değerlendirilmesi. BSJ Health Sci, 2(3): 65-70.
  • Crespo K, Baronetti J, Quinteros M, Paez P, Paraje M. 2017. Intra-and extracellular biosynthesis and characterization of iron nanoparticles from prokaryotic microorganisms with anticoagulant activity. Pharm Res, 34(3): 591-598.
  • Dahoumane A, Wujcik EK, Jeffryes C. 2016. Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems. Enzym Microb Technol, 95: 13-27.
  • Dauthal P, Mukhopadhyay M. 2016. Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res, 55(36): 9557-9577.
  • Deepika S, Selvaraj CI, Roopan SM. 2020. Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell line. Mater Sci Eng C, 106: 110279.
  • Devatha CP, Jagadeesh K, Patil M. 2018. Effect of Green synthesized iron nanoparticles by Azardirachta Indica in different proportions on antibacterial activity. Env Nanotechnol. Monit Manag, 9: 85-94.
  • Devi LS, Joshi SR. 2012. Antimicrobial and synergistic effects of silver nanoparticles synthesized using: soil fungi of high altitudes of Eastern Himalaya. Mycobiology, 40(1): 27-34.
  • Dhas ST. 2014. Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells. Spectrochim Acta A Mol Biomol Spectrosc, 133: 102-106.
  • Dobrucka R, Długaszewska J. 2016. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci, 23(4):517-523.
  • Dujardin E, Peet C, Stubbs G, Culver JN, Mann S. 2003. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett, 3: 413-417.
  • Elamawi RM, Al-Harbi RE, Hendi AA. 2018. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian J Biological Pest Control, 28(1): 28.
  • Fawcett D, Verduin JJ, Shah M, Sharma SB, Poinern GEJ. 2017. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci, 2017(4): 1-15.
  • Feynman R. 1959. There’s plenty of room at the bottom" at California institute of technology. Caltech Eng Sci, 23: 22-36.
  • Ganguli AK, Ahmad T, Vaidya S, Ahmed J. 2008. Microemulsion route to the synthesis of nanoparticles. Pure Appl Chem, 80(11): 2451-2477. Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM. 2014. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine, 9: 2399–2407.
  • Ghorbani HR, Safekordi AA, Attar H, Rezayat M. 2011. Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q, 25(3): 317–326.
  • Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. 2014. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol, 98(19): 8083-8097.
  • Gopalu K, Matheswaran J, Govindan SK, Evgeny K. 2020. Hylotelephium telephium flower extract-mediated biosynthesis of CuO and ZnO nanoparticles with promising antioxidant and antibacterial properties for healthcare applications. Adv Charac Powder Mater, 72: 1264-1272.
  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G. 2008. Silver, gold and biometallic nanopartricles production using single-cell protein (Spirulina plantensis). Geitler J Mater Sci, 43: 5115-5122.
  • Gowri M, Latha N, Rajan M. 2019. Copper oxide nanoparticles synthesized using Eupatorium odoratum, Acanthospermum hispidum leaf extracts, and its antibacterial effects against pathogens: a comparative study. Bio Nano Sci, 9: 545-552.
  • Gunalan S, Sivaraj R, Venckatesh R. 2012. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A Mol Biomol Spectrosc, 97: 1140-1144.
  • Gunawan C, Lim M. 2014. Nanoparticle-protein corona complexes govern the biological fates and functions of nanoparticles the biological fates and functions of nanoparticles. J Mater Chem B, 15(2): 2060-2083.
  • Gurunathan S et al. 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces, 74(1): 328-335.
  • Han G, Ghosh P, Rotello VM. 2007. Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol, 620: 48-56.
  • Hanafy NA, Leporatti S, El-Kemary MA. 2019. Mucoadhesive hydrogel nanoparticles as smart biomedical drug delivery system. Appl Sci, 9(5): 825.
  • He X, Shi H. 2012. Size and shape effects on magnetic properties of Ni nanoparticles. Particuology, 10 (4): 497–502.
  • Hemanth Kumar NK, Andia JD, Manjunatha S, Murali M, Amruthesh KN, Jagannath S. 2019. Antimitotic and DNA-binding potential of biosynthesized ZnO-NPs from leaf extract of Justicia wynaadensis (Nees) Heyne - A medicinal herb. Biocatal. Agric Biotechnol, 18: 101024.
  • Huang X, Jain PK, El-Sayed IV, El-Sayed M. 2007. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2(5): 681-693.
  • Hulkoti NI, Taranath TC. 2014. Biosynthesis of nanoparticles using microbes—a review Colloids Surf B: Biointerfaces, 121: 474-483.
  • Hussain I, Singh NB, Singh A, Singh H, Singh SC. 2016. Green synthesis of nanoparticles and its potential application. Biotechnol Lett, 38(4): 545-560.
  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA. 2007. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc, 67(3-4): 1003-1006.
  • Husseiny SM, Salah TA, Anter HA. 2015. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-suef Univ J Basic Appl Sci, 4(3): 225-231.
  • Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG. 2012. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J, 279(7): 1327-1333.
  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci, 9: 385-406.
  • Iravani S. 2011. Green synthesis of metal nanoparticles using plants. Green Chem, 13: 2638-2650.
  • Ismail AFM, Ahmed MM, Salem AAM. 2015. Biosynthesis of silver nanoparticles using mushroom extracts: induction of apoptosis in HepG2 and MCF-7 cells via caspases stimulation and regulation of BAX and Bcl-2 gene expressions. J Pharm Biomed Sci, 5(1): 1-9.
  • Iv M, Telischak N, Feng D, Holdsworth SJ, Yeom KW, Daldrup-Link HE. 2015. Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine (Lond), 10(6): 993-1018.
  • Jacob JM, Sharma S, Balakrishnan RM. 2017. Exploring the fungal protein cadre in the biosynthesis of PbSe quantum dots. J Hazard Mater, 324: 54-61.
  • Jagtap U, Bapat VA. 2013. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crop Prod,46: 132-137.
  • Jamdagni P, Khatri P, Rana JS. 2018. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci, 30(2): 168-175.
  • Jeevanandam J, Chan YS, Danquah MK. 2016. Biosynthesis of metal and metal oxide nanoparticles. Chem Bio Eng Rev, 3(2): 55–67. Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK. 2014. Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol, 24(4): 522-533.
  • Jo JH, Singh P, Kim YJ, Wang C, Mathiyalagan R, Jin CG, Yang DC. 2016. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif Cells Nanomed Biotechnol, 44(6): 1576-1581.
  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. 2008. Biosynthesis of silver nanoparticles by Bacillus licheniformis. Coll Surf B Biointerf, 65: 150-153.
  • Karnani RL, Chowdhary A. 2013. Biosynthesis of silver nanoparticle by eco-friendly method. Ind J Nano Sci, 1(2): 25-31.
  • Kasemets K, Ivask A, Dubourguier HC, Kahru A. 2009. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro, 23(6): 1116-1122.
  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B. 2009. Studies on silver nanoparticles synthesised by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces, 71(1): 133-137.
  • Kefeni KK, Msagati TAM, Mamba BB. 2017. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device. Mat Sci Eng B-Solid, 215: 37–55.
  • Khan AU, Khan M, Malik N, Cho MH, Khan MM. 2019. Recent progress of algae and blue-green algae-assisted synthesis of gold nanoparticles for various applications. Bioprocess Biosyst Eng, 42: 1-15.
  • Khan AU, Malik N, Khan M, Cho MH, Khan MM. 2018. Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst Eng, 41(1): 1-20.
  • Khan I, Saeed K, Khan I. 2019. Nanoparticles: properties, applications and toxicities. Arab J Chem, 12(7): 908-931.
  • Khlebtsov N, Dykman L. 2011. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev, 40(3): 1647-1671.
  • Khodashenas B, Ghorbani HR. 2014. Synthesis of copper nanoparticles: an overview of the various methods. Kor J Chem Eng, 31: 1105-1109.
  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ. 2007.Antimicrobial effects of silver nanoparticles. Nanomed NBM, 3(1): 95-101.
  • Korbekandi H, Iravani S, Abbass A, Hashim E. 2015. Silver Nanoparticles, Nanotechnology and Nanomaterials.The Delivery of Nanoparticles. ISBN 978-953-51-0615-9.
  • Kumar PV, Kala SMJ, Prakash K. 2019. Green synthesis derived Pt-nanoparticles using Xanthium strumarium leaf extract and their biological studies. J Environ Chem Eng, 7(3): 103146.
  • Kumari S, Tyagi M, Jagadevan S. 2019. Mechanistic removal of environmental contaminants using biogenic nano-materials. Int J Environ Sci Technol, 16(5): 1-16.
  • Kusumaningrum HP, Zainuri M, Marhaendrajaya I, Subagio A. 2018. Nanosilver microalgae biosynthesis: cell appearance based on SEM and EDX methods. J Phy: Conference Series, 1025: 012084.
  • Lazar V. 2011. Quorum sensing in biofilms—how to destroy the bacterial citadels or their cohesion/power? Anaerobe, 17: 280-285.
  • Lin W, Huang YW, Zhou XD, MaI Y. 2006. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol, 217(3): 252-259.
  • Lines MG. 2008. Nanomaterials for practical functional uses. J Alloys Compounds, 449(1-2): 242-245. Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W, Gu Q. 2018. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and mechanisms investigation J Hazard Mater, 347: 141-149.
  • Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S, Chen S, Meng F. 2004. Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chem Phys Chem.24(5):, 68-75.
  • Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. 2011. Protein−Nanoparticle interactions: opportunities and challenges. Chem Rev, 111(9): 5610-5637.
  • Malarkodi C, Rajeshkumar S, Paulkumar K,Vanaja M, Gnanajobitha G, Annadurai G. 2014. Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorgan Chem Appl, 2014: 10.
  • Malik MA, Wani MY, Hashim MA. 2012. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update Arabian J Chem, 5: 397-417.
  • Manivasagan P, Venkatesan J. Sivakumar K, Kim SK. 2016. Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review. Crit Rev in Microbiol, 42(2): 209–221.
  • Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla Gullón J, Cabrera CR, Feliu JM. 2014. Synthesis of Pt nanoparticles in water-in-oil microemulsion: effect of HCl on their surface structure. J Am Chem Soc, 136(4): 1280-1283.
  • Mehdi F, Kourosh R, Ahmad Z, Hossein A, Fakhraddin N, Rasoul K. 2017. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv Powder Technol, 28(1): 122-130.
  • Menon S, Rajeshkumar A, Kumar V. 2017. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technol, 3(4): 516-527.
  • Menon S, Shrudhi Devi KS, Santhiya R, Rajeshkumar S, Kumar V. 2018. Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B Biointerfaces, 170: 280-292.
  • Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, Kim YS, Shin HS, Yun SI. 2011. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactumand their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbial Biotechnol, 92(3): 617-630.
  • Mittal AK, Chisti Y, Banerjee UC. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv, 31: 346-356.
  • Moghaddam AB, Namvar F, Moniri M, Tahir PM, Azizi S, Mohamad R. 2015.Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules, 20(9): 16540-16565.
  • Mohanpuria P, Rana N, Yadav S. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res, 10(3): 507–517.
  • Nagajyothi PC, Pandurangan M, Kim DH, Sreekanth TVM, Shim J. 2017. Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. J Cluster Sci, 28(1): 245-257.
  • Nair B, Pradeep T. 2002. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Design, 2(4): 293-298.
  • Narayanan KB, Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Adv Coll Interf Sci, 156(1-2): 1-13.
  • Nath D, Banerjee P. 2013. Green nanotechnology – a new hope for medical biology. Environ Toxicol Pharmacol, 36(3): 997-1014.
  • Nayak BK, Nanda A, Prabhakar V. 2018. Biogenic synthesis of silver nanoparticle from wasp nest soil fungus, Penicillium italicum and its analysis against multi drug resistance pathogens. Biocatal Agric Biotechnol, 16: 412-418.
  • Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. 2013. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev, 42 (3): 1147-1235.
  • Nikalje AP. 2015. Nanotechnology and its applications in medicine. Med Chem, 5(2): 81-89.
  • Noruzi M, Zare D, Khoshnevisan K, Davoodi D. 2011. Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim Acta Part A, 79(5): 1461-1465.
  • Oza G, Pandey S, Mewada A, Kalita G, Sharon M. 2012. Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Adv Appl Sci Res, 3(3): 1405.
  • Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol, 73(6): 1712-1720.
  • Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W. 2009. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5(18): 2067-2076.
  • Parveen K, Banse V, Ledwani L. 2016. Green synthesis of nanoparticles: Their Advantages and Disadvantages. 2nd International Conference on Emerging Technologies: Micro to Nano, India.
  • Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger MA. 2014. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf A Physicochem Eng Asp, 457: 263-274.
  • Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G. 2014. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J, 2014(7): 1-9.
  • Pereira L, Mehboob F, Stams AJ, Mota MM, Rijnaarts HH, Alves MM. 2015. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit Rev Biotechnol, 35(1): 114-128.
  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK. 2009. Influence of biomass and gold salt concentration on nanoparticles synthesis by the tropical marine yeast Yerrowia lipolytica NCIM 3589. Colloids Surf B, 74(1): 309-316.
  • Prasad R, Pandey R, Barman I. 2016. Engineering tailored nanoparticles with microbes: quo vadis? Wiley Interdiscip Rev Nanomed Nanobiotechnol, 8(2): 316-330.
  • Prema P, Iniya P, Immanuel G. 2016. Microbial mediated synthesis, characterization, antibacterial and synergistic effect of gold nanoparticles using Klebsiella pneumoniae (MTCC-4030). RSC Adv, 6(6): 4601-4607.
  • Premkumar J, Sudhakar T, Dhakal A, Shrestha JB, Krishnakumar S, Balashanmugam P. 2018. Synthesis of silver nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatal Agric Biotechnol, 15: 311-316.
  • Quester K, Avalos-Borja M, Castro-Longoria E. 2013. Biosynthesis and microscopic study of metallic nanoparticles. Micron, 54: 1-27.
  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM. 2008. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol, 24: 192–196.
  • Rai M, Ingle AP, Birla S, Yadav A, Santos CA. 2015. Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol, 42(5): 696-719.
  • Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 27(1): 76-83.
  • Rajendran K, Sen S. 2016. Optimization of process parameters for the rapid biosynthesis of hematite nanoparticles. J Photochem Photobiol B Biol, 159: 82-87.
  • Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. 2013. Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Nanosci Nanotechnol Int J, 3: 21-25.
  • Ramimoghadam D, Bagheri S, Hamid SBA. 2014. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater, 368: 207–229. Ramkumar VS, Pugazhendhi A, Prakash S, Ahila NK, Vinoj G, Selvam S, Kumar G, Kannapiran E, Rajendran RB. 2017. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed Pharmacother, 92: 479-490.
  • Rana A, Yadav K, Jagadevan S. 2020. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J of Cleaner Prod, 272: 122880.
  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. 2007. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett, ;90: 2139021-2139023.
  • Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G. 2001. Growth of silver colloidal particles obtained by citrate reduction to increase the raman enhancement factor. Langmuir, 17(3): 574-577.
  • Rodriguez-Sanchez L, Blanco MC, Lopez-Quintela MA. 2000. Electrochemical synthesis of silver nanoparticles. J Phys Chem B, 104: 9683-9688.
  • Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. 2019. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv, 9: 2673-2702.
  • Roy S, Das TK. 2016. Effect of biosynthesised silver nanoparticles on the growth and some biochemical parameters of Aspergillus foetidus. J Env Chem Eng, 4(2): 1574-1583.
  • Şahin B, Aygün A, Gündüz H, Şahin K, Demir E, Akocak S, Şen F. 2018. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloid Surf B, 163: 119-124.
  • Saif S, Tahir A, Chen Y. 2016. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6 (11): 209.
  • Santhoshkumar J, Kumar SV, Rajeshkumar S. 2017. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Res Efficient Technol, 3(4): 459-465. Sathishkumar G, Logeshwaran V, Sarathbabu S, Jha PK, Jeyaraj M, Rajkuberan C, Senthilkumar N, Sivaramakrishnan S. 2018. Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artif Cell Nanomed. Biotechnol, 46(3): 589-598.
  • Savi GD, Bortoluzzi AJ, Scussel VM. 2013. Antifungal properties of zinc-compounds against toxigenic fungi and mycotoxin. Int J Food Sci Technol, 48(9): 1834-1840.
  • Schrofel A, Kratosova G, Krautova M, Dobrocka E, Vavra I. 2011. Biosynthesis of gold nanoparticles using diatoms–silica-gold and EPS-gold bionanocomposite formation. J Nanoparticle Res, 13:3207-3216.
  • SchwartzAlbiez R, Monteiro RC, Rodriguez M, Binder CJ, Shoenfeld Y. 2009. Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clin Exp Immunol, 158(1): 43-50.
  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. 2015. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel), 8(11): 7278–7308.
  • Shankar SS, Rai A, Ahmad A, Sastry M. 2004. Rapid synthesis of Au Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Coll Interf Sci, 275(2): 496-502.
  • Sharma A, Goyal AK, Rath G. 2018.Recent advances in metal nanoparticles in cancer therapy. J Drug Target, 26(8): 617-32.
  • Sharma A, Sharma S, Sharma K, Siva PK, Vashishtha A, Singh P, Kumar R, Rathi B, Agrawal V. 2016. Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol, 28: 1759-1774.
  • Sharma VK, Yngard RA, Lin Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci, 145(1–2): 83–96.
  • Shin SW, Song IH, Um SH. 2015. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials, 5(3): 1351-1365.
  • Shukla AK, Iravani S. 2017. Metallic nanoparticles: green synthesis and spectroscopic characterization. Environ Chem Lett, 15(2): 223-231. Singh P, Ahn S, Kang JP, Veronika S, Huo Y, Singh H, Chokkaligam M, El-Agamy Farh M, Aceituno VC, Kim YJ, Yang DC. 2018. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artif. Cells, Nanomed Biotechnol, 46(8): 2022-2032.
  • Singh P, Kim YJ, Zhang D, Yang DC. 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnol, 34(7): 588– 599. Singh P, Kim YJ, Zhang DB, Yang DC. 2016. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol, 34(7): 588-599.
  • Sneed BT, Young AP, Tsung CK. 2015. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale, 7: 12248-12265.
  • Sneha K, Sathishkumar M, Kim S, Yun YS. 2010. Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Proc Biochem, 45(9): 1450-1458.
  • Starowicz M, Starowicz P, Zukrowski J, Przewoźnik J, Lemański A, Kapusta C, Banaś J. 2011. Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. J Nanopart Res, 13(12): 7167-7176.
  • Sukanya MK, Saju KA, Praseetha PK, Sakthivel G. 2013. Therapeutic potential of biologically reduced silver nanoparticles from Actinomycete cultures. J Nanosci, 2013: 1–8.
  • Sulaiman GM, Tawfeeq AT, Naji AS. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif Cells Nanomed Biotechnol. 2018;46(6):1215-1229.
  • Sumera A, Muhammad BT, Tahir I, Arslan L, Muhammad A. 2018. Green synthesis and characterization of novel iron particles by using different extracts. J Alloy Compd, 732: 935-944.
  • Surya C, John NAA, Pandiyan V, Ravikumar S, Amutha P, Sobral AJ, Krishnakumar B. 2019. Costus speciosus leaf extract assisted CS-Pt-TiO2composites: synthesis, characterization and their bio and photocatalytic applications. J Mol Struct, 1195(5): 787-795.
  • Tan Y, Dai Y, Li Y, Zhua D. 2003. Preparation of gold platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J Mater Chem, 13: 1069-1075.
  • Terra ALM, Kosinski RDC, Moreira JB, Costa JAV, Morais MGD. 2019. Microalgae biosynthesis of silver nanoparticles for application in the control of agricultural pathogens. J Environ Sci Health, Part B, 54(8): 709-716.
  • Thakkar KN, Mhatre SS, Parikh, RY. 2010. Biological synthesis of metallic nanoparticles. Nanomedicine: NBM, 6: 257-262.
  • Toledo LdASd, Rosseto HC, Bruschi ML. 2018. Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. Pharmaceut Dev Technol, 23(4): 316-323.
  • Umadevi M, Bindhu MR, Sathe VA. 2013. Novel synthesis of malic acid capped silver nanoparticles using Solanum lycopersicums fruit extract. J Mater Sci Technol, 29(4): 317-322.
  • Vennila K, Chitra L, Balagurunathan R, Palvannan T. 2018. Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract. Adv Nat Sci Nanosci Nanotechnol, 9(1): 015005. Wahab R, Dwivedi S, Khan F, Mishra YK, Hwang IH, Shin HS, Musarrat J, Al-Khedhairy AA. 2014. Statistical analysis of gold nanoparticle-induced oxidative stress and apoptosis in myoblast (C2C12) cells. Colloids Surf B: Biointerfaces, 123: 664-672.
  • Walkey CD, Chan WCW. 2012. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev, 41(7): 2780-2799.
  • Wang Z, Colombi Ciacchi L, Wei G. 2017. Recent advances in the synthesis of graphene-based nanomaterials for controlled drug delivery. Appl Sci, 7(11): 1175.
  • Wynn TA, Vannella KM. 2016. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 44(3): 450-462. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T,
  • Sioutas C, Yeh JI, Wiesner MR, Nel AE. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano. Lett, 6: 1794-1807.
  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M. 2015. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett, 37(11): 2099-2120. Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, Arjaria N, Roopan SM, Rahuman AA, Singh N. 2015. Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob Agents Chemother, 59(8): 4782-4799.
  • Zhang X, Qu Y, Shen W, Wang J, Li H, Zhang Z, Li S, Zhou J. 2016. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A., 497: 280-285.
  • Zheng J. 2015. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine, 10(17): 2781–2794.
There are 157 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Reviews
Authors

Harun Çiftçi 0000-0002-3210-5566

Çiğdem Er Çalışkan 0000-0001-5821-7489

Kübra Öztürk 0000-0002-4488-0164

Burcu Yazıcı 0000-0003-2887-1361

Publication Date January 1, 2021
Submission Date October 25, 2020
Acceptance Date November 26, 2020
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Çiftçi, H., Er Çalışkan, Ç., Öztürk, K., Yazıcı, B. (2021). Yeşil Yöntemle Sentezlenen Biyoaktif Nanopartiküller. Black Sea Journal of Engineering and Science, 4(1), 29-42. https://doi.org/10.34248/bsengineering.816084
AMA Çiftçi H, Er Çalışkan Ç, Öztürk K, Yazıcı B. Yeşil Yöntemle Sentezlenen Biyoaktif Nanopartiküller. BSJ Eng. Sci. January 2021;4(1):29-42. doi:10.34248/bsengineering.816084
Chicago Çiftçi, Harun, Çiğdem Er Çalışkan, Kübra Öztürk, and Burcu Yazıcı. “Yeşil Yöntemle Sentezlenen Biyoaktif Nanopartiküller”. Black Sea Journal of Engineering and Science 4, no. 1 (January 2021): 29-42. https://doi.org/10.34248/bsengineering.816084.
EndNote Çiftçi H, Er Çalışkan Ç, Öztürk K, Yazıcı B (January 1, 2021) Yeşil Yöntemle Sentezlenen Biyoaktif Nanopartiküller. Black Sea Journal of Engineering and Science 4 1 29–42.
IEEE H. Çiftçi, Ç. Er Çalışkan, K. Öztürk, and B. Yazıcı, “Yeşil Yöntemle Sentezlenen Biyoaktif Nanopartiküller”, BSJ Eng. Sci., vol. 4, no. 1, pp. 29–42, 2021, doi: 10.34248/bsengineering.816084.
ISNAD Çiftçi, Harun et al. “Yeşil Yöntemle Sentezlenen Biyoaktif Nanopartiküller”. Black Sea Journal of Engineering and Science 4/1 (January 2021), 29-42. https://doi.org/10.34248/bsengineering.816084.
JAMA Çiftçi H, Er Çalışkan Ç, Öztürk K, Yazıcı B. Yeşil Yöntemle Sentezlenen Biyoaktif Nanopartiküller. BSJ Eng. Sci. 2021;4:29–42.
MLA Çiftçi, Harun et al. “Yeşil Yöntemle Sentezlenen Biyoaktif Nanopartiküller”. Black Sea Journal of Engineering and Science, vol. 4, no. 1, 2021, pp. 29-42, doi:10.34248/bsengineering.816084.
Vancouver Çiftçi H, Er Çalışkan Ç, Öztürk K, Yazıcı B. Yeşil Yöntemle Sentezlenen Biyoaktif Nanopartiküller. BSJ Eng. Sci. 2021;4(1):29-42.

                                                24890