Investigation of Horst-Graben Structures around Gülşehir (Nevşehir-Central Anatolia) with PSInSAR and Lidar
Year 2025,
Volume: 8 Issue: 2, 268 - 277, 15.03.2025
Ramazan Demircioğlu
,
Osman Oktar
Abstract
This study examined horst-graben structures in the study area using the Interferometric Synthetic Aperture Radar (PSInSAR) method, and the movements in the line of sight (LOS) were determined. Both field and PSInSAR and Lidar studies were evaluated together. Accordingly, the uplift observed in the horst-graben structures, and the descending movements observed in the grabens continue today. It has been observed that the faults forming the Horst and Graben structures are active. The structures determined by the field studies agree with the data obtained from the PSInSAR and Lidar studies. It has been determined that these structures continue to develop even today. The region continues to expand under the extensional tectonic regime.
Ethical Statement
Ethics committee approval was not required for this study because of there was no study on animals or humans.
References
- Atabey E, Tarhan N, Yusufoğlu H, Canpolat M. 1988. Hacıbektaş, Gülşehir, Kalaba (Nevşehir) Himmetdede (Kayseri) arasının jeolojisi, MTA Rapor No: 8523, Ankara, Türkiye.
- Atabey E. 1989. Aksaray-H19 quadrangle, 1:100,000 scale geological map and explanatory text. Maden Tetkik Arama Yayınları Ankara, Türkiye, ss: 64.
- Aydın N. 1984. Orta Anadolu masifinin Gümüşkent B.(Nevşehir) Dolayında jeolojik petrografik incelemeler. MTA Jeoloji Etüdleri Daire Bşk. Saydamer – Gün Kitaplığı Arşiv No: 206, Ankara, Türkiye, ss: 72.
- Biggs J, Wright T, Lu Z, Parsons B. 2007. Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical J Int, 170(3): 1165-1179. https://doi.org/10.1111/j.1365-246X.2007.03415.x
- Çiner A, Doğan U, Yıldırım C, Akçar N, Ivy-Ochs S, Alfimov V, Schlüchter C. 2015. Quaternary uplift rates of the Central Anatolian Plateau, Turkey: insights from cosmogenic isochron-burial nuclide dating of the Kızılırmak River terraces. Quaternary Sci Rev, 107: 81-97.
- Demircioğlu R, Coşkuner B. 2022. Salanda fay zonu’nun Kesikköprü (Kırşehir) ve Yeşilöz (Nevşehir) arasında kalan kesiminin göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Pamukkale Üniv Müh Bil Derg, 8(3): 464-482.
- Demircioğlu R, Oktar O. 2024. Investigation of Salanda fault zone, between Yesiloz and Gumuskent (Nevsehir-Turkey) with PSInSAR. Geofísica Int, 63(2): 865-879. https://doi.org/10.22201/igeof.2954436xe.2024.63.2.1733
- Demircioğlu R. 2014. Geology and structural features of the Kirşehir massif and cover units in the Gülşehir-Özkonak (Nevşehir) region. PhD Thesis, Selçuk University, Institute of Science, Konya, Türkiye, pp: 241.
- Dirik K, Göncüoğlu MC. 1996. Neotectonic characteristics of the Central Anatolia. Int Geol Rev, 38: 807-817.
- Doğan U, Koçyiğit A, Wijbrans J. 2009. Evolutionary history of the Kızılırmak River, Cappadocia Section: implication for the initiation of Neotectonic regime in Central Anatolia, Turkey. 62nd Geological Congress of Turkey, April 13-17, Ankara, Türkiye, pp: e2020JD034411. https://doi.org/10.1029/2020JD034411
- Doğan U. 2011. Climate-controlled river terrace formation in the Kızılırmak Valley, Cappadocia section, Turkey: inferred from Ar-Ar dating of Quaternary basalts and terraces stratigraphy. Geomorphol J, 126: 66-81. https://doi.org/10.1016/j.geomorph.2010.10.028
- Eski S, Sözbilir H. 2024. Gediz (Alaşehir) grabeni’nde gelişen a-sismik yüzey deformasyonların kökeni. Türkiye Jeol Bült, 67(4): 31-62. https://doi.org/10.25288/tjb.1342834
- Göncüoğlu MC, Yalınız K, Kuşçu I, Köksal S, Dirik K. 1993. Orta Anadolu masifinin orta bölümünün jeolojisi, Bolum 3: Orta Kızılırmak Tersiyer Baseninin Jeolojik evrimi. T.P.A.O. Rapor No: 3313, Ankara, Türkiye, ss: 48.
- Gürsoy Ö, Kaya Ş, Çakir Z, Tatar O, Canbaz O. 2017. Determining lateral offsets of rocks along the eastern part of the North Anatolian Fault Zone (Turkey) using the spectral classification of satellite images and field measurements. Natural Hazards Risk, 8: 1276-1288. https://doi.org/10.1080/19475705.2017.1318794
- He P, Wen Y, Xu C, Chen Y. 2018. High-quality three-dimensional displacement fields from new-generation SAR imagery: application to the 2017 Ezgeleh, Iran, earthquake. J Geodesy, 93: 573-591. https://doi.org/10.1007/s00190-018-1183-6
- Hooper A, Bekaert D, Hussain E, Spaans K. 2018. Stamps/Manual, VeStamps4.1b, School of Environment, University of Leeds, Leeds, UK, pp: 135.
- Hooper A, Pa S, Howard Z. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophysical Res: Solid Earth, 112: B07407. https://doi.org/10.1029/2006JB004763
- Koçak İ, Temiz U, Öksüz N. 2021. Salanda Fay zonu (SFZ) ile ilişkili traverten oluşumlarının paleoiklimsel önemi. Müh Bil Araş Derg, 3: 218-225. https://doi.org/10.46387/bjesr.963704.
- Koçyiğit A, Doğan U. 2016. Strike-slip neotectonic regime and related structures in the Cappadocia region: a case study in the Salanda basin, Central Anatolia, Turkey. Turkish J Earth Sci, 25(5): 393-417. https://doi.org/10.3906/yer-1512-9
- Koçyiğit A. 2003. Orta Anadolu’nun genel neotektonik özellikleri ve depremselliği. Türkiye Petrol Jeologları Dern Bült, 5(Özel Sayı): 1-26.
- Poyraz F, Hastaoglu K. 2020. Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian J Geosci, 13: 844. https://doi.org/10.1007/s12517-020-05834-5
- Rosu AM, Pierrot-Deseilligny M, Delorme A, Binet R, Klinger Y. 2015. Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac. ISPRS J Photogrammetry Remote Sens, 100: 48-59. https://doi.org/10.1016/j.isprsjprs.2014.03.002
- Scholz C.H, Aviles CA, Wesnousky SG. 1986. Scaling differences between large interplate and intraplate earthquakes. Bull Seism Soc Amer, 76: 65-70. https://doi.org/10.1785/BSSA0760010065
- Scott C, Bunds M, Shirzaei M, Toke N. 2020. Creep along the Central San Andreas Fault from surface fractures, topographic differencing, and InSAR. J Geophys Res: Solid Earth, 125: e2020JB019762 https://doi.org/10.1029/2020JB019762
- Shirzaei M, Bürgmann R. 2013. Time‐dependent model of creep on the Hayward fault from joint inversion of 18 years of InSAR and surface creep data. Türkiye Petrol Jeologları Dern Bült, 5(Özel Sayı): 1-25.
- Temiz U, Gökten Y.E. 2016. 10 Ocak 2016 Hacıduraklı-Çiçekdağı (Kırşehir) depremi (Mw = 5.0); ilgili yapılar ve tektonik ortam, Orta Anadolu. Geological Bull Turkey, 59: 155-166. https://doi.org/10.25288/tjb.298218
- URL-1: https://equatorstudios.com (accessed date: january 14, 2024).
- Wang T, Jónsson S. 2015. Improved SAR amplitude image offset measurements for deriving three-dimensional coseismic displacements. IEEE J Selected Topics Appl Earth Observat Remote Sens, 8(7): 3271-3278. https://doi.org/10.1109/JSTARS.2014.2387865
- Wang Z, Lawrence J, Ghail R, Mason P, Carpenter A, Agar S, Morgan T. 2022. Characterizing micro-displacements on active faults in the Gobi Desert with time-series InSAR. Appl Sci, 12(9): 4222. https://doi.org/10.3390/app12094222
- Yavaşoğlu H, Tarı E, Tüysüz O, Çakır Z, Ergintav S. 2011. Determining and modelling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements. J Geodynamics, 51(5): 339-343. https://doi.org/10.1016/j.jog.2010.07.003
- Zhang X, Feng M, Zhang H, Wang C, Tang Y, Xu J, Wang C. 2021. Detecting rock glacier displacement in the central himalayas using multi-temporal InSAR. Remote Sens, 13(23): 4738. https://doi.org/10.3390/rs13234738
- Zheng M, Fukuyama K, Sanga-Ngoie K. 2013. Application of InSAR and GIS techniques to ground subsidence assessment in the Nobi Plain, Central Japan. Sensors, 14(1): 492-509. https://doi.org/10.3390/s140100492
- Zhou L, Zhao Y, Zhu Z, Ren C, Yang F, Huang L, Li X. 2022. Spatial and temporal evolution of surface subsidence in Tianjin from 2015 to 2020 based on SBAS-InSAR technology. J Geodesy Geoinfo Sci, 5(1): 60-72. http://jggs.chinasmp.com/EN/Y2022/V5/I1/60
Investigation of Horst-Graben Structures around Gülşehir (Nevşehir-Central Anatolia) with PSInSAR and Lidar
Year 2025,
Volume: 8 Issue: 2, 268 - 277, 15.03.2025
Ramazan Demircioğlu
,
Osman Oktar
Abstract
This study examined horst-graben structures in the study area using the Interferometric Synthetic Aperture Radar (PSInSAR) method, and the movements in the line of sight (LOS) were determined. Both field and PSInSAR and Lidar studies were evaluated together. Accordingly, the uplift observed in the horst-graben structures, and the descending movements observed in the grabens continue today. It has been observed that the faults forming the Horst and Graben structures are active. The structures determined by the field studies agree with the data obtained from the PSInSAR and Lidar studies. It has been determined that these structures continue to develop even today. The region continues to expand under the extensional tectonic regime.
Ethical Statement
Ethics committee approval was not required for this study because of there was no study on animals or humans.
References
- Atabey E, Tarhan N, Yusufoğlu H, Canpolat M. 1988. Hacıbektaş, Gülşehir, Kalaba (Nevşehir) Himmetdede (Kayseri) arasının jeolojisi, MTA Rapor No: 8523, Ankara, Türkiye.
- Atabey E. 1989. Aksaray-H19 quadrangle, 1:100,000 scale geological map and explanatory text. Maden Tetkik Arama Yayınları Ankara, Türkiye, ss: 64.
- Aydın N. 1984. Orta Anadolu masifinin Gümüşkent B.(Nevşehir) Dolayında jeolojik petrografik incelemeler. MTA Jeoloji Etüdleri Daire Bşk. Saydamer – Gün Kitaplığı Arşiv No: 206, Ankara, Türkiye, ss: 72.
- Biggs J, Wright T, Lu Z, Parsons B. 2007. Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical J Int, 170(3): 1165-1179. https://doi.org/10.1111/j.1365-246X.2007.03415.x
- Çiner A, Doğan U, Yıldırım C, Akçar N, Ivy-Ochs S, Alfimov V, Schlüchter C. 2015. Quaternary uplift rates of the Central Anatolian Plateau, Turkey: insights from cosmogenic isochron-burial nuclide dating of the Kızılırmak River terraces. Quaternary Sci Rev, 107: 81-97.
- Demircioğlu R, Coşkuner B. 2022. Salanda fay zonu’nun Kesikköprü (Kırşehir) ve Yeşilöz (Nevşehir) arasında kalan kesiminin göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Pamukkale Üniv Müh Bil Derg, 8(3): 464-482.
- Demircioğlu R, Oktar O. 2024. Investigation of Salanda fault zone, between Yesiloz and Gumuskent (Nevsehir-Turkey) with PSInSAR. Geofísica Int, 63(2): 865-879. https://doi.org/10.22201/igeof.2954436xe.2024.63.2.1733
- Demircioğlu R. 2014. Geology and structural features of the Kirşehir massif and cover units in the Gülşehir-Özkonak (Nevşehir) region. PhD Thesis, Selçuk University, Institute of Science, Konya, Türkiye, pp: 241.
- Dirik K, Göncüoğlu MC. 1996. Neotectonic characteristics of the Central Anatolia. Int Geol Rev, 38: 807-817.
- Doğan U, Koçyiğit A, Wijbrans J. 2009. Evolutionary history of the Kızılırmak River, Cappadocia Section: implication for the initiation of Neotectonic regime in Central Anatolia, Turkey. 62nd Geological Congress of Turkey, April 13-17, Ankara, Türkiye, pp: e2020JD034411. https://doi.org/10.1029/2020JD034411
- Doğan U. 2011. Climate-controlled river terrace formation in the Kızılırmak Valley, Cappadocia section, Turkey: inferred from Ar-Ar dating of Quaternary basalts and terraces stratigraphy. Geomorphol J, 126: 66-81. https://doi.org/10.1016/j.geomorph.2010.10.028
- Eski S, Sözbilir H. 2024. Gediz (Alaşehir) grabeni’nde gelişen a-sismik yüzey deformasyonların kökeni. Türkiye Jeol Bült, 67(4): 31-62. https://doi.org/10.25288/tjb.1342834
- Göncüoğlu MC, Yalınız K, Kuşçu I, Köksal S, Dirik K. 1993. Orta Anadolu masifinin orta bölümünün jeolojisi, Bolum 3: Orta Kızılırmak Tersiyer Baseninin Jeolojik evrimi. T.P.A.O. Rapor No: 3313, Ankara, Türkiye, ss: 48.
- Gürsoy Ö, Kaya Ş, Çakir Z, Tatar O, Canbaz O. 2017. Determining lateral offsets of rocks along the eastern part of the North Anatolian Fault Zone (Turkey) using the spectral classification of satellite images and field measurements. Natural Hazards Risk, 8: 1276-1288. https://doi.org/10.1080/19475705.2017.1318794
- He P, Wen Y, Xu C, Chen Y. 2018. High-quality three-dimensional displacement fields from new-generation SAR imagery: application to the 2017 Ezgeleh, Iran, earthquake. J Geodesy, 93: 573-591. https://doi.org/10.1007/s00190-018-1183-6
- Hooper A, Bekaert D, Hussain E, Spaans K. 2018. Stamps/Manual, VeStamps4.1b, School of Environment, University of Leeds, Leeds, UK, pp: 135.
- Hooper A, Pa S, Howard Z. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophysical Res: Solid Earth, 112: B07407. https://doi.org/10.1029/2006JB004763
- Koçak İ, Temiz U, Öksüz N. 2021. Salanda Fay zonu (SFZ) ile ilişkili traverten oluşumlarının paleoiklimsel önemi. Müh Bil Araş Derg, 3: 218-225. https://doi.org/10.46387/bjesr.963704.
- Koçyiğit A, Doğan U. 2016. Strike-slip neotectonic regime and related structures in the Cappadocia region: a case study in the Salanda basin, Central Anatolia, Turkey. Turkish J Earth Sci, 25(5): 393-417. https://doi.org/10.3906/yer-1512-9
- Koçyiğit A. 2003. Orta Anadolu’nun genel neotektonik özellikleri ve depremselliği. Türkiye Petrol Jeologları Dern Bült, 5(Özel Sayı): 1-26.
- Poyraz F, Hastaoglu K. 2020. Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian J Geosci, 13: 844. https://doi.org/10.1007/s12517-020-05834-5
- Rosu AM, Pierrot-Deseilligny M, Delorme A, Binet R, Klinger Y. 2015. Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac. ISPRS J Photogrammetry Remote Sens, 100: 48-59. https://doi.org/10.1016/j.isprsjprs.2014.03.002
- Scholz C.H, Aviles CA, Wesnousky SG. 1986. Scaling differences between large interplate and intraplate earthquakes. Bull Seism Soc Amer, 76: 65-70. https://doi.org/10.1785/BSSA0760010065
- Scott C, Bunds M, Shirzaei M, Toke N. 2020. Creep along the Central San Andreas Fault from surface fractures, topographic differencing, and InSAR. J Geophys Res: Solid Earth, 125: e2020JB019762 https://doi.org/10.1029/2020JB019762
- Shirzaei M, Bürgmann R. 2013. Time‐dependent model of creep on the Hayward fault from joint inversion of 18 years of InSAR and surface creep data. Türkiye Petrol Jeologları Dern Bült, 5(Özel Sayı): 1-25.
- Temiz U, Gökten Y.E. 2016. 10 Ocak 2016 Hacıduraklı-Çiçekdağı (Kırşehir) depremi (Mw = 5.0); ilgili yapılar ve tektonik ortam, Orta Anadolu. Geological Bull Turkey, 59: 155-166. https://doi.org/10.25288/tjb.298218
- URL-1: https://equatorstudios.com (accessed date: january 14, 2024).
- Wang T, Jónsson S. 2015. Improved SAR amplitude image offset measurements for deriving three-dimensional coseismic displacements. IEEE J Selected Topics Appl Earth Observat Remote Sens, 8(7): 3271-3278. https://doi.org/10.1109/JSTARS.2014.2387865
- Wang Z, Lawrence J, Ghail R, Mason P, Carpenter A, Agar S, Morgan T. 2022. Characterizing micro-displacements on active faults in the Gobi Desert with time-series InSAR. Appl Sci, 12(9): 4222. https://doi.org/10.3390/app12094222
- Yavaşoğlu H, Tarı E, Tüysüz O, Çakır Z, Ergintav S. 2011. Determining and modelling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements. J Geodynamics, 51(5): 339-343. https://doi.org/10.1016/j.jog.2010.07.003
- Zhang X, Feng M, Zhang H, Wang C, Tang Y, Xu J, Wang C. 2021. Detecting rock glacier displacement in the central himalayas using multi-temporal InSAR. Remote Sens, 13(23): 4738. https://doi.org/10.3390/rs13234738
- Zheng M, Fukuyama K, Sanga-Ngoie K. 2013. Application of InSAR and GIS techniques to ground subsidence assessment in the Nobi Plain, Central Japan. Sensors, 14(1): 492-509. https://doi.org/10.3390/s140100492
- Zhou L, Zhao Y, Zhu Z, Ren C, Yang F, Huang L, Li X. 2022. Spatial and temporal evolution of surface subsidence in Tianjin from 2015 to 2020 based on SBAS-InSAR technology. J Geodesy Geoinfo Sci, 5(1): 60-72. http://jggs.chinasmp.com/EN/Y2022/V5/I1/60