Development of the Test Platform for Rotary Wing Unmanned Air Vehicle
Year 2016,
Volume: 3 Issue: 2, 18 - 24, 16.12.2016
Uğur Yüzgeç
,
İrfan Ökten
,
Hakan Üçgün
,
Ali Rıza Gün
Telat Türkyılmaz
Metin Kesler
,
Cihan Karakuzu
,
Gökhan Uçar
Abstract
In this study, a new test platform was developed for rotary wing unmanned air vehicle (UAV) with the multirotors.
This platform basically includes three different sized circles. Before the flight of UAV, all tests such as yaw,
pitch, roll, elevation, etc., are done by the proposed test platform, so the problem or crash in flight of UAV will be
prevented. The developed test platform is more superior to the existing test platforms. In this work, the detailed
developing process of test platform is presented and some pre-flight tests done by this test platform are represented
for the rotary wing UAV with six rotors.
References
- How, J. P., Bethke, B., Frank, a., Dale, D., & Vian, J., "Real-time Indoor Autonomous Vehicle Test
Environment", IEEE Control Systems, vol. 28(2), pp. 51–64, 2008.
- Ömürlü V. E., Kirli, A., Büyükşahin, U., Engin, Ş. N., & Kurtoğlu, S., "A Stationary, Variable DOF
Flight Control System for An Unmanned Quadrocopter." Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 19(6), pp. 891–899, 2011.
- Hanford, S. D., Long, L. N., & Horn, J. F., "A Small Semi-Autonomous Rotary-Wing Unmanned Air
Vehicle ( UAV)", American Institute of Aeronautics and Astronautics Conference 2005, pp.1–10.
- Volkmann, O., "Multirotor 101" published in Drone 360 on the website. [Online]. Available:
https://www.habanaavenue.com/2015/05/14/multirotor-101
- Ragan, S.M., "Anatomy of a Drone" makezine homepage. [Online]. Available:
http://makezine.com/2014/01/07/anatomy-of-a-drone/ (date: 02.06.2016, 16.09)
- Yu, Y., & Ding, X., "A Quadrotor Test Bench for Six Degree of Freedom Flight. Journal of Intelligent
and Robotic Systems: Theory and Applications, vol. 68(3-4), pp. 323–338, 2012.
- Artale, V., Milazzo, C. L. R., & Riccardello, a., "Mathematical Modeling of Hexacopter". Applied
Mathematical Sciences, vol. 7(97), pp. 4805–481, 2013.
- Grzonka, S., Grisetti, G., Burgard, W., A Fully Autonomous Indoor Quadrotor, IEEE Transactions On
Robotics, vol. 28, pp. 90-100, 2011.
- Azfar, Z.A., Hazry, D., A Simple Approach On Implementing Imu Sensor Fusion in PID Controller for
Stabilizing Quadrotor Flight Control, 2011 IEEE 7th International Colloquium on Signal Processing and
its Applications, 7: pp. 28-32, 2011.
- Ömürlü, V. E., Kirli, A., Büyükşahin, U., Engin, Şeref Naci, & Kurtoglu, S., A stationary, variable DOF
flight control system for an unmanned quadrocopter. Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 19(6), pp. 891–899. 2011.
- Baran, E.A., Hançer, C., Çalıkoğlu, E., Duman, E., Çetinsoy, E., Ünel, M., Akşit, M.F., Baran, Insansiz
Hava Araçlari için Test Düzeneği Tasarimi ve Üretimi, Otomatik Kontrol Türk Milli Komitesi, Otomatik
Kontrol Ulusal Toplantısı TOK'08, İstanbul, Türkiye, 2008.
Year 2016,
Volume: 3 Issue: 2, 18 - 24, 16.12.2016
Uğur Yüzgeç
,
İrfan Ökten
,
Hakan Üçgün
,
Ali Rıza Gün
Telat Türkyılmaz
Metin Kesler
,
Cihan Karakuzu
,
Gökhan Uçar
References
- How, J. P., Bethke, B., Frank, a., Dale, D., & Vian, J., "Real-time Indoor Autonomous Vehicle Test
Environment", IEEE Control Systems, vol. 28(2), pp. 51–64, 2008.
- Ömürlü V. E., Kirli, A., Büyükşahin, U., Engin, Ş. N., & Kurtoğlu, S., "A Stationary, Variable DOF
Flight Control System for An Unmanned Quadrocopter." Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 19(6), pp. 891–899, 2011.
- Hanford, S. D., Long, L. N., & Horn, J. F., "A Small Semi-Autonomous Rotary-Wing Unmanned Air
Vehicle ( UAV)", American Institute of Aeronautics and Astronautics Conference 2005, pp.1–10.
- Volkmann, O., "Multirotor 101" published in Drone 360 on the website. [Online]. Available:
https://www.habanaavenue.com/2015/05/14/multirotor-101
- Ragan, S.M., "Anatomy of a Drone" makezine homepage. [Online]. Available:
http://makezine.com/2014/01/07/anatomy-of-a-drone/ (date: 02.06.2016, 16.09)
- Yu, Y., & Ding, X., "A Quadrotor Test Bench for Six Degree of Freedom Flight. Journal of Intelligent
and Robotic Systems: Theory and Applications, vol. 68(3-4), pp. 323–338, 2012.
- Artale, V., Milazzo, C. L. R., & Riccardello, a., "Mathematical Modeling of Hexacopter". Applied
Mathematical Sciences, vol. 7(97), pp. 4805–481, 2013.
- Grzonka, S., Grisetti, G., Burgard, W., A Fully Autonomous Indoor Quadrotor, IEEE Transactions On
Robotics, vol. 28, pp. 90-100, 2011.
- Azfar, Z.A., Hazry, D., A Simple Approach On Implementing Imu Sensor Fusion in PID Controller for
Stabilizing Quadrotor Flight Control, 2011 IEEE 7th International Colloquium on Signal Processing and
its Applications, 7: pp. 28-32, 2011.
- Ömürlü, V. E., Kirli, A., Büyükşahin, U., Engin, Şeref Naci, & Kurtoglu, S., A stationary, variable DOF
flight control system for an unmanned quadrocopter. Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 19(6), pp. 891–899. 2011.
- Baran, E.A., Hançer, C., Çalıkoğlu, E., Duman, E., Çetinsoy, E., Ünel, M., Akşit, M.F., Baran, Insansiz
Hava Araçlari için Test Düzeneği Tasarimi ve Üretimi, Otomatik Kontrol Türk Milli Komitesi, Otomatik
Kontrol Ulusal Toplantısı TOK'08, İstanbul, Türkiye, 2008.