Research Article
BibTex RIS Cite

Ceviz Kabuğunun Karbonizasyonu ile Elde Edilen Katı Ürününün Toprak Düzenleyicisi Olarak Kullanılması

Year 2019, Volume: 6, 106 - 116, 30.09.2019
https://doi.org/10.35193/bseufbd.571391

Abstract

Biyokütlenin oksijensiz ortamda bozundurulması ile
elde edilen piroliz katı ürünü (biyoçar), toprak kalitesini iyileştirici
özelliğinden dolayı toprak düzenleyicisi olarak kullanılabilmektedir. Yapılan
bu çalışmada, ceviz kabuğundan 500 °C'de biyoçar elde edilmiş ve biyoçar
(g):toprak (kg) oranı 5, 10 ve 20 olmak üzere üç farklı oranda biyoçar-toprak
karışımları hazırlanmıştır. Elde edilen karışımlar 3, 8 ve 12 haftalık
sürelerde inkübasyona bırakılmış ve inkübasyon sonunda toprak örneklerinin
karakterizasyonu için pH, elektriksel iletkenlik, katyon değiştirme kapasitesi
(KDK) ve su tutma kapasitesi (STK) ölçümleri yapılmıştır. Taramalı Elektron
Mikroskobu-Enerji-Dağılımlı X-Işını (SEM-EDX) tekniği ile inorganik madde
miktarı ve Kjeldahl metodu ile azot miktarı belirlenmiştir. Yüksek karbon
içeriğine ve gözenekli yapıya sahip olan biyoçar, toprağın elektriksel
iletkenlik ve pH değerlerini önemli ölçüde azaltırken, azot miktarını ise
artırmıştır. Toprak için su tutma kapasitesi yaklaşık 0.55 g/g olarak
belirlenirken, biyoçar-toprak karışımında bu değerin 0.60 g/g’a yükseldiği
görülmektedir. Biyoçarın bitki büyüme üzerindeki etkisi incelendiğinde, en
verimli sonucun biyoçar (g):toprak (kg) oranının 5 olduğu örnekten elde
edildiği belirlenmiştir.


References

  • [1] Wall, D.H., Nielsen, U.N., Six, J. (2015). Soil biodiversity and human health. Nature, 528, 69–76.
  • [2] Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655-670.
  • [3] Khalil, H. A., Hossain, M. S., Rosamah, E., Azli, N. A., Saddon, N., Davoudpoura, Y., Y., Islam, M.N., Dungani, R. (2015). The role of soil properties and it’s interaction towards quality plant fiber: A review. Renewable and Sustainable Energy Reviews, 43, 1006-1015.
  • [4] Chen, Z., Xiao, X., Chen, B., & Zhu, L. (2014). Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environmental science & technology, 49(1), 309-317.
  • [5] Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875-5895.
  • [6] Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of environmental management, 232, 8-21.
  • [7] Laird, D. A., Brown, R. C., Amonette, J. E., Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio‐oil and biochar. Biofuels, Bioproducts and Biorefining, 3(5), 547-562.
  • [8] Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F., Soja, G. (2014). Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 177(1), 3-15.
  • [9] Akgül, G. (2017). Biyokömür: Üretimi ve Kullanım Alanları. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(4), 485-499.
  • [10] Atkinson, C. J., Fitzgerald, J. D., Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and soil, 337(1-2), 1-18.
  • [11] Yuan, J. H., Xu, R. K. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110-115.
  • [12] Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., Barnes, R. T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34-43.
  • [13] Yanai, Y., Toyota, K., Okazaki, M. (2007). Effects of charcoal addition on N2O emissions from soil resulting from rewetting air‐dried soil in short‐term laboratory experiments. Soil Science & Plant Nutrition, 53(2), 181-188.
  • [14] Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436-442.
  • [15] Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3-4), 443-449.
  • [16] Hurni, H., Giger, M., Liniger, H., Studer, R. M., Messerli, P., Portner, B., Schwilch, G., Wolfgramm, B., Breu, T. (2015). Soils, agriculture and food security: the interplay between ecosystem functioning and human well-being. Current Opinion in Environmental Sustainability, 15, 25-34.
  • [17] Thies, J. E., Rillig, M. C. (2009). Characteristics of biochar: biological properties. Biochar for environmental management: Science and technology, 85-105.
  • [18] Song, W., Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145.
  • [19] EBC (2012). European Biochar Foundation (EBC), European Biochar Certificate-Guidelines for a Sustainable Production of Biochar, Version 6.1, Arbaz, Switzerland.
  • [20] Karla, Y. P. (1998). Reference methods for plant analysis, soil and plant analysis. Council. Inc.-CRC Press, Boca Raton, FL, 191.
  • [21] Uzun, B. B., & Yaman, E. (2014). Thermogravimetric characteristics and kinetics of scrap tyre and Juglans regia shell co-pyrolysis. Waste Management & Research, 32(10), 961-970.
  • [22] Lian, F., & Xing, B. (2017). Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk. Environmental science & technology, 51(23), 13517-13532.
  • [23] Major, J., Rondon, M., Molina, D., Riha, S. J., Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and soil, 333(1-2), 117-128.
  • [24] Qian, L., Chen, B., Chen, M. (2016). Novel alleviation mechanisms of aluminum phytotoxicity via released biosilicon from rice straw-derived biochars. Scientific reports, 6, 29346.
  • [25] Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., & Zhang, X. (2012). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and soil, 351(1-2), 263-275.

Using of Solid Product Obtained by Carbonization of Walnut Shell as Soil Amendment

Year 2019, Volume: 6, 106 - 116, 30.09.2019
https://doi.org/10.35193/bseufbd.571391

Abstract

Biomass can be used as a soil conditioner due to its soil quality
enhancing properties. In this study, walnut shell biochar was produced at 500
°C and mixed with three different doses of soil, including biochar (g):toprak
(kg) ratio are 5, 10 and 20. The obtained soil-biochar mixtures were incubated
for 3, 8 and 12 weeks. Electrical conductivity, pH measurements, cation
exchange capacity (CEC) and water holding capacity (WHC) were carried out to
characterize soil samples at the end of incubation periods. The amount of
nitrogen was determined by Kjeldahl method and Scanning Electron
Microscope-Energy-Dispersive X-Ray (SEM-EDX) was used to specify the amount of
inorganic substance in soil. The biochar with high carbon content and porous
structure significantly reduced the pH and electrical conductivity values of
the soil and increased the nitrogen amount. While the water holding capacity
for the soil is determined as approximately 0.55 g/g, it is seen that this
value increases to 0.60 g/g in the biochar-soil mixture. When the effect of
biochar on plant growth was examined, it was determined that the most efficient
result was obtained from 5 g of biochar/1 kg soil mixture.

References

  • [1] Wall, D.H., Nielsen, U.N., Six, J. (2015). Soil biodiversity and human health. Nature, 528, 69–76.
  • [2] Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655-670.
  • [3] Khalil, H. A., Hossain, M. S., Rosamah, E., Azli, N. A., Saddon, N., Davoudpoura, Y., Y., Islam, M.N., Dungani, R. (2015). The role of soil properties and it’s interaction towards quality plant fiber: A review. Renewable and Sustainable Energy Reviews, 43, 1006-1015.
  • [4] Chen, Z., Xiao, X., Chen, B., & Zhu, L. (2014). Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environmental science & technology, 49(1), 309-317.
  • [5] Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875-5895.
  • [6] Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of environmental management, 232, 8-21.
  • [7] Laird, D. A., Brown, R. C., Amonette, J. E., Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio‐oil and biochar. Biofuels, Bioproducts and Biorefining, 3(5), 547-562.
  • [8] Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F., Soja, G. (2014). Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 177(1), 3-15.
  • [9] Akgül, G. (2017). Biyokömür: Üretimi ve Kullanım Alanları. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(4), 485-499.
  • [10] Atkinson, C. J., Fitzgerald, J. D., Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and soil, 337(1-2), 1-18.
  • [11] Yuan, J. H., Xu, R. K. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110-115.
  • [12] Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., Barnes, R. T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34-43.
  • [13] Yanai, Y., Toyota, K., Okazaki, M. (2007). Effects of charcoal addition on N2O emissions from soil resulting from rewetting air‐dried soil in short‐term laboratory experiments. Soil Science & Plant Nutrition, 53(2), 181-188.
  • [14] Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436-442.
  • [15] Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3-4), 443-449.
  • [16] Hurni, H., Giger, M., Liniger, H., Studer, R. M., Messerli, P., Portner, B., Schwilch, G., Wolfgramm, B., Breu, T. (2015). Soils, agriculture and food security: the interplay between ecosystem functioning and human well-being. Current Opinion in Environmental Sustainability, 15, 25-34.
  • [17] Thies, J. E., Rillig, M. C. (2009). Characteristics of biochar: biological properties. Biochar for environmental management: Science and technology, 85-105.
  • [18] Song, W., Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145.
  • [19] EBC (2012). European Biochar Foundation (EBC), European Biochar Certificate-Guidelines for a Sustainable Production of Biochar, Version 6.1, Arbaz, Switzerland.
  • [20] Karla, Y. P. (1998). Reference methods for plant analysis, soil and plant analysis. Council. Inc.-CRC Press, Boca Raton, FL, 191.
  • [21] Uzun, B. B., & Yaman, E. (2014). Thermogravimetric characteristics and kinetics of scrap tyre and Juglans regia shell co-pyrolysis. Waste Management & Research, 32(10), 961-970.
  • [22] Lian, F., & Xing, B. (2017). Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk. Environmental science & technology, 51(23), 13517-13532.
  • [23] Major, J., Rondon, M., Molina, D., Riha, S. J., Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and soil, 333(1-2), 117-128.
  • [24] Qian, L., Chen, B., Chen, M. (2016). Novel alleviation mechanisms of aluminum phytotoxicity via released biosilicon from rice straw-derived biochars. Scientific reports, 6, 29346.
  • [25] Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., & Zhang, X. (2012). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and soil, 351(1-2), 263-275.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Elif Yaman 0000-0002-1052-8779

Esin Apaydın-varol 0000-0003-3468-3578

Hüseyin Tevfik Gültaş 0000-0002-4987-8522

Nurgül Özbay 0000-0002-0666-3417

Publication Date September 30, 2019
Submission Date May 29, 2019
Acceptance Date September 8, 2019
Published in Issue Year 2019 Volume: 6

Cite

APA Yaman, E., Apaydın-varol, E., Gültaş, H. T., Özbay, N. (2019). Ceviz Kabuğunun Karbonizasyonu ile Elde Edilen Katı Ürününün Toprak Düzenleyicisi Olarak Kullanılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 106-116. https://doi.org/10.35193/bseufbd.571391