Research Article
BibTex RIS Cite

Effect of photooxidative stress and mannitol on synthesis of OmpC-OmpF proteins of Escherichia coli in lake water

Year 2019, Volume: 6 Issue: 2, 251 - 260, 26.12.2019
https://doi.org/10.35193/bseufbd.610434

Abstract

This study investigated the effects of photooxidative
stress and mannitol on the synthesis of OmpC-OmpF porins of Escherichia coli in lake water. The
synthesis of OmpF decreased independently of photooxidative stress, whereas the
synthesis of OmpC decreased as a consequence of photooxidative stress in lake
water. Thus, OmpC synthesis in E. coli was
directly affected by photooxidative stress. Mutations in the envZ and pta genes had no effect on the control of OmpC and OmpF synthesis
in E. coli under photooxidative
stress in lake water. Mannitol is an antioxidant substance that provides
protection from photooxidative stress. In this study, was found that ompC expression has a regulation
mechanism during photooxidative stress. Mannitol was also found to have a
relationship with EnvZ in the control of porin synthesis.

References

  • [1]. Pothula, K.R., Solano, C.J.F. and Kleinekathöfer, U. (2016) Simulations of outer membrane channels and their permeability. Biochim. Biophys. Acta, 1858, 1760-1771.
  • [2]. Ghai, I. and Ghai, S. (2017). Exploring bacterial outer membrane barrier to combat bad bugs. Infect. Drug Resist., 10, 261-273.
  • [3]. Foo, Y. H., Spahn, C., Zhang, H., Heilemann, M. and Kenney, L.J. (2015). Single cell super resolution imaging of E. coli OmpR during environmental stress. Integr. Biol. 7, 1297-1308.
  • [4]. Darcan, C., Özkanca, R., İdil, O. and Flint, K. P. (2009) Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water. Pol. J. Microbiol. 58, 307-317.
  • [5]. De la Cruz, M.Á. and Calva, E. (2010). The complexities of porin genetic regulation. J. Mol. Microb. Biotech. 18 (1), 24-36.
  • [6]. Flores-Valdez, M.A., Fernandez Mora, M., Ares, M.A., Giron, J.A., et. al. (2014). OmpR phosphorylation regulates ompS1 expression by differentially controlling the use of promoters. Microbiology, 160, 733-741.
  • [7]. Chubiz, L.M. and Rao, C.V. (2011). Role of the mar-sox-rob regulon in regulating outer membrane porin expression. J. Bacteriol. 193 (9), 2252-2260.
  • [8]. Dam, S., Pagès, J.M. and Masi, M. (2017). Dual regulation of the small RNA MicC and the quiescent porin OmpN in response to antibiotic stress in Escherichia coli. Antibiotics, 6, 33.
  • [9]. Negrete, A. and Shiloach, J. (2017). Improving E. coli growth performance by manipulating small rna expressıon. Microb Cell Fact, 16, 198.
  • [10]. Shimizu, K. (2017). Metabolic regulation and metabolic engineering for biofuel and biochemical. CRC Group Taylor Francis, ISBN: 13: 978-1-4987-6837-5.
  • [11]. Utsunomia, C., Hori, C., Matsumoto, K. and Taguchi, S. (2017). Investigation of the E. coli membrane transporters involved in the secretion of d-lactate-based oligomers by loss-of-function screening. J. Biosci. Bioeng. 124 (6), 635-640.
  • [12]. Jang, J., Hur, H.G., Sadowsky, M.J., Byappanahalli, M.N., Yan, T. and Ishii, S. (2017). Environmental Escherichia coli: ecology and public health implications—a review. J. Appl. Microbiol. 123, 570-581.
  • [13]. Delihas, N. (2015). Discovery and characterization of the first non-coding RNA that regulates gene expression, micF RNA: A historical perspective. World J. Biol. Chem. 2015, 6 (4), pp. 272-280.
  • [14]. Liu, X. and Ferenci, T. (2001). An analysis of multifactorial influences on the transcriptional control of ompF and ompC porin expression under nutrient limitation. Microbiology, 147, 2981-2989.
  • [15]. Miller, H.J. (1992). A Short Course in Bacterial Genetics, New York, N.Y., USA, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  • [16]. Bystritskaya, E., Stenkova, A., Chistuylin, D., Chernysheva, N., Khomenko, et. al. (2016). Adaptive responses of outer membrane porin balance of Y. ruckeri under different incubation temperature, osmolarity, and oxygen availability. MicrobiologyOpen 5 (4), 597–560.
  • [17]. Darcan, C. and Aydın, E. (2012). fur- mutation increases the survival time of Escherichia coli under photooxidative stress in aquatic environments. Acta Biol. Hung. 2012, vol. 63 (3), pp. 399-409.
  • [18]. İdil, O., Özkanca, R., Darcan, C. and Flint, K.P. (2010). Escherichia coli: Dominance of red light other visible light sources in establishing viable but nonculturable state. Photochem. Photobiol. 86, 104-109.
  • [19]. İdil, O., Darcan, C. and Ozkanca, R. (2011). The Effect of UV-A and different wavelengths of visible Lights on survival of Salmonella typhimurium in seawater microcosms. J. Pure Appl. Microbiol.5 (2), pp. 581.
  • [20]. Muela, A., Seco, C., CamafeIta, E., Arana, I., Orruno, M., Lopez, J.A. and Barcina, I. (2008). Changes in Escherichia coli outer membrane subproteome under environmental conditions inducing the viable but nonculturable state. FEMS Microbiol. Ecol. 64, 28-36.
  • [21]. Darcan, C. (2012). Expression of OmpC and OmpF porin proteins and survival of E. coli under photooxidative stress in Black Sea water. Aquat. Biol. 17, 97-105.
  • [22]. Özkanca, R., Şahin, N., Işık, K., Kariptaş, E., Flint, K.P. (2002). The effect of toludine blue on the survival, dormancy and outer membrane porin proteins (OmpC and OmpF) of S. typhimurium LT2 in seawater. J. Appl. Microbiol. 92, 1097-1104.
  • [23]. Collao, B., Morales, E.H., Gil, F., Calderón, I.L. and Saavedra C.P. (2013). OmpW is cooperatively upregulated by MarA and SoxS in response to menadione. Microbiology, 159, 715-725.
  • [24]. Chou, J.H., Greenberg, J.T. and Demple, B. (1993). Posttranscriptional repression of E. coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J. Bacteriol. 175 (4), 1026-1031.
  • [25]. Lundrigan, M.D. and Earhart, C.F. (1984). Gene envY: E. coli K-12 affecting thermoregulation of major porin expression. J. Bacteriol. 157, 262-268.
  • [26]. Özkanca, R. and Flint, K.P. (2002). The effect of starvation stress on the porin protein expression of E. coli in lake water. Lett. Appl. Microbiol. 35, 533-537.
  • [27]. Kenney, L.J. (2010). How important is the phosphatase activity of sensor kinases? Curr. Opin. Microbiol. 13, 168-176.
  • [28]. Lo, J., Tol, T.V., Yeung, S. and Zou, K. (2014). EnvZ is not essential for the upregulation of OmpC following treatment with sublethal kanamycin in Escherichia coli. JEMI 18, 65-69.
  • [29]. Shimizu, K. (2013). Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism. ISRN Biochemistry, Article ID 645983, 47.
  • [30]. Padilla-Vaca, F., Mondragon-Jaimes, V. and Franco, B. (2017). General aspects of two-component regulatory circuits in bacteria: domains, signals and roles. Curr. Protein Pept. Sc. 18 (10), 990-1004.
  • [31]. Wolfe, A.J. (2016). Bacterial protein acetylation: new discoveries unanswered questions. Curr. Genet. 62 (2), 335-341.
  • [32]. Darcan, C., Özkanca, R. and İdil, Ö. (2009). The role of RpoS, H-NS and AcP on the pH-dependent OmpC and OmpF porin expressions of Escherichia coli at different pH. Afr. J. Biotechnol. 8 (9), 1845-1854.
  • [33]. Hui, A., Lai, G., Lam, J. and Wong, F. (2016). Development of a system to monitor ompC transcription in Escherichia coli using a green fluorescence protein reporter system. JEMI. 20, 26-31.
  • [34]. Foo, Y.H., Gao, Y., Zhang, H. and Kenney, L.J. (2015). Cytoplasmic sensing by the inner membrane histidine kinase EnvZ. Prog. Biophys. Mol. Biol. 118 (3), 119-129.
  • [35]. Grisafi, P.L., Scholle, A., Sugiyama, J., Briggs, C., Jacobson, G.R. and Lengeler, J.W. (1989). Deletion mutants of the Escherichia coli K-12 mannitol permease: dissection of transport-phosphorylation, phospho-exchange, and mannitol-binding activities. J. Bacteriol. 171 (5), 2719-2727.
  • [36]. Shen, B., Jensen, R.G. and Bohnert, H.J. (1997). Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol. 115 (2), 527-532.
  • [37]. Sabbahi, S., Alouini, Z., Jemli, M. and Boudabbous, A. (2008) The role of reactive oxygen species in Sthaphylococcus aureus photoinactivation by methylene blue. Water Sci. Technol. 58 (5), 1047-1054.
  • [38]. Chen, Z., Zhou, Q., Zou, D., Tian, Y., Liu, B., Zhang, Y. and Wu Z. (2015) Chlorobenzoquinones cause oxidative DNA damage through iron-mediated ROS production in Escherichia coli. Chemosphere, 135, 379-386.
  • [39]. Vecchio, D., Gupta, A., Huang, L., Landi, G., Avcı, P., Rodas, A., Hamblin, M. R. (2015). Bacterial photodynamic inactivation mediated by methylene blue and red light is enhanced by synergistic effect of potassium iodide. Antimicrob. Agents Ch., 59, 5203-5212.

Göl suyunda Escherichia coli'nin OmpC-OmpF proteinlerinin sentezi üzerine mannitol ve fotooksidatif stresin etkisi

Year 2019, Volume: 6 Issue: 2, 251 - 260, 26.12.2019
https://doi.org/10.35193/bseufbd.610434

Abstract

Bu çalışma göl suyunda Escherichia coli'nin OmpC-OmpF porinlerinin sentezi üzerine mannitol ve fotooksidatif stresin etkisini araştırmıştır. Göl suyunda OmpF sentezi fotooksidatif stresten bağımsız olarak azalmışken, OmpC sentezi fotooksidatif stresin bir sonucu olarak azalmıştır. Bu yüzden, E. coli'de OmpC sentezi  direkt olarak fotooksidatif stresten etkilenmektedir. envZ ve pta genlerindeki mutasyonların göl suyunda fotooksidatif stres altında E. coli'de OmpC ve OmpF sentezinin kontrolü üzerine bir etkisi yoktur. Mannitol fotooksidatif stresden koruyan bir antioksidant moleküldür. Bu çalışmada ompC ekspresyonu fotooksidatif stres altında bir düzenleme mekanizmasına sahiptir. Aynı zamanda mannitol'ün porin sentezinin kontrolünde EnvZ ile bir ilişkisi olduğu bulunmuştur. 

References

  • [1]. Pothula, K.R., Solano, C.J.F. and Kleinekathöfer, U. (2016) Simulations of outer membrane channels and their permeability. Biochim. Biophys. Acta, 1858, 1760-1771.
  • [2]. Ghai, I. and Ghai, S. (2017). Exploring bacterial outer membrane barrier to combat bad bugs. Infect. Drug Resist., 10, 261-273.
  • [3]. Foo, Y. H., Spahn, C., Zhang, H., Heilemann, M. and Kenney, L.J. (2015). Single cell super resolution imaging of E. coli OmpR during environmental stress. Integr. Biol. 7, 1297-1308.
  • [4]. Darcan, C., Özkanca, R., İdil, O. and Flint, K. P. (2009) Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water. Pol. J. Microbiol. 58, 307-317.
  • [5]. De la Cruz, M.Á. and Calva, E. (2010). The complexities of porin genetic regulation. J. Mol. Microb. Biotech. 18 (1), 24-36.
  • [6]. Flores-Valdez, M.A., Fernandez Mora, M., Ares, M.A., Giron, J.A., et. al. (2014). OmpR phosphorylation regulates ompS1 expression by differentially controlling the use of promoters. Microbiology, 160, 733-741.
  • [7]. Chubiz, L.M. and Rao, C.V. (2011). Role of the mar-sox-rob regulon in regulating outer membrane porin expression. J. Bacteriol. 193 (9), 2252-2260.
  • [8]. Dam, S., Pagès, J.M. and Masi, M. (2017). Dual regulation of the small RNA MicC and the quiescent porin OmpN in response to antibiotic stress in Escherichia coli. Antibiotics, 6, 33.
  • [9]. Negrete, A. and Shiloach, J. (2017). Improving E. coli growth performance by manipulating small rna expressıon. Microb Cell Fact, 16, 198.
  • [10]. Shimizu, K. (2017). Metabolic regulation and metabolic engineering for biofuel and biochemical. CRC Group Taylor Francis, ISBN: 13: 978-1-4987-6837-5.
  • [11]. Utsunomia, C., Hori, C., Matsumoto, K. and Taguchi, S. (2017). Investigation of the E. coli membrane transporters involved in the secretion of d-lactate-based oligomers by loss-of-function screening. J. Biosci. Bioeng. 124 (6), 635-640.
  • [12]. Jang, J., Hur, H.G., Sadowsky, M.J., Byappanahalli, M.N., Yan, T. and Ishii, S. (2017). Environmental Escherichia coli: ecology and public health implications—a review. J. Appl. Microbiol. 123, 570-581.
  • [13]. Delihas, N. (2015). Discovery and characterization of the first non-coding RNA that regulates gene expression, micF RNA: A historical perspective. World J. Biol. Chem. 2015, 6 (4), pp. 272-280.
  • [14]. Liu, X. and Ferenci, T. (2001). An analysis of multifactorial influences on the transcriptional control of ompF and ompC porin expression under nutrient limitation. Microbiology, 147, 2981-2989.
  • [15]. Miller, H.J. (1992). A Short Course in Bacterial Genetics, New York, N.Y., USA, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  • [16]. Bystritskaya, E., Stenkova, A., Chistuylin, D., Chernysheva, N., Khomenko, et. al. (2016). Adaptive responses of outer membrane porin balance of Y. ruckeri under different incubation temperature, osmolarity, and oxygen availability. MicrobiologyOpen 5 (4), 597–560.
  • [17]. Darcan, C. and Aydın, E. (2012). fur- mutation increases the survival time of Escherichia coli under photooxidative stress in aquatic environments. Acta Biol. Hung. 2012, vol. 63 (3), pp. 399-409.
  • [18]. İdil, O., Özkanca, R., Darcan, C. and Flint, K.P. (2010). Escherichia coli: Dominance of red light other visible light sources in establishing viable but nonculturable state. Photochem. Photobiol. 86, 104-109.
  • [19]. İdil, O., Darcan, C. and Ozkanca, R. (2011). The Effect of UV-A and different wavelengths of visible Lights on survival of Salmonella typhimurium in seawater microcosms. J. Pure Appl. Microbiol.5 (2), pp. 581.
  • [20]. Muela, A., Seco, C., CamafeIta, E., Arana, I., Orruno, M., Lopez, J.A. and Barcina, I. (2008). Changes in Escherichia coli outer membrane subproteome under environmental conditions inducing the viable but nonculturable state. FEMS Microbiol. Ecol. 64, 28-36.
  • [21]. Darcan, C. (2012). Expression of OmpC and OmpF porin proteins and survival of E. coli under photooxidative stress in Black Sea water. Aquat. Biol. 17, 97-105.
  • [22]. Özkanca, R., Şahin, N., Işık, K., Kariptaş, E., Flint, K.P. (2002). The effect of toludine blue on the survival, dormancy and outer membrane porin proteins (OmpC and OmpF) of S. typhimurium LT2 in seawater. J. Appl. Microbiol. 92, 1097-1104.
  • [23]. Collao, B., Morales, E.H., Gil, F., Calderón, I.L. and Saavedra C.P. (2013). OmpW is cooperatively upregulated by MarA and SoxS in response to menadione. Microbiology, 159, 715-725.
  • [24]. Chou, J.H., Greenberg, J.T. and Demple, B. (1993). Posttranscriptional repression of E. coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J. Bacteriol. 175 (4), 1026-1031.
  • [25]. Lundrigan, M.D. and Earhart, C.F. (1984). Gene envY: E. coli K-12 affecting thermoregulation of major porin expression. J. Bacteriol. 157, 262-268.
  • [26]. Özkanca, R. and Flint, K.P. (2002). The effect of starvation stress on the porin protein expression of E. coli in lake water. Lett. Appl. Microbiol. 35, 533-537.
  • [27]. Kenney, L.J. (2010). How important is the phosphatase activity of sensor kinases? Curr. Opin. Microbiol. 13, 168-176.
  • [28]. Lo, J., Tol, T.V., Yeung, S. and Zou, K. (2014). EnvZ is not essential for the upregulation of OmpC following treatment with sublethal kanamycin in Escherichia coli. JEMI 18, 65-69.
  • [29]. Shimizu, K. (2013). Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism. ISRN Biochemistry, Article ID 645983, 47.
  • [30]. Padilla-Vaca, F., Mondragon-Jaimes, V. and Franco, B. (2017). General aspects of two-component regulatory circuits in bacteria: domains, signals and roles. Curr. Protein Pept. Sc. 18 (10), 990-1004.
  • [31]. Wolfe, A.J. (2016). Bacterial protein acetylation: new discoveries unanswered questions. Curr. Genet. 62 (2), 335-341.
  • [32]. Darcan, C., Özkanca, R. and İdil, Ö. (2009). The role of RpoS, H-NS and AcP on the pH-dependent OmpC and OmpF porin expressions of Escherichia coli at different pH. Afr. J. Biotechnol. 8 (9), 1845-1854.
  • [33]. Hui, A., Lai, G., Lam, J. and Wong, F. (2016). Development of a system to monitor ompC transcription in Escherichia coli using a green fluorescence protein reporter system. JEMI. 20, 26-31.
  • [34]. Foo, Y.H., Gao, Y., Zhang, H. and Kenney, L.J. (2015). Cytoplasmic sensing by the inner membrane histidine kinase EnvZ. Prog. Biophys. Mol. Biol. 118 (3), 119-129.
  • [35]. Grisafi, P.L., Scholle, A., Sugiyama, J., Briggs, C., Jacobson, G.R. and Lengeler, J.W. (1989). Deletion mutants of the Escherichia coli K-12 mannitol permease: dissection of transport-phosphorylation, phospho-exchange, and mannitol-binding activities. J. Bacteriol. 171 (5), 2719-2727.
  • [36]. Shen, B., Jensen, R.G. and Bohnert, H.J. (1997). Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol. 115 (2), 527-532.
  • [37]. Sabbahi, S., Alouini, Z., Jemli, M. and Boudabbous, A. (2008) The role of reactive oxygen species in Sthaphylococcus aureus photoinactivation by methylene blue. Water Sci. Technol. 58 (5), 1047-1054.
  • [38]. Chen, Z., Zhou, Q., Zou, D., Tian, Y., Liu, B., Zhang, Y. and Wu Z. (2015) Chlorobenzoquinones cause oxidative DNA damage through iron-mediated ROS production in Escherichia coli. Chemosphere, 135, 379-386.
  • [39]. Vecchio, D., Gupta, A., Huang, L., Landi, G., Avcı, P., Rodas, A., Hamblin, M. R. (2015). Bacterial photodynamic inactivation mediated by methylene blue and red light is enhanced by synergistic effect of potassium iodide. Antimicrob. Agents Ch., 59, 5203-5212.
There are 39 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Cihan Darcan 0000-0003-0205-3774

Öznur Aktop This is me 0000-0003-4529-0614

Publication Date December 26, 2019
Submission Date August 25, 2019
Acceptance Date September 25, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

APA Darcan, C., & Aktop, Ö. (2019). Effect of photooxidative stress and mannitol on synthesis of OmpC-OmpF proteins of Escherichia coli in lake water. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 251-260. https://doi.org/10.35193/bseufbd.610434