Review
BibTex RIS Cite
Year 2019, Volume: 6 Issue: 2, 192 - 209, 26.12.2019
https://doi.org/10.35193/bseufbd.632148

Abstract

References

  • [1] Türker. A. R. (2012). Separation. Preconcentration and Speciation of Metal Ions by Solid Phase Extraction . Separation & Purification Reviews 41. 169–206.
  • [2] Council Directive 98/83/EC (1998). Quality of water intended for humanconsumption. Official Journal of the European Communities. L 330/32.
  • [3] TS (Turkish Standard) 266 (2005). Water intended for human consumption (in Turkish). Ankara.
  • [4] WHO (2008). WHO Guidelines for Drinking Water Quality. Volume 1. Recommendation. World Health Organization. Geneva.
  • [5] Say. R.. Birlik. E.. Ersöz. A.. Yılmaz. F.. Gedikbey. T.. Denizli. A. (2003). Preconcentration of copper on ion-selective imprinted polymer microbeads. Analytica Chimica Acta 480(2). 251-258.
  • [6] Dakova. I.. Karadjova. I.. Ivanov. I.. Georgieva. V.. Evtimova. B.. Georgiev. G. (2007). Solid phase selective separation and preconcentration of Cu(II) by Cu(II)-imprinted polymethacrylic microbeads. Anal Chim Acta 584(1). 196-203.
  • [7] Walas. S..Tobiasz. A..Gawin. M..Trzewik. B..Strojny. M. Mrowiec. H. (2008). Application of a metal ion-imprinted polymer based on salen-Cu complex to flow injection preconcentration and FAAS determination of copper. Talanta 76(1). 96-101.
  • [8] Tobiasz. A.. Walas. S.. Trzewik. B.. Grzybek. P.. Zaitz. M. M.. Gawin. M.. Mrowiec. H. (2009). Cu(II)-imprinted styrene–divinylbenzene beads as a new sorbent for flow injection-flame atomic absorption determination of copper. Microchemical Journal 93(1). 87-92.
  • [9] Yılmaz. V.. Hazer. O.. Kartal. Ş. (2013).Synthesis. characterization and application of a novel ion-imprinted polymer for selective solid phase extraction of copper(II) ions from high salt matrices prior to its determination by FAAS. Talanta 116. 322-329.
  • [10] Luo. X.. Huang. Y.. Deng. F.. Luo. S.. Zhan. Y.. Shu. H.. Tu. X. (2012). A magnetic copper(II)-imprinted polymer for the selective enrichment of trace copper(II) ions in environmental water. Microchimica Acta 179 (3-4). 283-289.
  • [11] Saygili Canlidinç. R. Kalfa. O. M.. Üstündağ. Z.. Erdoğan. Y. (2017). Graphene oxide modified expanded perlite as a new sorbent for Cu(II) and Pb(II) prior to determination by high-resolution continuum source flame atomic absorption spectrometry. Separation Science and Technology. 52:13. 2069-2078. https://doi.org/10.1080/01496395.2017.1328443.
  • [12] Dobrowolski. R.; Otto. M. (2012). Determination of nickel and cobalt in reference plant materials by carbon slurry sampling GFAAS technique after their simultaneous preconcentration onto modified activated carbon. Journal of Food Composition and Analysis. 26 (1–2): 58–65.
  • [13] Dobrzyńska. J.. Dąbrowska. M.. Olchowski. R.. Dobrowolski. R. (2018). An ion-imprinted thiocyanato-functionalized mesoporous silica for preconcentration of gold(III) prior to its quantitation by slurry sampling graphite furnace AAS. Microchimica Acta. 185: 564 https://doi.org/10.1007/s00604-018-3106-x.
  • [14] Turan. K..Saygılı Canlıdinç. R. Kalfa. O. M. (2017). Determination of trace amounts of Co(II) after preconcentration with surface ion imprinted sorbent based on activated carbon. Separation Science and Technology 53(5). 707-716.
  • [15] Turan. K..Saygili Canlıdinç. R. Kalfa. O. M. (2018). Selective Preconcentration of Trace Amounts of Cu(II) With Surface-Imprinted Multiwalled Carbon Nanotubes. CLEAN - Soil. Air. Water 46(1). 1700580.
  • [16] Mikula. B.. Puzio. B. (2007). Determination of trace metals by ICP-OES in plant materials after preconcentration of 1.10-phenanthroline complexes on activated carbon. Talanta 71(1). 136-140.
  • [17] Yilmaz. V.. Arslan. Z.. Hazer. O.. Yilmaz. H. (2014). Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES). Microchem J 114. 66-72.
  • [18] Li. Z..Li. J..Wang. Y. Wei. Y. (2014). Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II). Spectrochim Acta A Mol Biomol Spectrosc 117. 422-427.
  • [19] Zhang. N.. Suleiman. J.S.. He. M.. Hu. B. (2008). Chromium(III)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection. Talanta 75. 2. 536-543. https://doi.org/10.1016/j.talanta.2007.11.059.
  • [20] Tsoi. Y-K.. Ho. Y-M.. Leung. K. S-Y. (2012). Selective recognition of arsenic by tailoring ion-imprinted polymer for ICP-MS quantification. Talanta. 89. 30. 162-168. https://doi.org/10.1016/j.talanta.2011.12.007
  • [21] Türker. A. R. (2007). New sorbents for solid-phase extraction for metal enrichment. Clean–Soil. Air. Water. 35. 548–557.
  • [22] Jiang. N.. Chang. X.. Zheng. H.. He.Q.. Hu. Z. (2006). Selective solid-phase extraction of nickel(II) using a surface-imprinted silica gel sorbent. Analytica Chimica Acta. 577. 2. 225-231.
  • [23] Zhao. J.. Han. B.. Zhang. Y.. Wang. D. (2007). Synthesis of Zn(II) ion-imprinted solid-phase extraction material and its analytical application. Anal Chim Acta 603(1). s.87-92.
  • [24] Kalfa. O.M.; Yalcinkaya. O.; Turker. A.R. (2009). Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium. Journal of Hazardous Materials. 166 (1): 455–461.
  • [25] Guo. J-J.. Su. Q-D.. Gan. W-E. (2009). On-line Selective Solid-Phase Extraction of Copper with a Surface Ion Imprinted Silica Gel Sorbent. Journal of the Chinese Chemical Society 56. 763-770.
  • [26]. Li. C.; Pan. J.; Zou. X.; Gao. J.; Xie. J.; Yongsheng. Y. (2011). Synthesis and applications of novel attapulgite- supported Co(II)-imprinted polymers for selective solid-phase extraction of cobalt(II) from aqueous solutions. International Journal Environment Analysis Chemical. 91 (11): 1035–1049.
  • [27] Behbahani. M.. Hassanlou. P.G.. Amini. M.M.. Moazami. H.R.. Abandansari. H.S.. Bagheri. A.. Zadeh. S.H. (2014). Selective solid-phase extraction and trace monitoring of lead ions in food and water samples using new lead-imprinted polymer nanoparticles. Food Analysis Methods. 8 (3): 558–568.
  • [28] Behbahani. M.. Salarian. M.. Bagheri. A.. Tabani. H.. Omidi. F.. Fakhari. A. (2014). Synthesis. characterization and analytical application of Zn(II)-imprinted polymer as an efficient solid-phase extraction technique for trace determination of zinc ions in food samples. Journal of Food Composition and Analysis. 34 (1): 81–89.
  • [29] Miranda. L.F.; Domingues. D.S.; Queiroz. M.E. (2016). Selective solid-phase extraction using molecularly imprinted polymers for analysis of venlafaxine. O-desmethylvenlafaxine. and N-desmethylvenlafaxine in plasma samples by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A. 1458: 46–53.
  • [30] Kakavandi. M.G.; Behbahani. M.; Omidi. F.; Hesam. G. (2017). Application of ultrasonic assisted-dispersive solid phase extraction based on ion-imprinted polymer nanoparticles for preconcentration and trace determination of lead ions in food and water samples. Food Analysis Methods. 10 (7): 2454–2466.
  • [31] Li. Z.; Kou. W.; Wu. S.; Wu. L. (2017). Solid-phase extraction of chromium(III) with an ion-imprinted functionalized attapulgite sorbent prepared by a surface imprinting technique. Analysis Methods. doi:10.1039/ c7ay00346c.
  • [32] Fang. G. Z.. Tan. J.. Yan X. P. (2005). An ionimprinted functionalized silica gel sorbent prepared by a surface imprinting techniquecombined with a sol–gel process for selective solid-phaseextraction of cadmium(II). Analytical Chemistry 77. 1734– 1739.
  • [33] Pena-Pereira. F.; Lavilla. I.; Bendicho. C. (2009). Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: A review. Spectrochimica Acta Part B. 64 (1): 1–15.
  • [34] Anthemidis. A. N. ve Ioannou. K. I. (2009). Recent developments in homogeneous and dispersive liquid-liquid extraction for inorganic elements determination. A review. Talanta 80(2). 413-421.
  • [35] Citak. D.; Tuzen. M. (2010). A novel preconcentration procedure using cloud point extraction for determination of lead. cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food and Chemical Toxicology. 48 (5): 1399–1404.
  • [36] Tuzen. M. ve Soylak. M. (2009). Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials. 162(2-3). 724–729. https://doi.org/10.1016/j.jhazmat.2008.05.087.
  • [37] Abdellah. A. M.. Kabil. M. A.. Akl. M. A. and Ismael. D. S. (2004). Simultaneous preconcentration flotation‐separation and spectrophotometric determination of thorium. lanthanum. and yttrium in some geological and environmental samples. J. Iran. Chem. Soc.. 1(1): 79–87.
  • [38] Shamsipur. M.. Reza Hashemi. O. ve Salavati Niasari. M. (2007). Selective Flotation Separation and Inductively Coupled Plasma Atomic Emission Spectrometric Determination of Ultra Trace Amounts of Silver Ion Using Bis(2-mercaptoanil)acetylacetone. Separation Science and Technology. 42(3). 567–578. https://doi.org/10.1080/01496390601069895.
  • [39] Owens. G. S.. Southard. G. E.. Houten. K. A. V.. & Murray. G. M. (2005). Molecularly Imprinted Ion-Exchange Resin for Fe3+ Separation Science and Technology. 40(11). 2205–2211. https://doi.org/10.1080/01496390500201177.
  • [40] Zarejousheghani. M.. Schrader. S.. Möder. M.. Lorenz. P.. & Borsdorf. H. (2015). Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples. Journal of Chromatography A. 1411. 23–33. https://doi.org/:10.1016/j.chroma.2015.07.107.
  • [41] Zheng. H.. De. Z.. Wang. W.Y.. Fan. Y.Q.. Li. J.. Han. H.P. (2007). Highly selective determination of palladium(II) after preconcentration using Pd(II)-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Microchimica Acta 157(1-2). 7-11.
  • [42] Karabörk. M.. Ersoz. A.. Birlik. E.. Say. R.(2007). Preconcentration of Fe(III) Using Fe(III)-Ion Imprinted Polymeric Traps and Its Analytical Performance for FAAS. Hacettepe J. Biol. & Chem.. 2007. 35 (2). 135-142.
  • [43] Milja.T.E.. Prathish. K.P.. Rao. T.P. (2010). Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water. J HazardMater 188. 384–390.
  • [44] Luo. X.. Luo. S.. Zhan. Y.. Shu. H.. Huang. Y.. Tu. X. (2011). Novel Cu (II)magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol–gel process. J. Hazard. Mater. 192 949–955.
  • [45] Fan. H.-T.. Li. J.. Li. Z.-C.. Sun. T. (2012). An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium (II) from aqueous solution. Applied Surface Science 258(8). 3815-3822.
  • [46] Lv. Y.. Tan. T.. Svec. F. (2013). Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol. Adv. 31. 8. 1172-1186.
  • [47] Li. Z.. Li. J.. Wang. Y.. Wei.Y. (2014). Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117. 422–427.
  • [48] Zou. T.. Zhou. Z.. Dai. J.. Gao. L.. Wei. X.. Li. C.. Guan. W.. Yan. Y. (2014). Preparation of silica-based surface-imprinted core–shell nanoadsorbents for the selective recognition of sulfamethazine via reverse atom transfer radical precipitation polymerization. Journal of Polymer Research 21(8). 520-525.
  • [49] Ding. X.. Heiden. P.A. (2014). Recent Developments in Molecularly Imprinted Nanoparticles by Surface Imprinting Techniques. Macromolecular Materials and Engineering 299. 38. 268-282.
  • [50] Li. M.. Feng. C.. Li. M.. Zeng. Q.. Gan. Q. (2015). Synthesis and application of a surface-grafted In (III) ion-imprinted polymer for selective separation and pre-concentration of indium (III) ion from aqueous solution. Hydrometallurgy 154. 63-71.
  • [51] Hao. Y.. Gao. R.. Liu. D.. Tang. Y.. Guo. Z. (2015). Selective extraction of gallic acid in pomegranate rind using surface imprinting polymers over magnetic carbon nanotubes. Anal. Bioanal. Chem. 407(25). 7681-90.
  • [52] Gao. B.. Meng. J.. Xu. Y.. Zhang. Y. (2015). Preparation of Fe(III) ion surface-imprinted material for removing Fe(III) impurity from lanthanide ion solutions. Journal of Industrial and Engineering Chemistry 24. 351-358.
  • [53] Bashir. K.. Guo. P.. Chen. G.. Li. Y.. Ge. Y.. Shu. H.. & Fu. Q. (2019). Synthesis. characterization. and application of griseofulvin surface molecularly imprinted polymers as the selective solid phase extraction sorbent in rat plasma samples. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2019.06.007.
  • [54] Yu. T.. Qiao. X.. Lu. X.. Fan. X. (2015). Selective adsorption of Zn2+ on surface ion-imprinted polymer. Desalination and Water Treatment. s.1-12. https://doi.org/10.1080/19443994.2015.1074115.
  • [55] Haupt. K.. ve Mosbach. K.. (2000). Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 100(7). 2495-2504.
  • [56] Batra. D.. Shea. K.J. (2003). Combinatorial Methods in Molecular Imprinting. Current Opinion in Chemical Biology 7. 1-9.
  • [57] Li. W. ve Li. S. (2007). Molecular imprinting: A versatile tool for separation. sensors and catalysis. Adv. Polym. Sci. 206. 191-210.
  • [58] Alizadeh. T.. Ganjali. M.R.. Norouzi. P.. Zare. M.. Zeraatkar. A. (2009). A novel high selective ve sensitive para-nitrophenol voltammetric sensor. based on a molecularly imprinted polymer-carbon paste electrode. Talanta 79. 1197-1203.
  • [59] Cirillo. G.. Parisi. O.I.. Curcio. M.. Puoci. F.. Iemma. F.. Spizzirri. U.G.. Picci. N. (2010). Molecularly imprinted polymers as drug delivery systems for the sustained release of glycyrrhizic acid. J. Pharm. Pharmacol. 62: 577-582.
  • [60] Chen. J. H.. Lin. H.. Luo. Z. H.. He. Y. S.. Li. G. P. (2011). Cu(II)-imprinted porous film adsorbent Cu–PVA–SA has high uptake capacity for removal of Cu(II) ions from aqueous solution. Desalination 277(1-3). 265-273.
  • [61] Guo. W.. Chen.. R.. Liu. Y.. Meng. M.. Meng. X.. Hu. Z.. Song. Z. (2013). Preparation of ion-imprinted mesoporous silica SBA-15 functionalized with triglycine for selective adsorption of Co(II). Colloids and Surfaces A: Physicochemical and Engineering Aspects 436. s.693-703.
  • [62] Peng. W.. Xie. Z.. Cheng. G.. Shi. L.. Zhang. Y. (2015). Amino-functionalized adsorbent prepared by means of Cu(II) imprinted method and its selective removal of copper from aqueous solutions. J Hazard Mater 294. 9-16.
  • [63] Khoddami. N.. Shemirani. F. (2016). A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples. Talanta 146. 244-252.
  • [64] Zhao. M.. Shao. H.. He. Y.. Li. H.. Yan. M.. Wang. J.. Abd El-Aty. A.M.. Hacımüftüoğlu. A.. Yan. F.. Wang. Y.. She. Y. (2019). The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS. Journal of Chromatography B. 1125. 121714. https://doi.org/10.1016/j.jchromb.2019.121714.
  • [65] Sun. X.. Wang. M.. Yang. L.. Wen. H.. Wang. L.. Li. T.. Tang C. Yang. J. (2018). Preparation and evaluation of dummy-template molecularly imprinted polymer as a potential sorbent for solid phase extraction of imidazole fungicides from river water. Journal of Chromatography A. https://doi.org/10.1016/j.chroma.2018.11.077.
  • [66] Sun. X.. Wang. M.. Peng. J.. Yang. L.. Wang. X.. Wang. F.. Zhang. X.. Wu. Q.. Chen. R. and Chen. J. (2019). Dummy molecularly imprinted solid phase extraction of climbazole from environmental water samples. Talanta. https://doi.org/10.1016/j.talanta.2018.12.017.
  • [67] Tan .S.. Yu . H.. He .Y.. Wang. M.. Liu. G.. Hong. S.. Yan. F.. Wang.Y.. Wang. M.Q.. Li.T.. Wang. J.. EI-Atyd. A.M. A.. Hacımüftüoğlu. A.. Shea.Y. (2019). A dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for selective determination of four pyridine carboxylic acid herbicides in milk. Journal of Chromatography B 1108. 65–72 https://doi.org/10.1016/j.jchromb.2019.01.008.
  • [68] Huang. Z.. He. J.. Li. Y.. Wu. C.. You. L.. Wei. H.. Zhang. S. (2019). Preparation of dummy molecularly imprinted polymers for extraction of Zearalenone in grain samples. Journal of Chromatography A. https://doi.org/10.1016/j.chroma.2019.05.022.
  • [69] Bagheri. A. R.. Arabi. M.. Ghaedi. M.. Ostovan. A.. Wang. X.. Li. J.. & Chen. L. (2018). Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta. https://doi.org/10.1016/j.talanta.2018.11.065.
  • [70] Vallano. P.T. ve Remcho. V.T. (2000). Highly Selective Separations by Capilary Electrochromatography: Molecular Imprint Polymer Sorbents. J. Chromatography A 887. 125-135.
  • [71] Sarafraz-Yazdi. A. ve Razavi. N. (2015). Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC Trends in Analytical Chemistry 73. 81-90.
  • [72] Haupt. K. (2012). Molecular Imprinting. Springer-Verlag. Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28421-2.
  • [73] Yan. S.. Fang. Y.. Gao. Z. (2007). Quartz crystal microbalance for the determination of daminoazide using molecularly imprinted polymers as recognition element. Biosens. Bioelectron. 22. 1087-1091.
  • [74] Ye. L. ve Mosbach. K. (2008). Molecular imprinting: Synthetic materials as substitutes for biological antibodies and receptors. Chem. Mater. 20. 859-868. [75] Poma. A.. Turner. A.P.F.. Piletsky. S.A. (2010). Advances in the manufacture of MIP nanoparticles. Trends. Biotechnol. 28. 629-637.
  • [75] Poma. A.. Turner. A.P.F.. Piletsky. S.A. (2010). Advances in the manufacture of MIP nanoparticles. Trends. Biotechnol. 28. 629-637.
  • [76] Scorrano. S.. Mergola. L.. Del. S.R.. Vasapollo. G. (2011). Synthesis of molecularly imprinted polymers for amino acid derivates by using different functional monomers. Int. J. Mol. Sci. 12. 1735-1743.
  • [77] Bossi. A.. Bonini. F.. Turner. A.P.F.. Piletsky. S.A. (2007). Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosens. Bioelectron. 22. 1131–1137.
  • [78] Longo. L.. Vasapollo. G. (2008). Molecularly imprinted polymers as nucleotide receptors. Mini. Rev.Org. Chem. 5. 163-170.
  • [79] Pichon. V. ve Chapuis-Hugon. F. (2008). Role of molecularly imprinted polymers for selective determination of environmental pollutants: A review. Anal. Chim. Acta 622. 48–61.
  • [80] Lok. C.M.. Son. R.. (2009). Application of molecularly imprinted polymers in food sample analysis – a perspective. International Food Research Journal 16. s.127-140.
  • [81] Chen. X.. Yang. Z.P.. Si. S.H. (2009). Potentiometric urea biosensor based on immobilization of urease onto molecularly imprinted TiO2 film. J. Electroanal. Chem. 635. 1-6.
  • [82] Song. W.. Chen. Y.. Xu. J.A.. Yang. X.R.. Tian. D.B. (2010). Dopamine sensor based on molecularly imprinted electrosynthesized polymers. J. Solid State Electrochem. 14. 1909-1914.
  • [83] Sainz-Gonzalo. F.J.. Medina-Castillo. A.L.. Fernández-Sánchez. J.F.. Fernández- Gutiérrez. A. (2011). Synthesis and characterization of a molecularly imprinted polymer optosensor for TEXs-screening in drinking water. Biosens.Bioelectron. 26. 3331-3338.
  • [84] Singh. B.. Chauhan. N. (2008). Molecular Imprinted Polymers for use as Drug Delivery Devices: Preliminary Evaluation. J. Macromol. Sci. A 45. 776-784.
  • [85] Yin. J.F.. Cui. Y.. Yang. G.L.. Wang. H.L. (2010). Molecularly imprinted nanotubes for enantioselective drug delivery and controlled release. Chem. Commun.46. 7688-7690.
  • [86] Mahkam. M.. Poorgholy. N. (2011). Imprinted polymers as drug delivery vehicles for anti-inflammatory drugs. Nature and Science 9. 163-168.
  • [87] Uzun. L.. Say. R.. Ünal. S.. Denizli. A. (2009). Hepatitis B surface antibody purification with hepatitis B surface antibody imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-l-tyrosine methyl ester) particles. Chromatogr B 877. 181-188.
  • [88] Lavignac. N.. Allender. C.J.. Brain. K.R.. (2004). Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays. Anal. Chim. Acta 510. 139-145.
  • [89] Piletska. E.. Piletsky. S.. Karim. K.. Terpetschnig. E.. Turner. A. (2004). Biotin- specific synthetic receptors prepared using molecular imprinting. Anal.Chim. Acta 504. 179-183.
  • [90] Martin-Esteban. A. (2004). Molecular imprinting technology: a simple way of synthesizing biomimetic polymeric receptors. Anal. Bioanal. Chem. 378. 1875.
  • [91]. Ye. L. ve Haupt. K. (2004). Molecularly imprinted polymers as antibody and receptor mimics for assays. sensors and drug discovery. Anal. Bioanal.Chem. 378. 1887-1897.
  • [92] Shen. X.T.. Zhu. L.H.. Wang. N.. ...(2012). Molecular imprinting for removing highly toxic organic pollutants. Chem Commun 48(6): 788–79.
  • [93] Gao. D.M.. Zhang. Z.P.. Wu. M.H.. Xie. C.G.. Guan. G.J.. Wang.D.P. (2007). A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. Jornal of the American Chemical Society 129. 7859–7866.
  • [94] Zhang. Z.. Zhang. H.. Hu. Y.. Yang. X.. & Yao. S. (2010). Novel surface molecularly imprinted material modified multi-walled carbon nanotubes as solid-phase extraction sorbent for selective extraction gallium ion from fly ash. Talanta. 82(1). 304–311. https://doi.org/10.1016/j.talanta.2010.04.038.
  • [95]PolyAn. (2019). Molecular Imprinting of Surfaces (MSI). https://www.poly-an.de/products/specialties-custom-manufacturing/technology/molecular-surface-imprinting/.
  • [96] Rao. T.P.. Kala. R.. Daniel. S. (2006). Metal ion-imprinted polymers-novel materials for selective recognition of inorganics. Anal Chim Acta. 578 (2). s.105-116.
  • [97] Zhang. H.-X.; Dou. Q.; Jin. X.-H.; Sun. D.-X.; Wang.-D.-D.; Yang. T.-R. (2015). Magnetic Pb(II) ion-imprinted polymer prepared by surface imprinting technique and its Adsorption Properties. Separation Science and Technology. 50(6). 901–910. https://doi.org/10.1080/01496395.2014.978462.
  • [98] Liu. Y.. Liu. Z.C.. Gao. J.. Dai. J.D.. Han. J.A.. Wang. Y.. Xie. J.M.. Yan. Y.S. (2011). Selective adsorption behavior of Pb(II) bymesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique. J. Hazard. Mater. 186. 197–205.
  • [99] Shamsipur. M.. Fasihi. J.. Ashtari. K.. (2007). Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion. Anal Chem 79. 7116–7123.
  • [100] Godlewska-Zyłkiewicz. B.. Lesniewska. B.. Wilczewska. A. (2012). Evaluation of ion imprinted polymers for the solid phase extraction and electrothermal atomic absorption spectrometric determination of palladium in environmental samples. Int. J. Environ. Anal. Chem. 93. 483–498.
  • [101] Lesniewska. B.. Kosinska. M.. Godlewska-Zyłkiewicz. B.. Zambrzycka. E.. Wilczewska. A.Z. (2011). Selective solid phase extraction of platinum on an ion imprinted polymers for its electrothermal atomic absorption spectrometric determination in environmental samples. Microchim. Acta 175. 273–282.
  • [102] Ramakrishnan. K. ve Prasada Rao. T. (2006). Ion Imprinted Polymer Solid Phase Extraction (IIP‐SPE) for Preconcentrative Separation of Erbium(III) From Adjacent Lanthanides and Yttrium. Separation Science and Technology. 41(2). 233–246. https://doi.org/10.1080/01496390500446327.
  • [103] Li. M.. Meng. X.. Liang. X.. Yuan. J.. Hu. X.. Wu. Z.. & Yuan. X. (2018). A novel In(III) ion-imprinted polymer (IIP) for selective extraction of In(III) ions from aqueous solutions. Hydrometallurgy. 176. 243–252. https://doi.org/10.1016/j.hydromet.2018.02.006.
  • [104] Zhai. Y.. Liu. Y.. Chang. X.. Chen. S.. & Huang. X. (2007). Selective solid-phase extraction of trace cadmium(II) with an ionic imprinted polymer prepared from a dual-ligand monomer. Analytica Chimica Acta. 593(1). 123–128. https://doi.org/10.1016/j.aca.2007.04.040.
  • [105] Wang. J. ve Liu. F. (2014). Synthesis and application of ion-imprinted interpenetrating polymer network gel for selective solid phase extraction of Cd2+ Chemical Engineering Journal. 242. 117–126.
  • [106] Moussa. M.. Ndiaye. M. M.. Pinta. T.. Pichon. V.. Vercouter. T.. & Delaunay. N. (2017). Selective solid phase extraction of lanthanides from tap and river waters with ion imprinted polymers. Analytica Chimica Acta. 963. 44–52. https://doi.org/10.1016/j.aca.2017.02.012.
  • [107] Yang. B.. Zhang. T.. Tan. W.. Liu. P.. Ding. Z.. & Cao. Q. (2013). Determination of rhodium by resonance light-scattering technique coupled with solid phase extraction using Rh(III) ion-imprinted polymers as sorbent. Talanta. 105. 124–130. https://doi.org/10.1016/j.talanta.2012.11.076.
  • [108] Lin. C.. Wang. H.. Wang. Y.. & Cheng. Z. (2010). Selective solid-phase extraction of trace thorium(IV) using surface-grafted Th(IV)-imprinted polymers with pyrazole derivative. Talanta. 81(1-2). 30–36. https://doi.org/10.1016/j.talanta.2009.11.032.
  • [109] Lin. C.. Wang. H.. Wang. Y.. Zhou. L.. & Liang. J. (2011). Selective preconcentration of trace thorium from aqueous solutions with Th(IV)-imprinted polymers prepared by a surface-grafted technique. International Journal of Environmental Analytical Chemistry. 91(11). 1050–1061. https://doi.org/10.1080/03067311003629677.
  • [110] Batlokwa. B.S.. Chimuka. L.. Tshentu. Z.. Cukrowska. E.. Torto. N. (2012). An ion-imprinted polymer for the selective extraction of mercury(II) ions in aqueous media. Water SA 38. 255–260.
  • [111] Zambrzycka. E. ve Godlewska-Zyłkiewicz. B. (2014). A new ion imprinted polymer based on Ru(III)-thiobarbituric acid complex for solid phase extraction of ruthenium(III) prior to its determination by ETAAS. Microchim. Acta 181. 1019–1027.
  • [112] Esen. C.. Andac. M.. Bereli. N.. Say. R.. Henden. E.. & Denizli. A. (2009). Highly selective ion-imprinted particles for solid-phase extraction of Pb2+ ions. Materials Science and Engineering: C. 29(8). 2464–2470. https://doi.org/10.1016/j.msec.2009.07.012.
  • [113] Ebrahimzadeh. H. ve Behbahani. M. (2017). A novel lead imprinted polymer as the selective solid phase for extraction and trace detection of lead ions by flame atomic absorption spectrophotometry: Synthesis. characterization and analytical application. Arabian Journal of Chemistry. 10. S2499–S2508. https://doi.org/10.1016/j.arabjc.2013.09.017.
  • [114] Ersöz. A.. Say. R.. Denizli A.. (2004). Nickel(II) IonImprinted Solid Phase Extraction and Preconcentration In Aqueous Solutions in Packed-Bed Columns. Analytica Chimica Acta. 502. 91-97.
  • [115] Saraji. M.. & Yousefi. H. (2009). Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples. Journal of Hazardous Materials. 167(1-3). 1152–1157. https://doi.org/10.1016/j.jhazmat.2009.01.111.
  • [116] Chang. X.. Jiang. N.. Zheng. H.. He. Q.. Hu. Z.. Zhai. Y.. & Cui. Y. (2007). Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Talanta. 71(1). 38–43. https://doi.org/10.1016/j.talanta.2006.03.012.
  • [117] Ara. B.. Muhammad. M.. Salman. M.. Ahmad. R.. Islam. N.. Haq Zia. T. (2018). Preparation of microspheric Fe(III) ion imprinted polymer for selective solid phase extraction. Appl Water

Eser Element Zenginleştirilmesinde Kullanılmak Üzere Baskılama Tekniği ile Yeni Katı Fazların Hazırlanması

Year 2019, Volume: 6 Issue: 2, 192 - 209, 26.12.2019
https://doi.org/10.35193/bseufbd.632148

Abstract



Bu derleme makalede,
zenginleştirme yöntemlerinden biri olan katı faz özütleme yöntemi kullanılarak,
sulu çözeltilerdeki eser metallerin tayininde kullanılmak üzere baskılama
tekniği ile farklı adsorbanların sentezi ve uygulama çalışmaları
araştırılmıştır. Son yıllarda baskılama tekniği kullanılarak elde edilen katı
fazlar kendilerine özgü özellikleri nedeniyle çok fazla ilgi görmektedir. Bu
amaçla, adsorpsiyon kapasitesi, etkinliği, seçiciliği artırılmış ve
zenginleştirme faktörü yüksek, tekrar tekrar kullanılabilen, analitik
performansının iyi ve sonuçları tekrarlanabilir olan adsorbanlar elde
edilebilmektedir. Bu yöntem ile yüzey baskılanmış, moleküler veya iyon
baskılanmış ve sahte moleküler baskılanmış çok çeşitli katı fazlar sentezlenmiş
ve litaratüre bu alanda yeni çalışmalar kazandırılmıştır. Bu doğrultuda, yaygın
olarak kullanılan baskılanmış adsorbanların literatür araştırmaları
özetlenmiştir.




References

  • [1] Türker. A. R. (2012). Separation. Preconcentration and Speciation of Metal Ions by Solid Phase Extraction . Separation & Purification Reviews 41. 169–206.
  • [2] Council Directive 98/83/EC (1998). Quality of water intended for humanconsumption. Official Journal of the European Communities. L 330/32.
  • [3] TS (Turkish Standard) 266 (2005). Water intended for human consumption (in Turkish). Ankara.
  • [4] WHO (2008). WHO Guidelines for Drinking Water Quality. Volume 1. Recommendation. World Health Organization. Geneva.
  • [5] Say. R.. Birlik. E.. Ersöz. A.. Yılmaz. F.. Gedikbey. T.. Denizli. A. (2003). Preconcentration of copper on ion-selective imprinted polymer microbeads. Analytica Chimica Acta 480(2). 251-258.
  • [6] Dakova. I.. Karadjova. I.. Ivanov. I.. Georgieva. V.. Evtimova. B.. Georgiev. G. (2007). Solid phase selective separation and preconcentration of Cu(II) by Cu(II)-imprinted polymethacrylic microbeads. Anal Chim Acta 584(1). 196-203.
  • [7] Walas. S..Tobiasz. A..Gawin. M..Trzewik. B..Strojny. M. Mrowiec. H. (2008). Application of a metal ion-imprinted polymer based on salen-Cu complex to flow injection preconcentration and FAAS determination of copper. Talanta 76(1). 96-101.
  • [8] Tobiasz. A.. Walas. S.. Trzewik. B.. Grzybek. P.. Zaitz. M. M.. Gawin. M.. Mrowiec. H. (2009). Cu(II)-imprinted styrene–divinylbenzene beads as a new sorbent for flow injection-flame atomic absorption determination of copper. Microchemical Journal 93(1). 87-92.
  • [9] Yılmaz. V.. Hazer. O.. Kartal. Ş. (2013).Synthesis. characterization and application of a novel ion-imprinted polymer for selective solid phase extraction of copper(II) ions from high salt matrices prior to its determination by FAAS. Talanta 116. 322-329.
  • [10] Luo. X.. Huang. Y.. Deng. F.. Luo. S.. Zhan. Y.. Shu. H.. Tu. X. (2012). A magnetic copper(II)-imprinted polymer for the selective enrichment of trace copper(II) ions in environmental water. Microchimica Acta 179 (3-4). 283-289.
  • [11] Saygili Canlidinç. R. Kalfa. O. M.. Üstündağ. Z.. Erdoğan. Y. (2017). Graphene oxide modified expanded perlite as a new sorbent for Cu(II) and Pb(II) prior to determination by high-resolution continuum source flame atomic absorption spectrometry. Separation Science and Technology. 52:13. 2069-2078. https://doi.org/10.1080/01496395.2017.1328443.
  • [12] Dobrowolski. R.; Otto. M. (2012). Determination of nickel and cobalt in reference plant materials by carbon slurry sampling GFAAS technique after their simultaneous preconcentration onto modified activated carbon. Journal of Food Composition and Analysis. 26 (1–2): 58–65.
  • [13] Dobrzyńska. J.. Dąbrowska. M.. Olchowski. R.. Dobrowolski. R. (2018). An ion-imprinted thiocyanato-functionalized mesoporous silica for preconcentration of gold(III) prior to its quantitation by slurry sampling graphite furnace AAS. Microchimica Acta. 185: 564 https://doi.org/10.1007/s00604-018-3106-x.
  • [14] Turan. K..Saygılı Canlıdinç. R. Kalfa. O. M. (2017). Determination of trace amounts of Co(II) after preconcentration with surface ion imprinted sorbent based on activated carbon. Separation Science and Technology 53(5). 707-716.
  • [15] Turan. K..Saygili Canlıdinç. R. Kalfa. O. M. (2018). Selective Preconcentration of Trace Amounts of Cu(II) With Surface-Imprinted Multiwalled Carbon Nanotubes. CLEAN - Soil. Air. Water 46(1). 1700580.
  • [16] Mikula. B.. Puzio. B. (2007). Determination of trace metals by ICP-OES in plant materials after preconcentration of 1.10-phenanthroline complexes on activated carbon. Talanta 71(1). 136-140.
  • [17] Yilmaz. V.. Arslan. Z.. Hazer. O.. Yilmaz. H. (2014). Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES). Microchem J 114. 66-72.
  • [18] Li. Z..Li. J..Wang. Y. Wei. Y. (2014). Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II). Spectrochim Acta A Mol Biomol Spectrosc 117. 422-427.
  • [19] Zhang. N.. Suleiman. J.S.. He. M.. Hu. B. (2008). Chromium(III)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection. Talanta 75. 2. 536-543. https://doi.org/10.1016/j.talanta.2007.11.059.
  • [20] Tsoi. Y-K.. Ho. Y-M.. Leung. K. S-Y. (2012). Selective recognition of arsenic by tailoring ion-imprinted polymer for ICP-MS quantification. Talanta. 89. 30. 162-168. https://doi.org/10.1016/j.talanta.2011.12.007
  • [21] Türker. A. R. (2007). New sorbents for solid-phase extraction for metal enrichment. Clean–Soil. Air. Water. 35. 548–557.
  • [22] Jiang. N.. Chang. X.. Zheng. H.. He.Q.. Hu. Z. (2006). Selective solid-phase extraction of nickel(II) using a surface-imprinted silica gel sorbent. Analytica Chimica Acta. 577. 2. 225-231.
  • [23] Zhao. J.. Han. B.. Zhang. Y.. Wang. D. (2007). Synthesis of Zn(II) ion-imprinted solid-phase extraction material and its analytical application. Anal Chim Acta 603(1). s.87-92.
  • [24] Kalfa. O.M.; Yalcinkaya. O.; Turker. A.R. (2009). Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium. Journal of Hazardous Materials. 166 (1): 455–461.
  • [25] Guo. J-J.. Su. Q-D.. Gan. W-E. (2009). On-line Selective Solid-Phase Extraction of Copper with a Surface Ion Imprinted Silica Gel Sorbent. Journal of the Chinese Chemical Society 56. 763-770.
  • [26]. Li. C.; Pan. J.; Zou. X.; Gao. J.; Xie. J.; Yongsheng. Y. (2011). Synthesis and applications of novel attapulgite- supported Co(II)-imprinted polymers for selective solid-phase extraction of cobalt(II) from aqueous solutions. International Journal Environment Analysis Chemical. 91 (11): 1035–1049.
  • [27] Behbahani. M.. Hassanlou. P.G.. Amini. M.M.. Moazami. H.R.. Abandansari. H.S.. Bagheri. A.. Zadeh. S.H. (2014). Selective solid-phase extraction and trace monitoring of lead ions in food and water samples using new lead-imprinted polymer nanoparticles. Food Analysis Methods. 8 (3): 558–568.
  • [28] Behbahani. M.. Salarian. M.. Bagheri. A.. Tabani. H.. Omidi. F.. Fakhari. A. (2014). Synthesis. characterization and analytical application of Zn(II)-imprinted polymer as an efficient solid-phase extraction technique for trace determination of zinc ions in food samples. Journal of Food Composition and Analysis. 34 (1): 81–89.
  • [29] Miranda. L.F.; Domingues. D.S.; Queiroz. M.E. (2016). Selective solid-phase extraction using molecularly imprinted polymers for analysis of venlafaxine. O-desmethylvenlafaxine. and N-desmethylvenlafaxine in plasma samples by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A. 1458: 46–53.
  • [30] Kakavandi. M.G.; Behbahani. M.; Omidi. F.; Hesam. G. (2017). Application of ultrasonic assisted-dispersive solid phase extraction based on ion-imprinted polymer nanoparticles for preconcentration and trace determination of lead ions in food and water samples. Food Analysis Methods. 10 (7): 2454–2466.
  • [31] Li. Z.; Kou. W.; Wu. S.; Wu. L. (2017). Solid-phase extraction of chromium(III) with an ion-imprinted functionalized attapulgite sorbent prepared by a surface imprinting technique. Analysis Methods. doi:10.1039/ c7ay00346c.
  • [32] Fang. G. Z.. Tan. J.. Yan X. P. (2005). An ionimprinted functionalized silica gel sorbent prepared by a surface imprinting techniquecombined with a sol–gel process for selective solid-phaseextraction of cadmium(II). Analytical Chemistry 77. 1734– 1739.
  • [33] Pena-Pereira. F.; Lavilla. I.; Bendicho. C. (2009). Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: A review. Spectrochimica Acta Part B. 64 (1): 1–15.
  • [34] Anthemidis. A. N. ve Ioannou. K. I. (2009). Recent developments in homogeneous and dispersive liquid-liquid extraction for inorganic elements determination. A review. Talanta 80(2). 413-421.
  • [35] Citak. D.; Tuzen. M. (2010). A novel preconcentration procedure using cloud point extraction for determination of lead. cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food and Chemical Toxicology. 48 (5): 1399–1404.
  • [36] Tuzen. M. ve Soylak. M. (2009). Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials. 162(2-3). 724–729. https://doi.org/10.1016/j.jhazmat.2008.05.087.
  • [37] Abdellah. A. M.. Kabil. M. A.. Akl. M. A. and Ismael. D. S. (2004). Simultaneous preconcentration flotation‐separation and spectrophotometric determination of thorium. lanthanum. and yttrium in some geological and environmental samples. J. Iran. Chem. Soc.. 1(1): 79–87.
  • [38] Shamsipur. M.. Reza Hashemi. O. ve Salavati Niasari. M. (2007). Selective Flotation Separation and Inductively Coupled Plasma Atomic Emission Spectrometric Determination of Ultra Trace Amounts of Silver Ion Using Bis(2-mercaptoanil)acetylacetone. Separation Science and Technology. 42(3). 567–578. https://doi.org/10.1080/01496390601069895.
  • [39] Owens. G. S.. Southard. G. E.. Houten. K. A. V.. & Murray. G. M. (2005). Molecularly Imprinted Ion-Exchange Resin for Fe3+ Separation Science and Technology. 40(11). 2205–2211. https://doi.org/10.1080/01496390500201177.
  • [40] Zarejousheghani. M.. Schrader. S.. Möder. M.. Lorenz. P.. & Borsdorf. H. (2015). Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples. Journal of Chromatography A. 1411. 23–33. https://doi.org/:10.1016/j.chroma.2015.07.107.
  • [41] Zheng. H.. De. Z.. Wang. W.Y.. Fan. Y.Q.. Li. J.. Han. H.P. (2007). Highly selective determination of palladium(II) after preconcentration using Pd(II)-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Microchimica Acta 157(1-2). 7-11.
  • [42] Karabörk. M.. Ersoz. A.. Birlik. E.. Say. R.(2007). Preconcentration of Fe(III) Using Fe(III)-Ion Imprinted Polymeric Traps and Its Analytical Performance for FAAS. Hacettepe J. Biol. & Chem.. 2007. 35 (2). 135-142.
  • [43] Milja.T.E.. Prathish. K.P.. Rao. T.P. (2010). Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water. J HazardMater 188. 384–390.
  • [44] Luo. X.. Luo. S.. Zhan. Y.. Shu. H.. Huang. Y.. Tu. X. (2011). Novel Cu (II)magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol–gel process. J. Hazard. Mater. 192 949–955.
  • [45] Fan. H.-T.. Li. J.. Li. Z.-C.. Sun. T. (2012). An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium (II) from aqueous solution. Applied Surface Science 258(8). 3815-3822.
  • [46] Lv. Y.. Tan. T.. Svec. F. (2013). Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol. Adv. 31. 8. 1172-1186.
  • [47] Li. Z.. Li. J.. Wang. Y.. Wei.Y. (2014). Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117. 422–427.
  • [48] Zou. T.. Zhou. Z.. Dai. J.. Gao. L.. Wei. X.. Li. C.. Guan. W.. Yan. Y. (2014). Preparation of silica-based surface-imprinted core–shell nanoadsorbents for the selective recognition of sulfamethazine via reverse atom transfer radical precipitation polymerization. Journal of Polymer Research 21(8). 520-525.
  • [49] Ding. X.. Heiden. P.A. (2014). Recent Developments in Molecularly Imprinted Nanoparticles by Surface Imprinting Techniques. Macromolecular Materials and Engineering 299. 38. 268-282.
  • [50] Li. M.. Feng. C.. Li. M.. Zeng. Q.. Gan. Q. (2015). Synthesis and application of a surface-grafted In (III) ion-imprinted polymer for selective separation and pre-concentration of indium (III) ion from aqueous solution. Hydrometallurgy 154. 63-71.
  • [51] Hao. Y.. Gao. R.. Liu. D.. Tang. Y.. Guo. Z. (2015). Selective extraction of gallic acid in pomegranate rind using surface imprinting polymers over magnetic carbon nanotubes. Anal. Bioanal. Chem. 407(25). 7681-90.
  • [52] Gao. B.. Meng. J.. Xu. Y.. Zhang. Y. (2015). Preparation of Fe(III) ion surface-imprinted material for removing Fe(III) impurity from lanthanide ion solutions. Journal of Industrial and Engineering Chemistry 24. 351-358.
  • [53] Bashir. K.. Guo. P.. Chen. G.. Li. Y.. Ge. Y.. Shu. H.. & Fu. Q. (2019). Synthesis. characterization. and application of griseofulvin surface molecularly imprinted polymers as the selective solid phase extraction sorbent in rat plasma samples. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2019.06.007.
  • [54] Yu. T.. Qiao. X.. Lu. X.. Fan. X. (2015). Selective adsorption of Zn2+ on surface ion-imprinted polymer. Desalination and Water Treatment. s.1-12. https://doi.org/10.1080/19443994.2015.1074115.
  • [55] Haupt. K.. ve Mosbach. K.. (2000). Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 100(7). 2495-2504.
  • [56] Batra. D.. Shea. K.J. (2003). Combinatorial Methods in Molecular Imprinting. Current Opinion in Chemical Biology 7. 1-9.
  • [57] Li. W. ve Li. S. (2007). Molecular imprinting: A versatile tool for separation. sensors and catalysis. Adv. Polym. Sci. 206. 191-210.
  • [58] Alizadeh. T.. Ganjali. M.R.. Norouzi. P.. Zare. M.. Zeraatkar. A. (2009). A novel high selective ve sensitive para-nitrophenol voltammetric sensor. based on a molecularly imprinted polymer-carbon paste electrode. Talanta 79. 1197-1203.
  • [59] Cirillo. G.. Parisi. O.I.. Curcio. M.. Puoci. F.. Iemma. F.. Spizzirri. U.G.. Picci. N. (2010). Molecularly imprinted polymers as drug delivery systems for the sustained release of glycyrrhizic acid. J. Pharm. Pharmacol. 62: 577-582.
  • [60] Chen. J. H.. Lin. H.. Luo. Z. H.. He. Y. S.. Li. G. P. (2011). Cu(II)-imprinted porous film adsorbent Cu–PVA–SA has high uptake capacity for removal of Cu(II) ions from aqueous solution. Desalination 277(1-3). 265-273.
  • [61] Guo. W.. Chen.. R.. Liu. Y.. Meng. M.. Meng. X.. Hu. Z.. Song. Z. (2013). Preparation of ion-imprinted mesoporous silica SBA-15 functionalized with triglycine for selective adsorption of Co(II). Colloids and Surfaces A: Physicochemical and Engineering Aspects 436. s.693-703.
  • [62] Peng. W.. Xie. Z.. Cheng. G.. Shi. L.. Zhang. Y. (2015). Amino-functionalized adsorbent prepared by means of Cu(II) imprinted method and its selective removal of copper from aqueous solutions. J Hazard Mater 294. 9-16.
  • [63] Khoddami. N.. Shemirani. F. (2016). A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples. Talanta 146. 244-252.
  • [64] Zhao. M.. Shao. H.. He. Y.. Li. H.. Yan. M.. Wang. J.. Abd El-Aty. A.M.. Hacımüftüoğlu. A.. Yan. F.. Wang. Y.. She. Y. (2019). The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS. Journal of Chromatography B. 1125. 121714. https://doi.org/10.1016/j.jchromb.2019.121714.
  • [65] Sun. X.. Wang. M.. Yang. L.. Wen. H.. Wang. L.. Li. T.. Tang C. Yang. J. (2018). Preparation and evaluation of dummy-template molecularly imprinted polymer as a potential sorbent for solid phase extraction of imidazole fungicides from river water. Journal of Chromatography A. https://doi.org/10.1016/j.chroma.2018.11.077.
  • [66] Sun. X.. Wang. M.. Peng. J.. Yang. L.. Wang. X.. Wang. F.. Zhang. X.. Wu. Q.. Chen. R. and Chen. J. (2019). Dummy molecularly imprinted solid phase extraction of climbazole from environmental water samples. Talanta. https://doi.org/10.1016/j.talanta.2018.12.017.
  • [67] Tan .S.. Yu . H.. He .Y.. Wang. M.. Liu. G.. Hong. S.. Yan. F.. Wang.Y.. Wang. M.Q.. Li.T.. Wang. J.. EI-Atyd. A.M. A.. Hacımüftüoğlu. A.. Shea.Y. (2019). A dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for selective determination of four pyridine carboxylic acid herbicides in milk. Journal of Chromatography B 1108. 65–72 https://doi.org/10.1016/j.jchromb.2019.01.008.
  • [68] Huang. Z.. He. J.. Li. Y.. Wu. C.. You. L.. Wei. H.. Zhang. S. (2019). Preparation of dummy molecularly imprinted polymers for extraction of Zearalenone in grain samples. Journal of Chromatography A. https://doi.org/10.1016/j.chroma.2019.05.022.
  • [69] Bagheri. A. R.. Arabi. M.. Ghaedi. M.. Ostovan. A.. Wang. X.. Li. J.. & Chen. L. (2018). Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta. https://doi.org/10.1016/j.talanta.2018.11.065.
  • [70] Vallano. P.T. ve Remcho. V.T. (2000). Highly Selective Separations by Capilary Electrochromatography: Molecular Imprint Polymer Sorbents. J. Chromatography A 887. 125-135.
  • [71] Sarafraz-Yazdi. A. ve Razavi. N. (2015). Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC Trends in Analytical Chemistry 73. 81-90.
  • [72] Haupt. K. (2012). Molecular Imprinting. Springer-Verlag. Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28421-2.
  • [73] Yan. S.. Fang. Y.. Gao. Z. (2007). Quartz crystal microbalance for the determination of daminoazide using molecularly imprinted polymers as recognition element. Biosens. Bioelectron. 22. 1087-1091.
  • [74] Ye. L. ve Mosbach. K. (2008). Molecular imprinting: Synthetic materials as substitutes for biological antibodies and receptors. Chem. Mater. 20. 859-868. [75] Poma. A.. Turner. A.P.F.. Piletsky. S.A. (2010). Advances in the manufacture of MIP nanoparticles. Trends. Biotechnol. 28. 629-637.
  • [75] Poma. A.. Turner. A.P.F.. Piletsky. S.A. (2010). Advances in the manufacture of MIP nanoparticles. Trends. Biotechnol. 28. 629-637.
  • [76] Scorrano. S.. Mergola. L.. Del. S.R.. Vasapollo. G. (2011). Synthesis of molecularly imprinted polymers for amino acid derivates by using different functional monomers. Int. J. Mol. Sci. 12. 1735-1743.
  • [77] Bossi. A.. Bonini. F.. Turner. A.P.F.. Piletsky. S.A. (2007). Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosens. Bioelectron. 22. 1131–1137.
  • [78] Longo. L.. Vasapollo. G. (2008). Molecularly imprinted polymers as nucleotide receptors. Mini. Rev.Org. Chem. 5. 163-170.
  • [79] Pichon. V. ve Chapuis-Hugon. F. (2008). Role of molecularly imprinted polymers for selective determination of environmental pollutants: A review. Anal. Chim. Acta 622. 48–61.
  • [80] Lok. C.M.. Son. R.. (2009). Application of molecularly imprinted polymers in food sample analysis – a perspective. International Food Research Journal 16. s.127-140.
  • [81] Chen. X.. Yang. Z.P.. Si. S.H. (2009). Potentiometric urea biosensor based on immobilization of urease onto molecularly imprinted TiO2 film. J. Electroanal. Chem. 635. 1-6.
  • [82] Song. W.. Chen. Y.. Xu. J.A.. Yang. X.R.. Tian. D.B. (2010). Dopamine sensor based on molecularly imprinted electrosynthesized polymers. J. Solid State Electrochem. 14. 1909-1914.
  • [83] Sainz-Gonzalo. F.J.. Medina-Castillo. A.L.. Fernández-Sánchez. J.F.. Fernández- Gutiérrez. A. (2011). Synthesis and characterization of a molecularly imprinted polymer optosensor for TEXs-screening in drinking water. Biosens.Bioelectron. 26. 3331-3338.
  • [84] Singh. B.. Chauhan. N. (2008). Molecular Imprinted Polymers for use as Drug Delivery Devices: Preliminary Evaluation. J. Macromol. Sci. A 45. 776-784.
  • [85] Yin. J.F.. Cui. Y.. Yang. G.L.. Wang. H.L. (2010). Molecularly imprinted nanotubes for enantioselective drug delivery and controlled release. Chem. Commun.46. 7688-7690.
  • [86] Mahkam. M.. Poorgholy. N. (2011). Imprinted polymers as drug delivery vehicles for anti-inflammatory drugs. Nature and Science 9. 163-168.
  • [87] Uzun. L.. Say. R.. Ünal. S.. Denizli. A. (2009). Hepatitis B surface antibody purification with hepatitis B surface antibody imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-l-tyrosine methyl ester) particles. Chromatogr B 877. 181-188.
  • [88] Lavignac. N.. Allender. C.J.. Brain. K.R.. (2004). Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays. Anal. Chim. Acta 510. 139-145.
  • [89] Piletska. E.. Piletsky. S.. Karim. K.. Terpetschnig. E.. Turner. A. (2004). Biotin- specific synthetic receptors prepared using molecular imprinting. Anal.Chim. Acta 504. 179-183.
  • [90] Martin-Esteban. A. (2004). Molecular imprinting technology: a simple way of synthesizing biomimetic polymeric receptors. Anal. Bioanal. Chem. 378. 1875.
  • [91]. Ye. L. ve Haupt. K. (2004). Molecularly imprinted polymers as antibody and receptor mimics for assays. sensors and drug discovery. Anal. Bioanal.Chem. 378. 1887-1897.
  • [92] Shen. X.T.. Zhu. L.H.. Wang. N.. ...(2012). Molecular imprinting for removing highly toxic organic pollutants. Chem Commun 48(6): 788–79.
  • [93] Gao. D.M.. Zhang. Z.P.. Wu. M.H.. Xie. C.G.. Guan. G.J.. Wang.D.P. (2007). A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. Jornal of the American Chemical Society 129. 7859–7866.
  • [94] Zhang. Z.. Zhang. H.. Hu. Y.. Yang. X.. & Yao. S. (2010). Novel surface molecularly imprinted material modified multi-walled carbon nanotubes as solid-phase extraction sorbent for selective extraction gallium ion from fly ash. Talanta. 82(1). 304–311. https://doi.org/10.1016/j.talanta.2010.04.038.
  • [95]PolyAn. (2019). Molecular Imprinting of Surfaces (MSI). https://www.poly-an.de/products/specialties-custom-manufacturing/technology/molecular-surface-imprinting/.
  • [96] Rao. T.P.. Kala. R.. Daniel. S. (2006). Metal ion-imprinted polymers-novel materials for selective recognition of inorganics. Anal Chim Acta. 578 (2). s.105-116.
  • [97] Zhang. H.-X.; Dou. Q.; Jin. X.-H.; Sun. D.-X.; Wang.-D.-D.; Yang. T.-R. (2015). Magnetic Pb(II) ion-imprinted polymer prepared by surface imprinting technique and its Adsorption Properties. Separation Science and Technology. 50(6). 901–910. https://doi.org/10.1080/01496395.2014.978462.
  • [98] Liu. Y.. Liu. Z.C.. Gao. J.. Dai. J.D.. Han. J.A.. Wang. Y.. Xie. J.M.. Yan. Y.S. (2011). Selective adsorption behavior of Pb(II) bymesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique. J. Hazard. Mater. 186. 197–205.
  • [99] Shamsipur. M.. Fasihi. J.. Ashtari. K.. (2007). Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion. Anal Chem 79. 7116–7123.
  • [100] Godlewska-Zyłkiewicz. B.. Lesniewska. B.. Wilczewska. A. (2012). Evaluation of ion imprinted polymers for the solid phase extraction and electrothermal atomic absorption spectrometric determination of palladium in environmental samples. Int. J. Environ. Anal. Chem. 93. 483–498.
  • [101] Lesniewska. B.. Kosinska. M.. Godlewska-Zyłkiewicz. B.. Zambrzycka. E.. Wilczewska. A.Z. (2011). Selective solid phase extraction of platinum on an ion imprinted polymers for its electrothermal atomic absorption spectrometric determination in environmental samples. Microchim. Acta 175. 273–282.
  • [102] Ramakrishnan. K. ve Prasada Rao. T. (2006). Ion Imprinted Polymer Solid Phase Extraction (IIP‐SPE) for Preconcentrative Separation of Erbium(III) From Adjacent Lanthanides and Yttrium. Separation Science and Technology. 41(2). 233–246. https://doi.org/10.1080/01496390500446327.
  • [103] Li. M.. Meng. X.. Liang. X.. Yuan. J.. Hu. X.. Wu. Z.. & Yuan. X. (2018). A novel In(III) ion-imprinted polymer (IIP) for selective extraction of In(III) ions from aqueous solutions. Hydrometallurgy. 176. 243–252. https://doi.org/10.1016/j.hydromet.2018.02.006.
  • [104] Zhai. Y.. Liu. Y.. Chang. X.. Chen. S.. & Huang. X. (2007). Selective solid-phase extraction of trace cadmium(II) with an ionic imprinted polymer prepared from a dual-ligand monomer. Analytica Chimica Acta. 593(1). 123–128. https://doi.org/10.1016/j.aca.2007.04.040.
  • [105] Wang. J. ve Liu. F. (2014). Synthesis and application of ion-imprinted interpenetrating polymer network gel for selective solid phase extraction of Cd2+ Chemical Engineering Journal. 242. 117–126.
  • [106] Moussa. M.. Ndiaye. M. M.. Pinta. T.. Pichon. V.. Vercouter. T.. & Delaunay. N. (2017). Selective solid phase extraction of lanthanides from tap and river waters with ion imprinted polymers. Analytica Chimica Acta. 963. 44–52. https://doi.org/10.1016/j.aca.2017.02.012.
  • [107] Yang. B.. Zhang. T.. Tan. W.. Liu. P.. Ding. Z.. & Cao. Q. (2013). Determination of rhodium by resonance light-scattering technique coupled with solid phase extraction using Rh(III) ion-imprinted polymers as sorbent. Talanta. 105. 124–130. https://doi.org/10.1016/j.talanta.2012.11.076.
  • [108] Lin. C.. Wang. H.. Wang. Y.. & Cheng. Z. (2010). Selective solid-phase extraction of trace thorium(IV) using surface-grafted Th(IV)-imprinted polymers with pyrazole derivative. Talanta. 81(1-2). 30–36. https://doi.org/10.1016/j.talanta.2009.11.032.
  • [109] Lin. C.. Wang. H.. Wang. Y.. Zhou. L.. & Liang. J. (2011). Selective preconcentration of trace thorium from aqueous solutions with Th(IV)-imprinted polymers prepared by a surface-grafted technique. International Journal of Environmental Analytical Chemistry. 91(11). 1050–1061. https://doi.org/10.1080/03067311003629677.
  • [110] Batlokwa. B.S.. Chimuka. L.. Tshentu. Z.. Cukrowska. E.. Torto. N. (2012). An ion-imprinted polymer for the selective extraction of mercury(II) ions in aqueous media. Water SA 38. 255–260.
  • [111] Zambrzycka. E. ve Godlewska-Zyłkiewicz. B. (2014). A new ion imprinted polymer based on Ru(III)-thiobarbituric acid complex for solid phase extraction of ruthenium(III) prior to its determination by ETAAS. Microchim. Acta 181. 1019–1027.
  • [112] Esen. C.. Andac. M.. Bereli. N.. Say. R.. Henden. E.. & Denizli. A. (2009). Highly selective ion-imprinted particles for solid-phase extraction of Pb2+ ions. Materials Science and Engineering: C. 29(8). 2464–2470. https://doi.org/10.1016/j.msec.2009.07.012.
  • [113] Ebrahimzadeh. H. ve Behbahani. M. (2017). A novel lead imprinted polymer as the selective solid phase for extraction and trace detection of lead ions by flame atomic absorption spectrophotometry: Synthesis. characterization and analytical application. Arabian Journal of Chemistry. 10. S2499–S2508. https://doi.org/10.1016/j.arabjc.2013.09.017.
  • [114] Ersöz. A.. Say. R.. Denizli A.. (2004). Nickel(II) IonImprinted Solid Phase Extraction and Preconcentration In Aqueous Solutions in Packed-Bed Columns. Analytica Chimica Acta. 502. 91-97.
  • [115] Saraji. M.. & Yousefi. H. (2009). Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples. Journal of Hazardous Materials. 167(1-3). 1152–1157. https://doi.org/10.1016/j.jhazmat.2009.01.111.
  • [116] Chang. X.. Jiang. N.. Zheng. H.. He. Q.. Hu. Z.. Zhai. Y.. & Cui. Y. (2007). Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Talanta. 71(1). 38–43. https://doi.org/10.1016/j.talanta.2006.03.012.
  • [117] Ara. B.. Muhammad. M.. Salman. M.. Ahmad. R.. Islam. N.. Haq Zia. T. (2018). Preparation of microspheric Fe(III) ion imprinted polymer for selective solid phase extraction. Appl Water
There are 117 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Kübra Turan 0000-0002-4498-4123

Rukiye Saygılı Canlıdinç 0000-0002-3942-3196

Orhan Murat Kalfa 0000-0001-7049-0605

Publication Date December 26, 2019
Submission Date October 11, 2019
Acceptance Date November 19, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

APA Turan, K., Saygılı Canlıdinç, R., & Kalfa, O. M. (2019). Eser Element Zenginleştirilmesinde Kullanılmak Üzere Baskılama Tekniği ile Yeni Katı Fazların Hazırlanması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 192-209. https://doi.org/10.35193/bseufbd.632148