Research Article
BibTex RIS Cite

Sentezlenen Yeni Ni (II) Komplekslerinin Spektroskopik ve antifungal özelliklerinin İncelenmesi

Year 2020, Volume: 7 Issue: 100. Yıl Özel Sayı, 198 - 216, 23.03.2020
https://doi.org/10.35193/bseufbd.603561

Abstract

Bu çalışmada, 6,6'-((1E,1'E)-(propan-1,3-diilbis(azanyiliden))bis(fenilmetaniliden))bis(3
(oktiloksi)fenol) (HL1) ve 6,6’-((1E,1’E)-(etan-1,2 diilbis(azanyiliden))bis(fenilmetanyiliden))bis(3-oktiloksi)fenol)
(HL2) ligandları  ile Ni metal atomunun
iki farklı kompleksi hazırlanarak FT-IR ve Uv-Vis spektroskopik  yöntemleri ile karakterize edilmiştir. İki
komplex yapının (
HL1Ni ve HL2Ni ) deneysel olarak antifungal
aktivite çalışmaları yapılmıştır. Bu çalışmada, Rhizoctonia solani ve Fusarim
oxysporum f.sp radicis-lycopersici (FORL) bitki patojenlerine karşı, HL1Ni ve HL2Ni
komplekslerinin in vitro koşullar altında etkinlik çalışmaları yürütülmüştür. Etkinliği
belirlenen bileşiklerin doz miktarına göre test edilen patojenlere karşı orta
ve yüksek düzeyde aktivite sergilediği belirlenmiştir. Ayrıca Komplex yapıların
moleküller arası etkileşimlerin
daha iyi anlaşılabilmesi amacıyla da bileşiklerin, HOMO-LUMO orbitalleri teoriksel
olarak elde edilmiştir. Son olarak da moleküler doking çalışması ile
reseptör-ligant etkileşimleri simüle edilmiştir. Bu hesaplama sonucunda bileşiklere ait affinite değerleri (Doking
skoru) sırasıyla -6.9 ve -6.4 kcal/mol olarak hesaplanmıştır. Doking skoru ile kompleks yapıların HOMO
orbital enerjilerinin birbirleri ile ilişkili olduğu gözlenmiştir.

References

  • [1] Wichmann, O., Sillanpää, R. and Lehtonen, A. (2012). Structural properties and applications of multidentate [O, N, O, X′] aminobisphenolate metal complexes. Coordination Chemistry Reviews, 256, 371-92.
  • [2] Vigato, P., Peruzzo, V. and Tamburini, S. (2012). Acyclic and cyclic compartmental ligands: Recent results and perspectives. Coordination Chemistry Reviews, 256, 953-1114.
  • [3] Cox, A.R., Gibson, V.C., Marshall, E.L., White, A.J. and Yeldon, D. (2006). Coordination complexes bearing potentially tetradentate phenoxyamine ligands. Dalton Transactions, 5014-23.
  • [4] Vigato, P.A. and Tamburini, S. (2004). The challenge of cyclic and acyclic Schiff bases and related derivatives. Coordination Chemistry Reviews, 248, 1717-2128.
  • [5] Hung, W.-C. and Lin, C.-C. (2008). Preparation, characterization, and catalytic studies of magnesium complexes supported by NNO-tridentate Schiff-base ligands. Inorganic chemistry, 48, 728-34.
  • [6] Gupta, K. and Sutar, A.K. (2008). Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 252, 1420-50.
  • [7] Chiang, L., Clarke, R.M., Herasymchuk, K., Sutherland, M., Prosser, K.E., Shimazaki, Y. and Storr, T. (2016). Electronic Structure Evaluation of an Oxidized Tris (methoxy)‐Substituted Ni Salen Complex. European Journal of Inorganic Chemistry, 2016, 49-55.[8] Bartyzel, A. (2013). Synthesis, crystal structure and characterization of manganese (III) complex containing a tetradentate Schiff base. Journal of Coordination Chemistry, 66, 4292-303.
  • [9] Wu, P., Ma, D.L., Leung, C.H., Yan, S.C., Zhu, N., Abagyan, R. and Che, C.M. (2009). Stabilization of G‐Quadruplex DNA with Platinum (II) Schiff Base Complexes: Luminescent Probe and Down‐Regulation of c‐myc Oncogene Expression. Chemistry–A European Journal, 15, 13008-21.
  • [10] Bartyzel, A. and Cukrowska, E.M. (2011). Solid phase extraction method for the separation and determination of chromium (III) in the presence of chromium (VI) using silica gel modified by N, N′-bis-(α-methylsalicylidene)-2, 2-dimethyl-1, 3-propanediimine. Analytica chimica acta, 707, 204-9.
  • [11] (a) Sakiyama, H., Chiba, Y., Tone, K., Yamasaki, M., Mikuriya, M., Krzystek, J. and Ozarowski, A. (2016). Magnetic Properties of a Dinuclear Nickel (II) Complex with 2, 6-Bis [(2-hydroxyethyl) methylaminomethyl]-4-methylphenolate. Inorganic chemistry, 56, 138-46. (b) Mondal, M., Giri, S., Guha, P.M. and Ghosh, A. (2017). Dependence of magnetic coupling on ligands at the axial positions of Ni II in phenoxido bridged dimers: experimental observations and DFT studies. Dalton Transactions, 46, 697-708.(c) Ghorai, P., Chakraborty, A., Panja, A., Mondal, T.K. and Saha, A. (2016). Mono-and di-nuclear nickel (ii) complexes derived from NNO donor ligands: syntheses, crystal structures and magnetic studies of dinuclear analogues. RSC Advances, 6, 36020-30.(d)Biswas, R., Giri, S., Saha, S.K. and Ghosh, A. (2012). One Ferromagnetic and Two Antiferromagnetic Dinuclear Nickel (II) Complexes Derived from a Tridentate N, N, O‐Donor Schiff Base Ligand: A Density Functional Study of Magnetic Coupling. European Journal of Inorganic Chemistry, 2012, 2916-27.(e) Bu, X.-H., Du, M., Zhang, L., Liao, D.-Z., Tang, J.-K., Zhang, R.-H. and Shionoya, M. (2001). Novel nickel (II) complexes with diazamesocyclic ligands functionalized by additional phenol donor pendant (s): synthesis, characterization, crystal structures and magnetic properties. Dalton Transactions, 593-8.(f) Naiya, S., Drew, M.G., Estarellas, C., Frontera, A. and Ghosh, A. (2010). Hydrogen-bond assisted stabilization of the less favored conformation of a tridentate Schiff base ligand in dinuclear nickel (II) complex: An experimental and theoretical study. Inorganica Chimica Acta, 363, 3904-13.(g) Nanda, K.K., Thompson, L.K., Bridson, J.N. and Nag, K. (1994). Linear dependence of spin exchange coupling constant on bridge angle in phenoxy-bridged dinickel (II) complexes. Chemical Communications, 1337-8.(h) Nanda, K.K., Das, R., Thompson, L.K., Venkatsubramanian, K., Paul, P. and Nag, K. (1994). Magneto-structural correlations in macrocyclic dinickel (II) complexes: tuning of spin exchange by varying stereochemistry and auxiliary ligands. Inorganic Chemistry, 33, 1188-93.
  • [12] (a)Panja, A., Jana, N.C., Adak, S., Brandão, P., Dlháň, L., Titiš, J. and Boča, R. (2017). The structure and magnetism of mono-and di-nuclear Ni (ii) complexes derived from {N 3 O}-donor Schiff base ligands. New Journal of Chemistry, 41, 3143-53.(b) Romanović, M.Č., Čobeljić, B., Pevec, A., Turel, I., Spasojević, V., Tsaturyan, A.A., Shcherbakov, I.N., Anđelković, K.K., Milenković, M. and Radanović, D.D. (2017). Supplementary data for article: Romanović, MČ; Čobeljić, BR; Pevec, A.; Turel, I.; Spasojević, V.; Tsaturyan, AA; Shcherbakov, IN; Anđelković, KK; Milenković, M.; Radanović, D.; et al. Synthesis, Crystal Structure, Magnetic Properties and DFT Study of Dinuclear Ni (II) Complex with the Condensation Product of 2-Quinolinecarboxaldehyde and Girard’s T Reagent. Polyhedron 2017, 128, 30–37.
  • [13] Das, A., Bhattacharya, K., Giri, S. and Ghosh, A. (2017). Synthesis, crystal structure and magnetic properties of a dinuclear and a trinuclear Ni (II) complexes derived from tetradentate ONNO donor Mannich base ligands. Polyhedron, 134, 295-301. [14] Rühlig, K., Abylaikhan, A., Aliabadi, A., Kataev, V., Liebing, S., Schwalbe, S., Trepte, K., Ludt, C., Kortus, J. and Büchner, B. (2017). Ni II formate complexes with bi-and tridentate nitrogen-donor ligands: synthesis, characterization, and magnetic and thermal properties. Dalton Transactions, 46, 3963-79.
  • [15] Tarafder, M., Jin, K.T., Crouse, K.A., Ali, A., Yamin, B.M. and Fun, H.-K. (2002). Coordination chemistry and bioactivity of Ni2+, Cu2+, Cd2+ and Zn2+ complexes containing bidentate Schiff bases derived from S-benzyldithiocarbazate and the X-ray crystal structure of bis [S-benzyl-β-N-(5-methyl-2-furylmethylene) dithiocarbazato] cadmium (II). Polyhedron, 21, 2547-54.
  • [16] Hosseini-Yazdi, S.A., Mirzaahmadi, A., Khandar, A.A., Eigner, V., Dušek, M., Mahdavi, M., Soltani, S., Lotfipour, F. and White, J. (2017). Reactions of copper (II), nickel (II), and zinc (II) acetates with a new water-soluble 4-phenylthiosemicarbazone Schiff base ligand: Synthesis, characterization, unexpected cyclization, antimicrobial, antioxidant, and anticancer activities. Polyhedron, 124, 156-65.
  • [17] Qiao, X., Ma, Z.-Y., Xie, C.-Z., Xue, F., Zhang, Y.-W., Xu, J.-Y., Qiang, Z.-Y., Lou, J.-S., Chen, G.-J. and Yan, S.-P. (2011). Study on potential antitumor mechanism of a novel Schiff Base copper (II) complex: synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity. Journal of inorganic biochemistry, 105, 728-37.
  • [18] de Hoog, P., Louwerse, M.J., Gamez, P., Pitié, M., Baerends, E.J., Meunier, B. and Reedijk, J. (2008). Influence of the Copper Coordination Geometry on the DNA Cleavage Activity of Clip‐Phen Complexes Studied by DFT. European Journal of Inorganic Chemistry, 2008, 612-9.
  • [19] Roy, S., Maheswari, P.U., Lutz, M., Spek, A.L., den Dulk, H., Barends, S., van Wezel, G.P., Hartl, F. and Reedijk, J. (2009). DNA cleavage and antitumour activity of platinum (II) and copper (II) compounds derived from 4-methyl-2-N-(2-pyridylmethyl) aminophenol: spectroscopic, electrochemical and biological investigation. Dalton Transactions, 10846-60.
  • [20] Foresman, J.B. and Frisch, A. (1996). Exploring chemistry with electronic structure methods: a guide to using Gaussian.[21] Hay, P.J. and Wadt, W.R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of chemical physics, 82, 270-83.
  • [22] Hay, P.J. and Wadt, W.R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299-310.
  • [23] Wadt, W.R. and Hay, P.J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics, 82, 284-98.
  • [24] Becke, A.D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of chemical physics, 98, 5648-52.
  • [25] Lee, C., Yang, W. and Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37, 785.[26] Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B. and Petersson, G. (2009). Gaussian 09, revision a. 02, gaussian. Inc., Wallingford, CT, 200.[27] Dallakyan, S. (2008). PyRx-python prescription v. 0.8. The Scripps Research Institute, 2010.
  • [28] Biovia, D.S. (2017). Discovery studio visualizer. San Diego, CA, USA.
  • [29] Nwosu, M.O. and Okafor, J.I. (1995). Preliminary studies of the antifungal activities of some medicinal plants against Basidiobolus and some other pathogenic fungi: Vorläufige Studien zur antimyzetischen Aktivität einiger offizineller Pflanzen auf Basidiobolus und andere pathogene Pilze. Mycoses, 38, 191-5.
  • [30] Onaran, A. and Yılar, M. (2012). Antifungal activity of Trachystemon orientalis L. aqueous extracts against plant pathogens. Journal of Food, Agriculture & Environment, 10, 287-91.
  • [31] Pandey, D., Tripathi, N., Tripathi, R. and Dixit, S. (1982). Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens/Fungitoxische und phytotoxische Eigenschaften des ätherischen Öis von Hyptis suaveolens. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 344-9.
  • [32] Fukui, K. (1982). Role of frontier orbitals in chemical reactions. science, 218, 747-54.
  • [33] Buyukuslu, H., Akdogan, M., Yildirim, G. and Parlak, C. (2010). Ab initio Hartree-Fock and density functional theory study on characterization of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 1362-9.[34] Parr, R.G. and Pearson, R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105, 7512-6.
  • [35] Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. (1978). Electronegativity: the density functional viewpoint. The Journal of Chemical Physics, 68, 3801-7.
  • [36] Parr, R.G., Szentpály, L.v. and Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121, 1922-4.
  • [37] Bahron, H., Khaidir, S.S., Tajuddin, A.M., Ramasamy, K. and Yamin, B.M. (2019). Synthesis, characterization and anticancer activity of mono-and dinuclear Ni (II) and Co (II) complexes of a Schiff base derived from o-vanillin. Polyhedron, 161, 84-92.
  • [38] Fraser, C. and Bosnich, B. (1994). Bimetallic reactivity. Investigation of metal-metal interaction in complexes of a chiral macrocyclic binucleating ligand bearing 6-and 4-coordinate sites. Inorganic Chemistry, 33, 338-46.
  • [39] Meier, J. and Theakston, R. (1986). Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon, 24, 395-401.
  • [40] Chioma, F., Ekennia, A.C., Ibeji, C.U., Okafor, S.N., Onwudiwe, D.C., Osowole, A.A. and Ujam, O.T. (2018). Synthesis, characterization, antimicrobial activity and DFT studies of 2-(pyrimidin-2-ylamino) naphthalene-1, 4-dione and its Mn (II), Co (II), Ni (II) and Zn (II) complexes. Journal of Molecular Structure, 1163, 455-64.
  • [41] Er M., Ergüven B., Tahtaci H., Onaran A., Karakurt T. and Ece A. (2017). Synthesis, characterization, preliminary SAR and molecular docking study of some novel substituted imidazo [2, 1-b][1, 3, 4]thiadiazole derivatives as antifungal agents, Medicinal Chemistry Research, 26, 615-30.
Year 2020, Volume: 7 Issue: 100. Yıl Özel Sayı, 198 - 216, 23.03.2020
https://doi.org/10.35193/bseufbd.603561

Abstract

References

  • [1] Wichmann, O., Sillanpää, R. and Lehtonen, A. (2012). Structural properties and applications of multidentate [O, N, O, X′] aminobisphenolate metal complexes. Coordination Chemistry Reviews, 256, 371-92.
  • [2] Vigato, P., Peruzzo, V. and Tamburini, S. (2012). Acyclic and cyclic compartmental ligands: Recent results and perspectives. Coordination Chemistry Reviews, 256, 953-1114.
  • [3] Cox, A.R., Gibson, V.C., Marshall, E.L., White, A.J. and Yeldon, D. (2006). Coordination complexes bearing potentially tetradentate phenoxyamine ligands. Dalton Transactions, 5014-23.
  • [4] Vigato, P.A. and Tamburini, S. (2004). The challenge of cyclic and acyclic Schiff bases and related derivatives. Coordination Chemistry Reviews, 248, 1717-2128.
  • [5] Hung, W.-C. and Lin, C.-C. (2008). Preparation, characterization, and catalytic studies of magnesium complexes supported by NNO-tridentate Schiff-base ligands. Inorganic chemistry, 48, 728-34.
  • [6] Gupta, K. and Sutar, A.K. (2008). Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 252, 1420-50.
  • [7] Chiang, L., Clarke, R.M., Herasymchuk, K., Sutherland, M., Prosser, K.E., Shimazaki, Y. and Storr, T. (2016). Electronic Structure Evaluation of an Oxidized Tris (methoxy)‐Substituted Ni Salen Complex. European Journal of Inorganic Chemistry, 2016, 49-55.[8] Bartyzel, A. (2013). Synthesis, crystal structure and characterization of manganese (III) complex containing a tetradentate Schiff base. Journal of Coordination Chemistry, 66, 4292-303.
  • [9] Wu, P., Ma, D.L., Leung, C.H., Yan, S.C., Zhu, N., Abagyan, R. and Che, C.M. (2009). Stabilization of G‐Quadruplex DNA with Platinum (II) Schiff Base Complexes: Luminescent Probe and Down‐Regulation of c‐myc Oncogene Expression. Chemistry–A European Journal, 15, 13008-21.
  • [10] Bartyzel, A. and Cukrowska, E.M. (2011). Solid phase extraction method for the separation and determination of chromium (III) in the presence of chromium (VI) using silica gel modified by N, N′-bis-(α-methylsalicylidene)-2, 2-dimethyl-1, 3-propanediimine. Analytica chimica acta, 707, 204-9.
  • [11] (a) Sakiyama, H., Chiba, Y., Tone, K., Yamasaki, M., Mikuriya, M., Krzystek, J. and Ozarowski, A. (2016). Magnetic Properties of a Dinuclear Nickel (II) Complex with 2, 6-Bis [(2-hydroxyethyl) methylaminomethyl]-4-methylphenolate. Inorganic chemistry, 56, 138-46. (b) Mondal, M., Giri, S., Guha, P.M. and Ghosh, A. (2017). Dependence of magnetic coupling on ligands at the axial positions of Ni II in phenoxido bridged dimers: experimental observations and DFT studies. Dalton Transactions, 46, 697-708.(c) Ghorai, P., Chakraborty, A., Panja, A., Mondal, T.K. and Saha, A. (2016). Mono-and di-nuclear nickel (ii) complexes derived from NNO donor ligands: syntheses, crystal structures and magnetic studies of dinuclear analogues. RSC Advances, 6, 36020-30.(d)Biswas, R., Giri, S., Saha, S.K. and Ghosh, A. (2012). One Ferromagnetic and Two Antiferromagnetic Dinuclear Nickel (II) Complexes Derived from a Tridentate N, N, O‐Donor Schiff Base Ligand: A Density Functional Study of Magnetic Coupling. European Journal of Inorganic Chemistry, 2012, 2916-27.(e) Bu, X.-H., Du, M., Zhang, L., Liao, D.-Z., Tang, J.-K., Zhang, R.-H. and Shionoya, M. (2001). Novel nickel (II) complexes with diazamesocyclic ligands functionalized by additional phenol donor pendant (s): synthesis, characterization, crystal structures and magnetic properties. Dalton Transactions, 593-8.(f) Naiya, S., Drew, M.G., Estarellas, C., Frontera, A. and Ghosh, A. (2010). Hydrogen-bond assisted stabilization of the less favored conformation of a tridentate Schiff base ligand in dinuclear nickel (II) complex: An experimental and theoretical study. Inorganica Chimica Acta, 363, 3904-13.(g) Nanda, K.K., Thompson, L.K., Bridson, J.N. and Nag, K. (1994). Linear dependence of spin exchange coupling constant on bridge angle in phenoxy-bridged dinickel (II) complexes. Chemical Communications, 1337-8.(h) Nanda, K.K., Das, R., Thompson, L.K., Venkatsubramanian, K., Paul, P. and Nag, K. (1994). Magneto-structural correlations in macrocyclic dinickel (II) complexes: tuning of spin exchange by varying stereochemistry and auxiliary ligands. Inorganic Chemistry, 33, 1188-93.
  • [12] (a)Panja, A., Jana, N.C., Adak, S., Brandão, P., Dlháň, L., Titiš, J. and Boča, R. (2017). The structure and magnetism of mono-and di-nuclear Ni (ii) complexes derived from {N 3 O}-donor Schiff base ligands. New Journal of Chemistry, 41, 3143-53.(b) Romanović, M.Č., Čobeljić, B., Pevec, A., Turel, I., Spasojević, V., Tsaturyan, A.A., Shcherbakov, I.N., Anđelković, K.K., Milenković, M. and Radanović, D.D. (2017). Supplementary data for article: Romanović, MČ; Čobeljić, BR; Pevec, A.; Turel, I.; Spasojević, V.; Tsaturyan, AA; Shcherbakov, IN; Anđelković, KK; Milenković, M.; Radanović, D.; et al. Synthesis, Crystal Structure, Magnetic Properties and DFT Study of Dinuclear Ni (II) Complex with the Condensation Product of 2-Quinolinecarboxaldehyde and Girard’s T Reagent. Polyhedron 2017, 128, 30–37.
  • [13] Das, A., Bhattacharya, K., Giri, S. and Ghosh, A. (2017). Synthesis, crystal structure and magnetic properties of a dinuclear and a trinuclear Ni (II) complexes derived from tetradentate ONNO donor Mannich base ligands. Polyhedron, 134, 295-301. [14] Rühlig, K., Abylaikhan, A., Aliabadi, A., Kataev, V., Liebing, S., Schwalbe, S., Trepte, K., Ludt, C., Kortus, J. and Büchner, B. (2017). Ni II formate complexes with bi-and tridentate nitrogen-donor ligands: synthesis, characterization, and magnetic and thermal properties. Dalton Transactions, 46, 3963-79.
  • [15] Tarafder, M., Jin, K.T., Crouse, K.A., Ali, A., Yamin, B.M. and Fun, H.-K. (2002). Coordination chemistry and bioactivity of Ni2+, Cu2+, Cd2+ and Zn2+ complexes containing bidentate Schiff bases derived from S-benzyldithiocarbazate and the X-ray crystal structure of bis [S-benzyl-β-N-(5-methyl-2-furylmethylene) dithiocarbazato] cadmium (II). Polyhedron, 21, 2547-54.
  • [16] Hosseini-Yazdi, S.A., Mirzaahmadi, A., Khandar, A.A., Eigner, V., Dušek, M., Mahdavi, M., Soltani, S., Lotfipour, F. and White, J. (2017). Reactions of copper (II), nickel (II), and zinc (II) acetates with a new water-soluble 4-phenylthiosemicarbazone Schiff base ligand: Synthesis, characterization, unexpected cyclization, antimicrobial, antioxidant, and anticancer activities. Polyhedron, 124, 156-65.
  • [17] Qiao, X., Ma, Z.-Y., Xie, C.-Z., Xue, F., Zhang, Y.-W., Xu, J.-Y., Qiang, Z.-Y., Lou, J.-S., Chen, G.-J. and Yan, S.-P. (2011). Study on potential antitumor mechanism of a novel Schiff Base copper (II) complex: synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity. Journal of inorganic biochemistry, 105, 728-37.
  • [18] de Hoog, P., Louwerse, M.J., Gamez, P., Pitié, M., Baerends, E.J., Meunier, B. and Reedijk, J. (2008). Influence of the Copper Coordination Geometry on the DNA Cleavage Activity of Clip‐Phen Complexes Studied by DFT. European Journal of Inorganic Chemistry, 2008, 612-9.
  • [19] Roy, S., Maheswari, P.U., Lutz, M., Spek, A.L., den Dulk, H., Barends, S., van Wezel, G.P., Hartl, F. and Reedijk, J. (2009). DNA cleavage and antitumour activity of platinum (II) and copper (II) compounds derived from 4-methyl-2-N-(2-pyridylmethyl) aminophenol: spectroscopic, electrochemical and biological investigation. Dalton Transactions, 10846-60.
  • [20] Foresman, J.B. and Frisch, A. (1996). Exploring chemistry with electronic structure methods: a guide to using Gaussian.[21] Hay, P.J. and Wadt, W.R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of chemical physics, 82, 270-83.
  • [22] Hay, P.J. and Wadt, W.R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299-310.
  • [23] Wadt, W.R. and Hay, P.J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics, 82, 284-98.
  • [24] Becke, A.D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of chemical physics, 98, 5648-52.
  • [25] Lee, C., Yang, W. and Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37, 785.[26] Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B. and Petersson, G. (2009). Gaussian 09, revision a. 02, gaussian. Inc., Wallingford, CT, 200.[27] Dallakyan, S. (2008). PyRx-python prescription v. 0.8. The Scripps Research Institute, 2010.
  • [28] Biovia, D.S. (2017). Discovery studio visualizer. San Diego, CA, USA.
  • [29] Nwosu, M.O. and Okafor, J.I. (1995). Preliminary studies of the antifungal activities of some medicinal plants against Basidiobolus and some other pathogenic fungi: Vorläufige Studien zur antimyzetischen Aktivität einiger offizineller Pflanzen auf Basidiobolus und andere pathogene Pilze. Mycoses, 38, 191-5.
  • [30] Onaran, A. and Yılar, M. (2012). Antifungal activity of Trachystemon orientalis L. aqueous extracts against plant pathogens. Journal of Food, Agriculture & Environment, 10, 287-91.
  • [31] Pandey, D., Tripathi, N., Tripathi, R. and Dixit, S. (1982). Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens/Fungitoxische und phytotoxische Eigenschaften des ätherischen Öis von Hyptis suaveolens. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 344-9.
  • [32] Fukui, K. (1982). Role of frontier orbitals in chemical reactions. science, 218, 747-54.
  • [33] Buyukuslu, H., Akdogan, M., Yildirim, G. and Parlak, C. (2010). Ab initio Hartree-Fock and density functional theory study on characterization of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 1362-9.[34] Parr, R.G. and Pearson, R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105, 7512-6.
  • [35] Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. (1978). Electronegativity: the density functional viewpoint. The Journal of Chemical Physics, 68, 3801-7.
  • [36] Parr, R.G., Szentpály, L.v. and Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121, 1922-4.
  • [37] Bahron, H., Khaidir, S.S., Tajuddin, A.M., Ramasamy, K. and Yamin, B.M. (2019). Synthesis, characterization and anticancer activity of mono-and dinuclear Ni (II) and Co (II) complexes of a Schiff base derived from o-vanillin. Polyhedron, 161, 84-92.
  • [38] Fraser, C. and Bosnich, B. (1994). Bimetallic reactivity. Investigation of metal-metal interaction in complexes of a chiral macrocyclic binucleating ligand bearing 6-and 4-coordinate sites. Inorganic Chemistry, 33, 338-46.
  • [39] Meier, J. and Theakston, R. (1986). Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon, 24, 395-401.
  • [40] Chioma, F., Ekennia, A.C., Ibeji, C.U., Okafor, S.N., Onwudiwe, D.C., Osowole, A.A. and Ujam, O.T. (2018). Synthesis, characterization, antimicrobial activity and DFT studies of 2-(pyrimidin-2-ylamino) naphthalene-1, 4-dione and its Mn (II), Co (II), Ni (II) and Zn (II) complexes. Journal of Molecular Structure, 1163, 455-64.
  • [41] Er M., Ergüven B., Tahtaci H., Onaran A., Karakurt T. and Ece A. (2017). Synthesis, characterization, preliminary SAR and molecular docking study of some novel substituted imidazo [2, 1-b][1, 3, 4]thiadiazole derivatives as antifungal agents, Medicinal Chemistry Research, 26, 615-30.
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Tuncay Karakurt 0000-0001-6944-9883

Ayşen Alaman Ağar 0000-0002-1316-4835

Seher Meral This is me 0000-0002-6309-8936

Abdurrahman Onaran This is me 0000-0003-0665-8535

Publication Date March 23, 2020
Submission Date August 8, 2019
Acceptance Date January 7, 2020
Published in Issue Year 2020 Volume: 7 Issue: 100. Yıl Özel Sayı

Cite

APA Karakurt, T., Ağar, A. A., Meral, S., Onaran, A. (2020). Sentezlenen Yeni Ni (II) Komplekslerinin Spektroskopik ve antifungal özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(100. Yıl Özel Sayı), 198-216. https://doi.org/10.35193/bseufbd.603561