Research Article
BibTex RIS Cite

Effect of Energy Input on Microstructural and Tribological Properties of WC Composite Coatings Produced by Plasma Transfer Arc (PTA) Method

Year 2020, Volume: 7 Issue: 1, 251 - 264, 28.06.2020
https://doi.org/10.35193/bseufbd.702519

Abstract

In this study, surface modification with tungsten carbide (WC) powder was applied on 1.2842 cold work tool steel using 3 different energy inputs by plasma transfer arc (PTA) method. Energy inputs were performed with different current values and feed rates during the process. Microstructure properties of the samples were determined by optical microscope, SEM, EDS and XRD analysis. Friction and wear properties were determined with pin-disk wear test method according to ASTM-G99 standard. Worn surfaces were examined by SEM and EDS analysis and wear mechanisms were determined. Hard carbide structures such as WC, Fe3W3C and Fe7C3 were formed in the interdendritic regions of the modified samples. The size of the interdendritic regions changed with the effect of energy inputs. Since the low energy input did not fully decompose the WC powder, it produced less W content carbide in the interdendritic regions. As a result of experimental studies, 0.9 kJ / mm was determined as the optimum energy input. The hardness was increased approximately 5 times and the wear rate was reduced up to 7 times in WC coatings due to the formed hard carbide phases. The main wear mechanism of WC coatings was abrasive and oxidative wear.

References

  • Wang, J., Zhang, B., Yu, Y., Zhang, Z., Zhu, S., Lou, X., & Wang, Z. (2020). Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding. Surface and Coatings Technology, 384.
  • Yi, P., Liu, Y., Shi, Y., Jang, H., & Lun, G. (2011). Investigation on the process of laser surface melting using two sequential scans. The International Journal of Advanced Manufacturing Technology, 57, (1-4), 225-233.
  • Maleque, M. A., Ghazal, B. A., Ali, M. Y., Hayyan, M., & Ahmed, A. S. (2015). Wear Behaviour of TiC Coated AISI 4340 Steel Produced by TIG Surface Melting. Materials Science Forum, 819, 76-80.
  • Acevedo-Dávila, J. L., Muñoz-Arroyo, R., Hdz-García, H. M., Martinez-Enriquez, A. I., Alvarez-Vera, M., & Hernández-García, F. A. (2017). Cobalt-based PTA coatings, effects of addition of TiC nanoparticles. Vacuum, 143, 14-22.
  • Gür, A. K., Cengiz, M. H., Yıldız, T., & Taşkaya, S. (2018). Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30, (1), 233-242.
  • Dai, W., Miao, Y., Li, J., Zheng, Z., Zeng, D., & Huang, Q. (2016). Investigation on morphology and micro-hardness characteristic of composite coatings reinforced by PTA copper alloying on nodular cast iron. Journal of Alloys and Compounds, 689, 680-692.
  • Buytoz, S., Orhan, A., Gur, A. K., & Caligulu, U. (2013). Microstructural Development of Fe–Cr–C and B4C Powder Alloy Coating on Stainless Steel by Plasma-Transferred Arc Weld Surfacing. Arabian Journal for Science and Engineering, 38, (8), 2197-2204.
  • Liu, T., Chang, M., Cheng, X., Zeng, X., Shao, H., & Liu, F. (2020). Characteristics of WC reinforced Ni-based alloy coatings prepared by PTA + PMI method. Surface and Coatings Technology, 383,
  • Yang, J., Liu, F., Miao, X., & Yang, F. (2012). Influence of laser cladding process on the magnetic properties of WC–FeNiCr metal–matrix composite coatings. Journal of Materials Processing Technology, 212, (9), 1862-1868.
  • Yao, S. H. (2014). Tribological behaviour of NiCrBSi–WC(Co) coatings. Materials Research Innovations, 18, (sup2), S2-332-S2-337.
  • Chang, S.-H. & Chang, P.-Y. (2014). Investigation into the sintered behavior and properties of nanostructured WC–Co–Ni–Fe hard metal alloys. Materials Science and Engineering: A, 606, 150-156.
  • Kılıçay, K. (2017). Mikroalaşımlı 38MnVS6 çeliğine uygulanan farklı yüzey ve ısıl işlemlerin mekanik özelliklere etkilerinin araştırılması. Doktora Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Ulutan, M., Kiliçay, K., Çelik, O. N., & Er, Ü. (2016). Microstructure and wear behaviour of plasma transferred arc (PTA)-deposited FeCrC composite coatings on AISI 5115 steel. Journal of Materials Processing Technology, 236, 26-34.
  • Yuan, Y. & Li, Z. (2017). Microstructure and tribology behaviors of in-situ WC/Fe carbide coating fabricated by plasma transferred arc metallurgic reaction. Applied Surface Science, 423, 13-24.
  • Liyanage, T., Fisher, G., & Gerlich, A. P. (2012). Microstructures and abrasive wear performance of PTAW deposited Ni–WC overlays using different Ni-alloy chemistries. Wear, 274-275, 345-354.
  • Yuan, Y., Wu, H., You, M., Li, Z., & Zhang, Y. (2019). Improving wear resistance and friction stability of FeNi matrix coating by in-situ multi-carbide WC-TiC via PTA metallurgical reaction. Surface and Coatings Technology, 378,
  • Zhang, M., Li, M., Chi, J., Wang, S., Ren, L., Fang, M., & Zhou, C. (2019). Microstructure evolution, recrystallization and tribological behavior of TiC/WC composite ceramics coating. Vacuum, 166, 64-71.
  • Sundaramoorthy, R., Tong, S. X., Parekh, D., & Subramanian, C. (2017). Effect of matrix chemistry and WC types on the performance of Ni-WC based MMC overlays deposited by plasma transferred arc (PTA) welding. Wear, 376-377, 1720-1727.
  • Çelik, O. N. (2013). Microstructure and wear properties of WC particle reinforced composite coating on Ti6Al4V alloy produced by the plasma transferred arc method. Applied Surface Science, 274, 334-340.
  • Wei, Y., Wei, X.-s., Chen, B., Zuo, J.-y., Ma, T.-c., & Shen, J. (2018). Parameter optimization for tungsten carbide/Ni-based composite coating deposited by plasma transferred arc hardfacing. Transactions of Nonferrous Metals Society of China, 28, (12), 2511-2519.
  • Erkendirci, Ö. F. (2012). Effect of the Inclined Edge Notches on the Fatigue-Fracture Behavior of Soft Annealed and Quenched AISI O2 Tool Steel. Transactions of the Indian Institute of Metals, 65, (4), 399-404.
  • Gür, A. K. (2013). Investigating the Wear Behaviour of FeCrC/B4C Powder Alloys Coating Produced by Plasma Transferred Arc Weld Surfacing Using the Taguchi Method. Materials Testing, 55, (6), 462-467.
  • Hiroaki, O., Mark E., S., & Erik M., M. (1992). ASM Handbook Volume 3: Alloy Phase Diagrams. ASM International, 512.

Plazma Transferli Ark (PTA) Yöntemi ile Üretilen WC Kompozit Kaplamalarda Enerji Girdisinin Mikroyapısal ve Tribolojik Özelliklere Etkisi

Year 2020, Volume: 7 Issue: 1, 251 - 264, 28.06.2020
https://doi.org/10.35193/bseufbd.702519

Abstract

Bu çalışmada, plazma transferli ark (PTA) yöntemi ile 3 farklı enerji girdisi kullanılarak 1.2842 soğuk iş takım çeliği üzerinde tungsten karbür (WC) tozu ile yüzey modifikasyon işlemi uygulanmıştır. Enerji girdileri işlem sırasında farklı akım değerleri ve ilerleme hızları kullanılarak gerçekleştirilmiştir. Numunelerin mikroyapı özellikleri optik mikroskop, SEM, EDS ve XRD analizleri ile belirlenmiştir. Sürtünme ve aşınma özellikleri pim-disk aşınma test yöntemi kullanılarak ASTM-G99 standartlarına göre belirlenmiştir. Aşınan yüzeyler SEM ve EDS analizleri ile incelenerek aşınma mekanizmaları tespit edilmiştir. Yüzeyi alaşımlandırılmış numunelerin interdendritik bölgelerinde WC, Fe3W3C ve Fe7C3 gibi sert karbür yapıları oluşmuştur. Enerji girdilerinin etkisiyle interdendritik bölgelerin büyüklüğü değişmiştir. Düşük enerji girdisi WC tozunun tam olarak ayrışmasını sağlamadığı için interdendritik bölgelerde daha az W içerikli karbür oluşturmuştur. Deneysel çalışmalar sonucunda optimum enerji girdisi olarak 0.9 kJ/mm belirlenmiştir. WC kaplamalarda oluşan sert karbür fazlarının etkiyle sertlik yaklaşık 5 kat artmış ve aşınma oranı yaklaşık 7 kata kadar azalmıştır. WC kaplamaların ana aşınma mekanizması abrasif ve oksidatif aşınma olmuştur.

References

  • Wang, J., Zhang, B., Yu, Y., Zhang, Z., Zhu, S., Lou, X., & Wang, Z. (2020). Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding. Surface and Coatings Technology, 384.
  • Yi, P., Liu, Y., Shi, Y., Jang, H., & Lun, G. (2011). Investigation on the process of laser surface melting using two sequential scans. The International Journal of Advanced Manufacturing Technology, 57, (1-4), 225-233.
  • Maleque, M. A., Ghazal, B. A., Ali, M. Y., Hayyan, M., & Ahmed, A. S. (2015). Wear Behaviour of TiC Coated AISI 4340 Steel Produced by TIG Surface Melting. Materials Science Forum, 819, 76-80.
  • Acevedo-Dávila, J. L., Muñoz-Arroyo, R., Hdz-García, H. M., Martinez-Enriquez, A. I., Alvarez-Vera, M., & Hernández-García, F. A. (2017). Cobalt-based PTA coatings, effects of addition of TiC nanoparticles. Vacuum, 143, 14-22.
  • Gür, A. K., Cengiz, M. H., Yıldız, T., & Taşkaya, S. (2018). Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30, (1), 233-242.
  • Dai, W., Miao, Y., Li, J., Zheng, Z., Zeng, D., & Huang, Q. (2016). Investigation on morphology and micro-hardness characteristic of composite coatings reinforced by PTA copper alloying on nodular cast iron. Journal of Alloys and Compounds, 689, 680-692.
  • Buytoz, S., Orhan, A., Gur, A. K., & Caligulu, U. (2013). Microstructural Development of Fe–Cr–C and B4C Powder Alloy Coating on Stainless Steel by Plasma-Transferred Arc Weld Surfacing. Arabian Journal for Science and Engineering, 38, (8), 2197-2204.
  • Liu, T., Chang, M., Cheng, X., Zeng, X., Shao, H., & Liu, F. (2020). Characteristics of WC reinforced Ni-based alloy coatings prepared by PTA + PMI method. Surface and Coatings Technology, 383,
  • Yang, J., Liu, F., Miao, X., & Yang, F. (2012). Influence of laser cladding process on the magnetic properties of WC–FeNiCr metal–matrix composite coatings. Journal of Materials Processing Technology, 212, (9), 1862-1868.
  • Yao, S. H. (2014). Tribological behaviour of NiCrBSi–WC(Co) coatings. Materials Research Innovations, 18, (sup2), S2-332-S2-337.
  • Chang, S.-H. & Chang, P.-Y. (2014). Investigation into the sintered behavior and properties of nanostructured WC–Co–Ni–Fe hard metal alloys. Materials Science and Engineering: A, 606, 150-156.
  • Kılıçay, K. (2017). Mikroalaşımlı 38MnVS6 çeliğine uygulanan farklı yüzey ve ısıl işlemlerin mekanik özelliklere etkilerinin araştırılması. Doktora Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Ulutan, M., Kiliçay, K., Çelik, O. N., & Er, Ü. (2016). Microstructure and wear behaviour of plasma transferred arc (PTA)-deposited FeCrC composite coatings on AISI 5115 steel. Journal of Materials Processing Technology, 236, 26-34.
  • Yuan, Y. & Li, Z. (2017). Microstructure and tribology behaviors of in-situ WC/Fe carbide coating fabricated by plasma transferred arc metallurgic reaction. Applied Surface Science, 423, 13-24.
  • Liyanage, T., Fisher, G., & Gerlich, A. P. (2012). Microstructures and abrasive wear performance of PTAW deposited Ni–WC overlays using different Ni-alloy chemistries. Wear, 274-275, 345-354.
  • Yuan, Y., Wu, H., You, M., Li, Z., & Zhang, Y. (2019). Improving wear resistance and friction stability of FeNi matrix coating by in-situ multi-carbide WC-TiC via PTA metallurgical reaction. Surface and Coatings Technology, 378,
  • Zhang, M., Li, M., Chi, J., Wang, S., Ren, L., Fang, M., & Zhou, C. (2019). Microstructure evolution, recrystallization and tribological behavior of TiC/WC composite ceramics coating. Vacuum, 166, 64-71.
  • Sundaramoorthy, R., Tong, S. X., Parekh, D., & Subramanian, C. (2017). Effect of matrix chemistry and WC types on the performance of Ni-WC based MMC overlays deposited by plasma transferred arc (PTA) welding. Wear, 376-377, 1720-1727.
  • Çelik, O. N. (2013). Microstructure and wear properties of WC particle reinforced composite coating on Ti6Al4V alloy produced by the plasma transferred arc method. Applied Surface Science, 274, 334-340.
  • Wei, Y., Wei, X.-s., Chen, B., Zuo, J.-y., Ma, T.-c., & Shen, J. (2018). Parameter optimization for tungsten carbide/Ni-based composite coating deposited by plasma transferred arc hardfacing. Transactions of Nonferrous Metals Society of China, 28, (12), 2511-2519.
  • Erkendirci, Ö. F. (2012). Effect of the Inclined Edge Notches on the Fatigue-Fracture Behavior of Soft Annealed and Quenched AISI O2 Tool Steel. Transactions of the Indian Institute of Metals, 65, (4), 399-404.
  • Gür, A. K. (2013). Investigating the Wear Behaviour of FeCrC/B4C Powder Alloys Coating Produced by Plasma Transferred Arc Weld Surfacing Using the Taguchi Method. Materials Testing, 55, (6), 462-467.
  • Hiroaki, O., Mark E., S., & Erik M., M. (1992). ASM Handbook Volume 3: Alloy Phase Diagrams. ASM International, 512.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Koray Kılıçay 0000-0003-2025-4991

Publication Date June 28, 2020
Submission Date March 13, 2020
Acceptance Date May 24, 2020
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

APA Kılıçay, K. (2020). Plazma Transferli Ark (PTA) Yöntemi ile Üretilen WC Kompozit Kaplamalarda Enerji Girdisinin Mikroyapısal ve Tribolojik Özelliklere Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 251-264. https://doi.org/10.35193/bseufbd.702519