Research Article
BibTex RIS Cite

Vatoz (Dasyatis pastinaca) Balığı Kas Dokusunun Enzimatik Hidrolizi ve Hidrolizatların Antioksidan ve Bakır Şelatlama Aktivitelerinin Değerlendirilmesi

Year 2020, Volume: 7 Issue: 2, 680 - 687, 30.12.2020
https://doi.org/10.35193/bseufbd.665435

Abstract

Biyoaktif peptidler canlıların vücut fonksiyonlarına ve sağlığına olumlu etkileri bulunan spesifik protein fragmentleri olup bitkisel, hayvansal, fungal, bakteriyel ve venom kaynaklı olabilmektedir. Farklı protein kaynaklarından keşfedilen biyoaktif peptidlerin çoğu, antihipertansiyon, antioksidan, antitrombotik, antimikrobiyal ve antikanser immünomodülasyon gibi çeşitli biyolojik özellikler göstermiştir. Bu çalışmanın amacı, vatoz (Dasyatis pastinaca) kas dokusu protein hidrolizatının biyolojik aktivitelerinin değerlendirilmesidir. Bu nedenle, vatozun homojenize kas dokusu, esperaz ve tripsin enzimleri tarafından hidrolize edildi. Enzim/substrat oranı, hidroliz süresi ve derecesi optimize edilerek hidrolizatların antioksidan (CUPRAC yöntemi) ve metal şelatlama (bakır şelatlama) aktiviteleri değerlendirildi.

References

  • Sánchez, A.,& Vázquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, Volume 1, Issue 1, 1 March 2017, 1(1):29–46
  • Bhat, Z.F., Kumar, S., & Bhat, H.F. (2015). Bioactive peptides of animal origin: a review. J Food Sci Technol, 52(9):5377–5392
  • Aneiros, A., & Garateix, A. (2004). Bioactive peptides from marine sources: pharmacological properties and isolation procedures. Journal of Chromatography B, 803 41–53
  • Anjum, K., Abbas, S.Q., Akhter, N., Shagufta, B.I., Shah, S.A.A., & Hassan, S.S.U. (2017).Emerging biopharmaceuticals from bioactive peptides derived from marine organisms.Chem Biol Drug Des. 90(1):12-30
  • Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135:3020–3038
  • Yeldan, H., Avsar, D., & Manaşırlı, M. (2009). Age, growth and feeding of the common stingray (Dasyatis pastinaca, L., 1758) in the Cilician coastal basin, northeastern Mediterranean Sea. J. Appl. Ichthyol., 25:98–102
  • Chai, T.T., Tong, S.R., Law, Y.C., Ismail, N.I.M., Manan, F.A., & Wong, F.C. (2015). Anti-oxidative, metal chelating and radical scavenging effects of protein hydrolysates from blue-spotted stingray. Trop J Pharm Res, 14(8):1349–1355
  • Pan, X. Y., Wang, Y. M., Li, L., Chi, C. F., & Wang, B. (2019). Four Antioxidant Peptides from Protein Hydrolysate of Red Stingray (Dasyatis akajei) Cartilages: Isolation, Identification, and In Vitro Activity Evaluation. Marine drugs, 17(5):263
  • Conceição, K., Konno, K., Melo, R.L., Marques, E.E., Hiruma-Lima, C.A., Lima, C., Richardson, M., Pimenta, D.C., & Lopes-Ferreira, M. (2006).Orpotrin: A novel vasoconstrictor peptide from the venom of the Brazilian Stingray Potamotrygon gr. orbignyi. Peptides, 27(12):3039-3046
  • Wong, F.C., Xiao, J., Ong, M.G., Pang, M.J., Wong, S.J., Teh, L.K., & Chai, T.T. (2019). Identification and characterization of antioxidant peptides from hydrolysate of blue-spotted stingray and their stability against thermal, pH and simulated gastrointestinal digestion treatments. Food Chemistry,271: 614-622
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem, 72:248-254
  • Cupp-Enyard, C. (2008). Sigma's non-specific protease activity assay:casein as a substrate. J. Vis. Exp, 19-e899
  • Erlanger, B.F., Kokowsky, N., & Cohen, W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys, 95(2):271-278
  • Zambrowicz, A., Eckert, E., Pokora, M., Dąbrowska, A., Szołtysik, M., Bobak, Ł., Trziszka, T., & Chrzanowska, J. (2015). Biological activity of egg-yolk protein by-product hydrolysates obtained with the use of non-commercial plant protease. Italian Journal of Food Science, 27.4:450-458
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S.E. (2004). Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem., 52:7970−7981
  • Nakamura‐Takada, Y., Shata, H., Minao, M., Ogawa, H., Sekiguchi, N., Murata, M., & Homma, S. (1994). Isolation of a zinc‐chelating compound from instant coffee by the tetramethyl murexide method. Lebensm Wiss Technol, 27:115–118
  • Yeldan, H., Avsar, D. & Manaşırlı, M. (2009). Age, growth and feeding of the common stingray (Dasyatis pastinaca, L., 1758) in the Cilician coastal basin, northeastern Mediterranean Sea. Journal of Applied Ichthyology, 25: 98-102
  • Sarmadi, B.H.& Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10):1949-1956
  • Wong, F., Xiao, J., G-Ling Ong, M, Pang, M., Wong, S., Teh, L., & Chai, T. (2019) Identification and characterization of antioxidant peptides from hydrolysate of blue-spotted stingray and their stability against thermal, pH and simulated gastrointestinal digestion treatments. Food Chemistry, 271:614-622
  • Zhu, L., Chen, J., Tang, X., & Xiong, Y.L. (2008). Reducing, Radical Scavenging, and Chelation Properties of in Vitro Digests of Alcalase-Treated Zein Hydrolysate. Journal of Agricultural and Food Chemistry 2008 56 (8), 2714-2721

Enzymatic Hydrolysis of Stingray (Dasyatis pastinaca) Muscle and Evaluation of Antioxidant and Copper Chelating Activities of the Hydrolysates

Year 2020, Volume: 7 Issue: 2, 680 - 687, 30.12.2020
https://doi.org/10.35193/bseufbd.665435

Abstract

Bioactive peptides that originate from different sources, such as plant, animal, fungi, bacteria, and venom, are specific protein fragments that have positive effects on the body functions and health of living organisms. Most of the discovered bioactive peptides from different protein sources showed various biological features, such as antihypertension, antioxidant, antithrombotic, antimicrobial, and anticancer immunomodulation. The aim of this study is the evaluation of biological activities of stingray (Dasyatis pastinaca) muscle tissue protein hydrolysate. Therefore, the homogenized muscle tissue of stingray was hydrolyzed by esperase and trypsin enzymes. Enzyme/substrate ratio, hydrolysis time, and degree were optimized. Moreover, the antioxidant (CUPRAC method) and metal chelating (copper chelating) activities of the hydrolysates were evaluated.

References

  • Sánchez, A.,& Vázquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, Volume 1, Issue 1, 1 March 2017, 1(1):29–46
  • Bhat, Z.F., Kumar, S., & Bhat, H.F. (2015). Bioactive peptides of animal origin: a review. J Food Sci Technol, 52(9):5377–5392
  • Aneiros, A., & Garateix, A. (2004). Bioactive peptides from marine sources: pharmacological properties and isolation procedures. Journal of Chromatography B, 803 41–53
  • Anjum, K., Abbas, S.Q., Akhter, N., Shagufta, B.I., Shah, S.A.A., & Hassan, S.S.U. (2017).Emerging biopharmaceuticals from bioactive peptides derived from marine organisms.Chem Biol Drug Des. 90(1):12-30
  • Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135:3020–3038
  • Yeldan, H., Avsar, D., & Manaşırlı, M. (2009). Age, growth and feeding of the common stingray (Dasyatis pastinaca, L., 1758) in the Cilician coastal basin, northeastern Mediterranean Sea. J. Appl. Ichthyol., 25:98–102
  • Chai, T.T., Tong, S.R., Law, Y.C., Ismail, N.I.M., Manan, F.A., & Wong, F.C. (2015). Anti-oxidative, metal chelating and radical scavenging effects of protein hydrolysates from blue-spotted stingray. Trop J Pharm Res, 14(8):1349–1355
  • Pan, X. Y., Wang, Y. M., Li, L., Chi, C. F., & Wang, B. (2019). Four Antioxidant Peptides from Protein Hydrolysate of Red Stingray (Dasyatis akajei) Cartilages: Isolation, Identification, and In Vitro Activity Evaluation. Marine drugs, 17(5):263
  • Conceição, K., Konno, K., Melo, R.L., Marques, E.E., Hiruma-Lima, C.A., Lima, C., Richardson, M., Pimenta, D.C., & Lopes-Ferreira, M. (2006).Orpotrin: A novel vasoconstrictor peptide from the venom of the Brazilian Stingray Potamotrygon gr. orbignyi. Peptides, 27(12):3039-3046
  • Wong, F.C., Xiao, J., Ong, M.G., Pang, M.J., Wong, S.J., Teh, L.K., & Chai, T.T. (2019). Identification and characterization of antioxidant peptides from hydrolysate of blue-spotted stingray and their stability against thermal, pH and simulated gastrointestinal digestion treatments. Food Chemistry,271: 614-622
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem, 72:248-254
  • Cupp-Enyard, C. (2008). Sigma's non-specific protease activity assay:casein as a substrate. J. Vis. Exp, 19-e899
  • Erlanger, B.F., Kokowsky, N., & Cohen, W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys, 95(2):271-278
  • Zambrowicz, A., Eckert, E., Pokora, M., Dąbrowska, A., Szołtysik, M., Bobak, Ł., Trziszka, T., & Chrzanowska, J. (2015). Biological activity of egg-yolk protein by-product hydrolysates obtained with the use of non-commercial plant protease. Italian Journal of Food Science, 27.4:450-458
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S.E. (2004). Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem., 52:7970−7981
  • Nakamura‐Takada, Y., Shata, H., Minao, M., Ogawa, H., Sekiguchi, N., Murata, M., & Homma, S. (1994). Isolation of a zinc‐chelating compound from instant coffee by the tetramethyl murexide method. Lebensm Wiss Technol, 27:115–118
  • Yeldan, H., Avsar, D. & Manaşırlı, M. (2009). Age, growth and feeding of the common stingray (Dasyatis pastinaca, L., 1758) in the Cilician coastal basin, northeastern Mediterranean Sea. Journal of Applied Ichthyology, 25: 98-102
  • Sarmadi, B.H.& Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10):1949-1956
  • Wong, F., Xiao, J., G-Ling Ong, M, Pang, M., Wong, S., Teh, L., & Chai, T. (2019) Identification and characterization of antioxidant peptides from hydrolysate of blue-spotted stingray and their stability against thermal, pH and simulated gastrointestinal digestion treatments. Food Chemistry, 271:614-622
  • Zhu, L., Chen, J., Tang, X., & Xiong, Y.L. (2008). Reducing, Radical Scavenging, and Chelation Properties of in Vitro Digests of Alcalase-Treated Zein Hydrolysate. Journal of Agricultural and Food Chemistry 2008 56 (8), 2714-2721
There are 20 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ebru Kocadağ Kocazorbaz 0000-0001-5611-5235

Meliha Kanatsızoğlu 0000-0001-9547-5444

Hanife Ttuğçe Çeker 0000-0001-8874-2241

Esra Menfaatli 0000-0002-2370-6415

Publication Date December 30, 2020
Submission Date December 26, 2019
Acceptance Date June 18, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

APA Kocadağ Kocazorbaz, E., Kanatsızoğlu, M., Çeker, H. T., Menfaatli, E. (2020). Enzymatic Hydrolysis of Stingray (Dasyatis pastinaca) Muscle and Evaluation of Antioxidant and Copper Chelating Activities of the Hydrolysates. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(2), 680-687. https://doi.org/10.35193/bseufbd.665435