Research Article
BibTex RIS Cite

Use of Copper and Graphite Cathode Electrodes in the Sediment Microbial Fuel Cells

Year 2020, Volume: 7 Issue: 2, 942 - 951, 30.12.2020
https://doi.org/10.35193/bseufbd.722371

Abstract

The microbial fuel cell is bio-electrochemical devices electrical energy generates through organic materials catalyzed by microorganisms. One of the materials with high organic material content is sediment. In the microbial fuel cells, sediment-based microbial fuel cells were manufactured using sediment as an organic material source. New electrodes are being explored to increase the low power density, one of the problems of sediment-based microbial fuel cells. In this study, the sediment material with the same properties taken from the same medium was placed in two separate plastic boxes with the same properties in equal amounts. In one of the boxes, graphite anode and graphite cathode electrodes were placed and called G-G MYH. Graphite anode and copper cathode electrodes were placed in the other box and were called G-Cu MYH. The aim here is to detect the differences of graphite and copper cathode electrodes and increase the power density of sediment-based microbial fuel cells. According to the results of the experiments, the highest power densities provided by G-Cu MYH and G-G MYH were measured as 455.5 mW/m2 and 143 mW/m2, respectively. It was understood that the use of copper cathode material instead of graphite cathode material for sediment based microbial fuel cells is a more correct strategy.

References

  • Mohamed, S. N., Hiraman, P. A., Muthukumar, K., Jayabalan, T. (2020). Bioelectricity production from kitchen wastewater using microbial fuel cell with photosynthetic algal cathode. Bioresource Technology, 295, 122226, 1-7.
  • Çek, N. (2016). Parçacıklar ve Enerji Kaynakları. 1. Baskı, Lambert Academic Publishing, Saarbrucken, 338.
  • Çek, N. (2017). Examination of Zinc Electrode Performance in Microbial Fuel Cells. Gazi University Journal of Science, 30(4), 395-402.
  • Erensoy, A., Çek, N. (2018). Alternative Biofuel Materials for Microbial Fuel Cells from Poplar Wood. ChemistrySelect, 3, 1251-11257.
  • Çek, N., Erensoy, A. (2019). Kompost Mikrobiyal Yakıt Hücreleri İçin Titanyum Elektrot Performansının İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 17, 909-915.
  • Pushkar, P., Mungray, A. K. (2020). Exploring the use of 3 dimensional low-cost sugar-urea carbon foam electrode in the benthic microbial fuel cell. Renewable Energy, 147(1), 2032-2042.
  • Taşkan, E. (2016). Sediment Tipi Mikrobiyal Yakıt Hücresi Kullanılarak Arıtma Çamurlarından Elektrik Üretimi. Fırat Üniv. Müh. Bil. Dergisi, 28 (1), 15-21.
  • Taşkan, B., Taşkan, E., Hasar, H. (2020). Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti–TiO2 electrode. Environmental Progress & Sustainable Energy, 1-8.
  • Wang, C., Jiang, H. (2019). Real-time monitoring of sediment bulking through a multi-anode sediment microbial fuel cell as reliable biosensor. Science of The Total Environment, 697, 134009, 1-8.
  • Ficket, F. R. (1982). Electrical Properties of Materials and Their Measurement at Low Temperatures. U.S. Government Printing Office, Washington, 76.
  • Sharma, I., Ghangrekar, M. M. (2018). Evaluating the suitability of tungsten, titanium and stainless steel wires as current collectors in microbial fuel cells. Water Science & Technology, 77 (4), 999-1006.
  • Sudirjo, E. (2020). Plant Microbial Fuel Cell in Paddy Field: a power source for rural area. Doctoral Thesis, Wageningen University, Graduate School for Socio-Economic and Natural Sciences of the Environmental, Wageningen.
  • Maslennikova, A. V. (2020). Development and application of an electrical conductivity transfer function, using diatoms from lakes in the Urals, Russia. Journal of Paleolimnology, 63, 129-146.
  • Yusuf, Y. O., Iguisi E., O., Falade, A. M. (2012). Fluxes in Suspended Sediment Concentration and Total Dissolved Solids Upstream of the Galma Dam, Zaria, Nigeria. In book: Ecological Water Quality-Water Treatment and Reuse, IntechOpen, 439-454.
  • Rogowski, D. (2000). Saltwater Intrusion in Salmon Bay and Lake Union Sediments. Washington State Department of Ecology Report, Publication No. 00-03-032, p. 23.
  • Wakeham, S. G., Canuel, E. A. (2016). The nature of organic carbon in density-fractionated sediments in the Sacramento-San Joaquin River Delta (California). Biogeosciences, 13, 567-582.
  • Rajib, M., Parveen, M., Oguchi, C. T. (2019). A rapid technique for measuring oxidation-reduction potential for solid materials. Journal of Science, Technology&Environment Informatics, 7 (01), 510-516.
  • Vongvichiankul, C., Deebao, J., Khongnakorn, W. (2017). Relationship between pH, Oxidation Reduction Potential (ORP) and Biogas Production in Mesophilic Screw Anaerobic Digester. Energy Procedia, 138, 877-882.
  • Rusnak, J. M., Smith, L. A. (2014). Botulinum Neurotoxins from Clostridium botulinum. In book: Manual of Security Sensitive Microbes and Toxins, CRC Press, New York, 451-466.
  • Soyergin, S. (2003). Organik Tarımda Toprak Verimliliğinin Korunması, Gübreler ve Organik Toprak İyileştiricileri. Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, Yalova, http://www.selcuk.edu.tr/dosyalar/files/068/Org_%20Tar_%20Top_%20Veriml_%20Kor_ve%20Gübreler%20Doç_%20Dr_Serap%20S(2).pdf
  • Alataş, Z., Güner, A. (2018). Clostridium difficile: Yeni Bir Gıda Patojeni mi? Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 13 (3), 389-396.
  • Erensoy, A., Çek, N. (2020). Mikrobiyal Yakıt Hücrelerinde Kullanılan Saf Kültür Mikroorganizmaları ve Genel Özellikleri. Avrupa Bilim ve Teknoloji Dergisi, 18, 109-117.
  • Pareek, A., Sravan, J.S., Mohan, S.V. (2019). Exploring chemically reduced graphene oxide electrode for power generation in microbial fuel cell. Materials Science for Energy Technologies, 2(3), 600-606.
  • Chen, S., Patil, S. A., Brown, R. K., Schröder, U. (2019). Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation. Applied Energy, 233-234, 15-28.
  • Jiang, M., Xu, T., Chen, S. (2020). A mechanical rechargeable small-size microbial fuel cell with long-term and stable power output. Applied Energy, 260, 114336, 1-7.
  • Çek, N. (2016). Parçacıklar ve Parçacıkların Enerji Kaynakları Üzerinde Etkileri. Avrupa Bilim ve Teknoloji Dergisi, 4 (7), 1-8.

Sediment Mikrobiyal Yakıt Hücrelerinde Bakır ve Grafit Katot Elektrotların Kullanımı

Year 2020, Volume: 7 Issue: 2, 942 - 951, 30.12.2020
https://doi.org/10.35193/bseufbd.722371

Abstract

Mikrobiyal yakıt hücresi, elektrik enerjisinin mikroorganizmalar tarafından katalize edilen organik maddeler yoluyla üretildiği biyo-elektrokimyasal cihazlardır. Organik madde içeriği yüksek olan malzemelerden biri sedimenttir. Mikrobiyal yakıt hücrelerinde, organik malzeme kaynağı olarak sediment kullanılarak sediment esaslı mikrobiyal yakıt hücreleri imal edildi. Sediment esaslı mikrobiyal yakıt hücrelerinin sorunlarından biri olan düşük güç yoğunluğunu artırmak için yeni elektrotlar araştırılmaktadır. Bu çalışmada, aynı ortamdan alınan aynı özelliklere sahip sediment malzeme, eşit miktarlarda, aynı özelliklere sahip iki ayrı plastik kutuya yerleştirildi. Kutuların birine grafit anot ve grafit katot elektrotlar yerleştirildi ve G-G MYH olarak adlandırıldı. Diğer kutuya grafit anot ve bakır katot elektrotlar yerleştirildi ve G-Cu MYH olarak adlandırıldı. Burada amaç, grafit ile bakır katot elektrotların farklarını tespit etmek ve sediment esaslı mikrobiyal yakıt hücrelerinin güç yoğunluğunu arttırmaktır. Deneylerin sonucuna göre, G-Cu MYH ve G-G MYH’nin sağladıkları en yüksek güç yoğunlukları sırasıyla, 455.5 mW/m2 ve 143 mW/m2 olarak ölçüldü. Sediment esaslı mikrobiyal yakıt hücreleri için grafit katot malzemesi yerine bakır katot malzemesinin kullanımının daha doğru bir strateji olduğu anlaşılmıştır.

References

  • Mohamed, S. N., Hiraman, P. A., Muthukumar, K., Jayabalan, T. (2020). Bioelectricity production from kitchen wastewater using microbial fuel cell with photosynthetic algal cathode. Bioresource Technology, 295, 122226, 1-7.
  • Çek, N. (2016). Parçacıklar ve Enerji Kaynakları. 1. Baskı, Lambert Academic Publishing, Saarbrucken, 338.
  • Çek, N. (2017). Examination of Zinc Electrode Performance in Microbial Fuel Cells. Gazi University Journal of Science, 30(4), 395-402.
  • Erensoy, A., Çek, N. (2018). Alternative Biofuel Materials for Microbial Fuel Cells from Poplar Wood. ChemistrySelect, 3, 1251-11257.
  • Çek, N., Erensoy, A. (2019). Kompost Mikrobiyal Yakıt Hücreleri İçin Titanyum Elektrot Performansının İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 17, 909-915.
  • Pushkar, P., Mungray, A. K. (2020). Exploring the use of 3 dimensional low-cost sugar-urea carbon foam electrode in the benthic microbial fuel cell. Renewable Energy, 147(1), 2032-2042.
  • Taşkan, E. (2016). Sediment Tipi Mikrobiyal Yakıt Hücresi Kullanılarak Arıtma Çamurlarından Elektrik Üretimi. Fırat Üniv. Müh. Bil. Dergisi, 28 (1), 15-21.
  • Taşkan, B., Taşkan, E., Hasar, H. (2020). Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti–TiO2 electrode. Environmental Progress & Sustainable Energy, 1-8.
  • Wang, C., Jiang, H. (2019). Real-time monitoring of sediment bulking through a multi-anode sediment microbial fuel cell as reliable biosensor. Science of The Total Environment, 697, 134009, 1-8.
  • Ficket, F. R. (1982). Electrical Properties of Materials and Their Measurement at Low Temperatures. U.S. Government Printing Office, Washington, 76.
  • Sharma, I., Ghangrekar, M. M. (2018). Evaluating the suitability of tungsten, titanium and stainless steel wires as current collectors in microbial fuel cells. Water Science & Technology, 77 (4), 999-1006.
  • Sudirjo, E. (2020). Plant Microbial Fuel Cell in Paddy Field: a power source for rural area. Doctoral Thesis, Wageningen University, Graduate School for Socio-Economic and Natural Sciences of the Environmental, Wageningen.
  • Maslennikova, A. V. (2020). Development and application of an electrical conductivity transfer function, using diatoms from lakes in the Urals, Russia. Journal of Paleolimnology, 63, 129-146.
  • Yusuf, Y. O., Iguisi E., O., Falade, A. M. (2012). Fluxes in Suspended Sediment Concentration and Total Dissolved Solids Upstream of the Galma Dam, Zaria, Nigeria. In book: Ecological Water Quality-Water Treatment and Reuse, IntechOpen, 439-454.
  • Rogowski, D. (2000). Saltwater Intrusion in Salmon Bay and Lake Union Sediments. Washington State Department of Ecology Report, Publication No. 00-03-032, p. 23.
  • Wakeham, S. G., Canuel, E. A. (2016). The nature of organic carbon in density-fractionated sediments in the Sacramento-San Joaquin River Delta (California). Biogeosciences, 13, 567-582.
  • Rajib, M., Parveen, M., Oguchi, C. T. (2019). A rapid technique for measuring oxidation-reduction potential for solid materials. Journal of Science, Technology&Environment Informatics, 7 (01), 510-516.
  • Vongvichiankul, C., Deebao, J., Khongnakorn, W. (2017). Relationship between pH, Oxidation Reduction Potential (ORP) and Biogas Production in Mesophilic Screw Anaerobic Digester. Energy Procedia, 138, 877-882.
  • Rusnak, J. M., Smith, L. A. (2014). Botulinum Neurotoxins from Clostridium botulinum. In book: Manual of Security Sensitive Microbes and Toxins, CRC Press, New York, 451-466.
  • Soyergin, S. (2003). Organik Tarımda Toprak Verimliliğinin Korunması, Gübreler ve Organik Toprak İyileştiricileri. Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, Yalova, http://www.selcuk.edu.tr/dosyalar/files/068/Org_%20Tar_%20Top_%20Veriml_%20Kor_ve%20Gübreler%20Doç_%20Dr_Serap%20S(2).pdf
  • Alataş, Z., Güner, A. (2018). Clostridium difficile: Yeni Bir Gıda Patojeni mi? Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 13 (3), 389-396.
  • Erensoy, A., Çek, N. (2020). Mikrobiyal Yakıt Hücrelerinde Kullanılan Saf Kültür Mikroorganizmaları ve Genel Özellikleri. Avrupa Bilim ve Teknoloji Dergisi, 18, 109-117.
  • Pareek, A., Sravan, J.S., Mohan, S.V. (2019). Exploring chemically reduced graphene oxide electrode for power generation in microbial fuel cell. Materials Science for Energy Technologies, 2(3), 600-606.
  • Chen, S., Patil, S. A., Brown, R. K., Schröder, U. (2019). Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation. Applied Energy, 233-234, 15-28.
  • Jiang, M., Xu, T., Chen, S. (2020). A mechanical rechargeable small-size microbial fuel cell with long-term and stable power output. Applied Energy, 260, 114336, 1-7.
  • Çek, N. (2016). Parçacıklar ve Parçacıkların Enerji Kaynakları Üzerinde Etkileri. Avrupa Bilim ve Teknoloji Dergisi, 4 (7), 1-8.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Namık Ak 0000-0001-9119-1567

Ayhan Orhan 0000-0002-7648-2566

Ahmet Erensoy 0000-0001-6300-1105

Nurettin Çek 0000-0001-6120-9228

Publication Date December 30, 2020
Submission Date April 18, 2020
Acceptance Date July 1, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

APA Ak, N., Orhan, A., Erensoy, A., Çek, N. (2020). Sediment Mikrobiyal Yakıt Hücrelerinde Bakır ve Grafit Katot Elektrotların Kullanımı. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(2), 942-951. https://doi.org/10.35193/bseufbd.722371