Research Article
BibTex RIS Cite

Assessing the Environmental Sustainability of Glass Packaging

Year 2020, Volume: 7 Issue: 2, 1026 - 1037, 30.12.2020
https://doi.org/10.35193/bseufbd.734599

Abstract

With the increasing importance of the sustainability approach, the rapidly developing packaging sector has become an important factor for increasing the sustainability of the production sector. Today, the environmental sustainability of the packaging industry is not fully known. Therefore, this study aims to estimate the life cycle environmental impacts of glass packaging used in the beverage industry. Within the scope of the study, environmental impacts from plant construction and installation, raw material extraction and processing, transportation, production, and waste management stages were evaluated for glass packaging used in the beverage industry. Life cycle analysis has been applied according to the international standards ISO 14040 and ISO 14044. The CML 2001 method has been selected to estimate the eleven environmental impacts. The total GWP is estimated at 1.2 kg CO2 equivalent per kg glass bottle. The production stage is the major contributor, accounting for 84% of the total GWP followed by raw materials extraction and processing (7%), transportation (5%), plant installation (3%) and waste management (1%). The results show that the life-cycle step with the most environmental impact is the glass production step (4.6% ADP-89.0% MAETP) due to the high energy consumption. As a result of the environmental sustainability assessment, improvements in energy and raw material inputs are required to reduce emissions from the production step.

References

  • Üçüncü, M., Gıdaların Ambalajlanması. 2000, İzmir: Ege Üniversitesi Basımevi.
  • Bansal, N.P. and R.H. Doremus, Handbook of Glass Properties. 2013: Elsevier.
  • PAGEV, Türkiye Plastik Ambalaj Malzemeleri Sektör Raporu, Türk Plastik Sanayicileri Araştırma, Geliştirme ve Eğitim Vakfı, 2016.
  • Scalet, B.M et. all, Best Available Techniques (BAT)Reference Document for the Manufacture of Glass, Industrial Emissions Directive 2010/75/EU, JRC Reference Report; European Union. 2013, Luxembourg.
  • Simon, B., M.B. Amor, and R. Földényi, Life cycle impact assessment of beverage packaging systems: Focus on the collection of post-consumer bottles. Journal of Cleaner Production, 2016. 112 (Part 1): p. 238-248.
  • UNILEVER, Sustainable Packaging? 2009, The Netherlands.
  • Bettens, F. and R. Bagard, Life Cycle Assessment of Container Glass in Europe. European Container Glass Federation, 2016.
  • Cattaneo, J.J., Environmental Overview. Complete Life Cycle Assessment of North American Container Glass, 2010.
  • Doublet, G., LCA of Rivella and Michel soft drinks packaging. Institute of Environmental Engineering (IFU), Chair of Ecological System Design (ESD). 2012, Zürich.
  • Yay, A.S.E., Yaşam döngüsü analizinin ambalaj atıklarının yönetiminde kullanılması. Sakarya University Journal of Science, 2017. 21(5): p. 1008-1017.
  • Falkenstein, E.v., F. Wellenreuther, and A. Detzel, LCA studies comparing beverage cartons and alternative packaging: Can overall conclusions be drawn? The International Journal of Life Cycle Assessment, 2010. 15(9): p. 938-945.
  • Özgen, C., Sürdürülebilirlik Kavramının Firma Stratejisi Açısından Ambalaj Tasarımına Etkilerinin İrdelenmesi. Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü. 2013, İstanbul.
  • Baumann, H. and A.M. Tillman, The Hitch hiker’s Guide to LCA - An orientation in life cycle assessment methodology and application. 2004.
  • ISO, ISO 14044: Environmental Management - Life cycle assessment - Requirements and guidelines. 2006, Geneva, Switzerland.
  • ISO, ISO 14040: Environmental management – Life cycle assessment – Principles and framework. 2006, Geneva, Switzerland.
  • Sphera, GaBi LCA Software and Database, Sphera. 2020, Stuttgart, Echterdingen.
  • CML. CML-IA Characterisation Factors. [November 2010]; Available from http://cml.leiden.edu/software/data-cmlia.html.
  • Ecoinvent, Ecoinvent Database v2.2. Swiss Centre for Life Cycle Inventories. 2010, St Gallen, Switzerland.
  • Hischier, R., Life Cycle Inventories of Packaging and Graphical Paper. Final report Ecoinvent data v2.0 No. 11: Swiss Centre for Life Cycle Inventories, EMPA - TSL. 2007, Dübendorf.
  • Atilgan, B. and A. Azapagic, Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis. Energies, 2016. 9(1): p. 31.
  • TEIAS. Electricity Generation and Transmission Statistics of Turkey. 2019; Available from http://www.teias.gov.tr/TurkiyeElektrikIstatistikleri.aspx.
  • BOTAS, Natural Gas / Crude Oil Report. Petroleum Pipeline Corporation. 2019, Ankara.
  • Mata, T.M. and C.A.V. Costa, Life cycle assessment of different reuse percentages for glass beer bottles. The International Journal of Life Cycle Assessment, 2001. 6(5): p. 307-319.
  • Rajat, N., Life cycle assessment on the aluminium can and glass bottle for packaging of 500 ml beer in UCD School of Biosystems and Food Engineering. University College Dublin. 2016, Dublin, Ireland.
  • Vinci, G., et al., A sustainable innovation in the Italian glass production: LCA and Eco-Care matrix evaluation. Journal of Cleaner Production, 2019. 223: p. 587-595.
  • Usbeck, V.C., J. Pflieger, and T. Sun, Life Cycle Assessment of Float Glass, in Glass for Europe. 2011: P. International.
  • AIGMF, Life Cycle Assessment of “Container Glass and Comparison with Alternate Packaging Mediums (PET, Beverage Carton, Aluminum Can and Pouch)” The All India Glass Manufacturers' Federation (AIGMF), 2016: New Delhi.
  • Glass Fibre Europe, Life cycle assessment of CFGF – Continuous Filament Glass Fibre Products, 2016.
  • Humbert, S., et al., Life cycle assessment of two baby food packaging alternatives: glass jars vs. plastic pots. 2009. 14(2): p. 95-106.
  • Accorsi, R., L. Versari, and R.J.S. Manzini, Glass vs. plastic: Life cycle assessment of extra-virgin olive oil bottles across global supply chains. 2015. 7(3): p. 2818-2840.
  • Larsen, A.W., H. Merrild, and T.H. Christensen, Recycling of glass: accounting of greenhouse gases and global warming contributions. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2009. 27(8): p. 754-762.

Cam Ambalaj Üretiminin Çevresel Sürdürülebilirliğinin Değerlendirilmesi

Year 2020, Volume: 7 Issue: 2, 1026 - 1037, 30.12.2020
https://doi.org/10.35193/bseufbd.734599

Abstract

Sürdürülebilirlik anlayışının gittikçe önem kazanması ile hızla gelişmekte olan ambalaj sektörü üretim sektörünün sürdürülebilirliğinin arttırılabilmesi için önemli bir etken konumuna gelmiştir. Günümüzde ambalaj sektörünün çevresel sürdürülebilirliği tam olarak bilinmemektedir. Bu sebepten dolayı bu çalışmada içecek sektöründe kullanılan cam ambalajın çevresel sürdürülebilirliğinin yaşam döngüsü boyutunda analiz edilmesi amaçlanmıştır. Çalışma kapsamında içecek sektöründe kullanılan cam ambalaj için tesis inşaatı ve kurulumu, ham madde elde edilmesi ve işlenmesi, ulaşım, üretim ve tesis atık yönetimi aşamalarındaki çevresel etkiler değerlendirilmiştir. Yaşam döngüsü analizi uluslararası standartlar olan ISO 14040 ve ISO 14044 serisine göre uygulanmıştır. CML 2001 etki değerlendirme yöntemi kullanılarak on bir adet çevresel etki kategorisi değerlendirilmiştir. Çalışmamızda 1 kg cam şişe üretiminin küresel ısınma potansiyeli 1,2 kg CO2 eşdeğeri olarak hesaplanmıştır. Cam şişenin yaşam döngüsü karbon ayak izinin yaklaşık olarak %84’ü üretim, %7’si ham madde elde edilmesinden, %5’i taşımacılıktan, %3’ü tesis kurulumu ve kalan kısmının da atık yönetimi basamağından kaynaklandığı bulunmuştur. Hesaplanan çevresel etkiler incelendiğinde en fazla etkinin geldiği yaşam döngüsü basamağının enerji yoğunluğundan dolayı cam üretimi (%4,6 ADP-%89,0 MAETP) olduğu görülmüştür. Yapılan çevresel sürdürülebilirlik değerlendirmesi sonucunda üretim basamağından kaynaklanan emisyonların azaltılması için enerji ve ham madde girdileri ile ilgili iyileştirme çalışmalarının yapılmasının gerekliliği ortaya çıkmıştır.

References

  • Üçüncü, M., Gıdaların Ambalajlanması. 2000, İzmir: Ege Üniversitesi Basımevi.
  • Bansal, N.P. and R.H. Doremus, Handbook of Glass Properties. 2013: Elsevier.
  • PAGEV, Türkiye Plastik Ambalaj Malzemeleri Sektör Raporu, Türk Plastik Sanayicileri Araştırma, Geliştirme ve Eğitim Vakfı, 2016.
  • Scalet, B.M et. all, Best Available Techniques (BAT)Reference Document for the Manufacture of Glass, Industrial Emissions Directive 2010/75/EU, JRC Reference Report; European Union. 2013, Luxembourg.
  • Simon, B., M.B. Amor, and R. Földényi, Life cycle impact assessment of beverage packaging systems: Focus on the collection of post-consumer bottles. Journal of Cleaner Production, 2016. 112 (Part 1): p. 238-248.
  • UNILEVER, Sustainable Packaging? 2009, The Netherlands.
  • Bettens, F. and R. Bagard, Life Cycle Assessment of Container Glass in Europe. European Container Glass Federation, 2016.
  • Cattaneo, J.J., Environmental Overview. Complete Life Cycle Assessment of North American Container Glass, 2010.
  • Doublet, G., LCA of Rivella and Michel soft drinks packaging. Institute of Environmental Engineering (IFU), Chair of Ecological System Design (ESD). 2012, Zürich.
  • Yay, A.S.E., Yaşam döngüsü analizinin ambalaj atıklarının yönetiminde kullanılması. Sakarya University Journal of Science, 2017. 21(5): p. 1008-1017.
  • Falkenstein, E.v., F. Wellenreuther, and A. Detzel, LCA studies comparing beverage cartons and alternative packaging: Can overall conclusions be drawn? The International Journal of Life Cycle Assessment, 2010. 15(9): p. 938-945.
  • Özgen, C., Sürdürülebilirlik Kavramının Firma Stratejisi Açısından Ambalaj Tasarımına Etkilerinin İrdelenmesi. Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü. 2013, İstanbul.
  • Baumann, H. and A.M. Tillman, The Hitch hiker’s Guide to LCA - An orientation in life cycle assessment methodology and application. 2004.
  • ISO, ISO 14044: Environmental Management - Life cycle assessment - Requirements and guidelines. 2006, Geneva, Switzerland.
  • ISO, ISO 14040: Environmental management – Life cycle assessment – Principles and framework. 2006, Geneva, Switzerland.
  • Sphera, GaBi LCA Software and Database, Sphera. 2020, Stuttgart, Echterdingen.
  • CML. CML-IA Characterisation Factors. [November 2010]; Available from http://cml.leiden.edu/software/data-cmlia.html.
  • Ecoinvent, Ecoinvent Database v2.2. Swiss Centre for Life Cycle Inventories. 2010, St Gallen, Switzerland.
  • Hischier, R., Life Cycle Inventories of Packaging and Graphical Paper. Final report Ecoinvent data v2.0 No. 11: Swiss Centre for Life Cycle Inventories, EMPA - TSL. 2007, Dübendorf.
  • Atilgan, B. and A. Azapagic, Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis. Energies, 2016. 9(1): p. 31.
  • TEIAS. Electricity Generation and Transmission Statistics of Turkey. 2019; Available from http://www.teias.gov.tr/TurkiyeElektrikIstatistikleri.aspx.
  • BOTAS, Natural Gas / Crude Oil Report. Petroleum Pipeline Corporation. 2019, Ankara.
  • Mata, T.M. and C.A.V. Costa, Life cycle assessment of different reuse percentages for glass beer bottles. The International Journal of Life Cycle Assessment, 2001. 6(5): p. 307-319.
  • Rajat, N., Life cycle assessment on the aluminium can and glass bottle for packaging of 500 ml beer in UCD School of Biosystems and Food Engineering. University College Dublin. 2016, Dublin, Ireland.
  • Vinci, G., et al., A sustainable innovation in the Italian glass production: LCA and Eco-Care matrix evaluation. Journal of Cleaner Production, 2019. 223: p. 587-595.
  • Usbeck, V.C., J. Pflieger, and T. Sun, Life Cycle Assessment of Float Glass, in Glass for Europe. 2011: P. International.
  • AIGMF, Life Cycle Assessment of “Container Glass and Comparison with Alternate Packaging Mediums (PET, Beverage Carton, Aluminum Can and Pouch)” The All India Glass Manufacturers' Federation (AIGMF), 2016: New Delhi.
  • Glass Fibre Europe, Life cycle assessment of CFGF – Continuous Filament Glass Fibre Products, 2016.
  • Humbert, S., et al., Life cycle assessment of two baby food packaging alternatives: glass jars vs. plastic pots. 2009. 14(2): p. 95-106.
  • Accorsi, R., L. Versari, and R.J.S. Manzini, Glass vs. plastic: Life cycle assessment of extra-virgin olive oil bottles across global supply chains. 2015. 7(3): p. 2818-2840.
  • Larsen, A.W., H. Merrild, and T.H. Christensen, Recycling of glass: accounting of greenhouse gases and global warming contributions. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2009. 27(8): p. 754-762.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Burçin Atılgan Türkmen 0000-0003-3220-3817

Publication Date December 30, 2020
Submission Date May 9, 2020
Acceptance Date July 21, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

APA Atılgan Türkmen, B. (2020). Cam Ambalaj Üretiminin Çevresel Sürdürülebilirliğinin Değerlendirilmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(2), 1026-1037. https://doi.org/10.35193/bseufbd.734599