Research Article
BibTex RIS Cite

Carbon Dots from Turnip Juice: Synthesis, Characterization and Investigation of pH-Dependent Optical Properties

Year 2021, Volume: 8 Issue: 2, 924 - 930, 31.12.2021
https://doi.org/10.35193/bseufbd.979306

Abstract

In this study, carbon dots (CDs) were synthesized using a simple one-pot hydrothermal method by using turnip juice as carbon source. The water-soluble nontoxic carbon dots were obtained after reaction. The structural and optical properties of as synthesized CDs were elucidated by X-ray diffraction (XRD), Raman, Fourier Transmission Infrared (FTIR), UV–Vis absorption and Photoluminescence (PL) spectroscopy. A contour plot of the excitation dependent PL spectra of the turnip juice derived CDs and PL emission spectra in 3D color map were plotted. The maximum PL emission was found at 434 nm when excited at 364. The pH dependent luminescence properties of the CDs were investigated from pH 2-12 range in phosphate buffer solution (PBS). The resulting CDs can be evaluated in a variety of application areas, from anti-counterfeiting to bioimaging.

Supporting Institution

This work was financially supported by the Kahramanmaraş Sütçü İmam University Scientific Research Projects Coordination Unit

Project Number

Project Number: 2019/5-21 M)

References

  • Chen, T., Lin, Y., Li, H., Yang, R., Hou, X., Zheng, B., & Zheng, C. (2020). Reduction of mercury(II) by electrons contained in carbon dots: An environmentally friendly cold vapor generation for mercury analysis. Chinese Chemical Letters. https://doi.org/https://doi.org/10.1016/j.cclet.2020.06.005
  • Dinç, S. & Kara, M. (2018). Synthesis and Applications of Carbon Dots from Food and Natural Products: A Mini- Review. Journal of Apitherapy and Nature, 1(1), 33–37.
  • Zhang, J., & Yu, S. H. (2016). Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 19(7), 382–393. https://doi.org/10.1016/j.mattod.2015.11.008
  • Eskalen, H. (2020). Influence of carbon quantum dots on electro–optical performance of nematic liquid crystal. Applied Physics A, 126(9), 708. https://doi.org/10.1007/s00339-020-03906-7
  • Singh, I., Arora, R., Dhiman, H., & Pahwa, R. (2018). Carbon quantum dots: Synthesis, characterization and biomedical applications. Turkish Journal of Pharmaceutical Sciences, 15(2), 219–230. https://doi.org/10.4274/tjps.63497
  • Zuo, P., Lu, X., Sun, Z., Guo, Y., & He, H. (2016). A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta, 183(2), 519–542. https://doi.org/10.1007/s00604-015-1705-3
  • Boobalan, T., Sethupathi, M., Sengottuvelan, N., Kumar, P., Balaji, P., Gulyás, B., … & Arun, A. (2020). Mushroom-Derived Carbon Dots for Toxic Metal Ion Detection and as Antibacterial and Anticancer Agents. ACS Applied Nano Materials, 3(6), 5910–5919. https://doi.org/10.1021/acsanm.0c01058
  • Shi, W., Li, X., & Ma, H. (2012). A Tunable Ratiometric pH Sensor Based on Carbon Nanodots for the Quantitative Measurement of the Intracellular pH of Whole Cells. Angewandte Chemie, 124(26), 6538–6541. https://doi.org/10.1002/ange.201202533
  • Wang, Q., Liu, X., Zhang, L., & Lv, Y. (2012). Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst, 137(22), 5392–5397. https://doi.org/10.1039/C2AN36059D
  • Ghosal, K., & Ghosh, A. (2019). Carbon dots: The next generation platform for biomedical applications. Materials Science and Engineering C, 96, 887–903. https://doi.org/10.1016/j.msec.2018.11.060
  • Aslan, M., & Eskalen, H. (2021). A study of carbon nanodots (carbon quantum dots) synthesized from tangerine juice using one-step hydrothermal method. Fullerenes, Nanotubes and Carbon Nanostructures, 1–8. https://doi.org/10.1080/1536383X.2021.1926452
  • Hola, K., Zhang, Y., Wang, Y., Giannelis, E. P., Zboril, R., & Rogach, A. L. (2014). Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 9(5), 590–603. https://doi.org/https://doi.org/10.1016/j.nantod.2014.09.004
  • Jia, X., Li, J., & Wang, E. (2012). One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4(18), 5572–5575. https://doi.org/10.1039/c2nr31319g
  • Ghanem, A., Al-Qassar Bani Al-Marjeh, R., & Atassi, Y. (2020). Novel nitrogen-doped carbon dots prepared under microwave-irradiation for highly sensitive detection of mercury ions. Heliyon, 6(4), e03750. https://doi.org/10.1016/j.heliyon.2020.e03750
  • Zhang, C., Cui, Y., Song, L., Liu, X., & Hu, Z. (2016). Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta, 150, 54–60. https://doi.org/10.1016/j.talanta.2015.12.015
  • Karaoglan, H. A., Keklik, N. M., & Develi Isıklı, N. (2019). Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of Food Science and Technology, 56(1), 30–39. https://doi.org/10.1007/s13197-018-3434-1
  • Tulun, Ş., Şimşek, İ., Bahadır, T., & Çelebi, H. (2019). Investigation of removal of anthocyanin in turnip juice wastewater by using different adsorbents. SN Applied Sciences, 1(9), 967. https://doi.org/10.1007/s42452-019-1019-x
  • Coskun, F. (2017). A Traditional Turkish Fermented Non-Alcoholic Beverage, “Shalgam.” Beverages, 3(4), 49. https://doi.org/10.3390/beverages3040049
  • Eskalen, H., Uruş, S., Cömertpay, S., Kurt, A. H., & Özgan, Ş. (2020). Microwave-assisted ultra-fast synthesis of carbon quantum dots from linter: Fluorescence cancer imaging and human cell growth inhibition properties. Industrial Crops and Products, 147, 112209.
  • Eskalen, H. (2020). Influence of carbon quantum dots on electro–optical performance of nematic liquid crystal. Applied Physics A, 126(9), 1–10.
  • Zulfajri, M., Rasool, A., & Huang, G. G. (2020). A fluorescent sensor based on oyster mushroom-carbon dots for sensing nitroarenes in aqueous solutions. New Journal of Chemistry, 44(25), 10525–10535. https://doi.org/10.1039/D0NJ02134B
  • Atchudan, R., Edison, T. N. J. I., Perumal, S., Muthuchamy, N., & Lee, Y. R. (2020). Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel, 275, 117821. https://doi.org/10.1016/j.fuel.2020.117821
  • Murugan, N., & Sundramoorthy, A. K. (2018). Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe3+ ions. New Journal of Chemistry, 42(16), 13297–13307. https://doi.org/10.1039/c8nj01894d
  • Sinha, R., Bidkar, A. P., Rajasekhar, R., Ghosh, S. S., & Mandal, T. K. (2020). A facile synthesis of nontoxic luminescent carbon dots for detection of chromium and iron in real water sample and bio‐imaging. The Canadian Journal of Chemical Engineering, 98(1), 194–204. https://doi.org/10.1002/cjce.23630
  • Wang, Y., Man, Y., Li, S., Wu, S., Zhao, X., Xie, F., … & Zou, W. S. (2020). Pesticide-derived bright chlorine-doped carbon dots for selective determination and intracellular imaging of Fe(III). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 226, 117594.
  • Zhang, H., You, J., Wang, J., Dong, X., Guan, R., & Cao, D. (2020). Highly luminescent carbon dots as temperature sensors and “off-on” sensing of Hg2+ and biothiols. Dyes and Pigments, 173, 107950. https://doi.org/10.1016/j.dyepig.2019.107950
  • Çeşme, M., & Eskalen, H. (2020). Green synthesis of carbon quantum dots from sumac: characterization and investigation with cyclic voltammetry technique. Cumhuriyet Science Journal, 41(4), 808-814.

Şalgam Suyundan Karbon Noktalar: Sentezi, Karakterizasyonu ve pH-Bağımlı Optic Özelliklerinin İncelenmesi

Year 2021, Volume: 8 Issue: 2, 924 - 930, 31.12.2021
https://doi.org/10.35193/bseufbd.979306

Abstract

Bu çalışmada, karbon kaynağı olarak şalgam suyu kullanılarak basit ve tek aşamalı hidrotermal sentez yöntemi ile karbon noktalar (KN'lar) sentezlenmiştir. Reaksiyon sonrasında suda çözülebilen ve toksit olmayan karbon noktalar elde edilmiştir. Sentezlenen KN'ların yapısal karakterizasyonu ve optik özellikleri, X-ışını kırınımı (XRD), Raman, Fourier Dönüşümlü Kızılötesi spektroskopisi (FTIR), UV-Vis ve Fotolüminesans (FL) spektroskopisi ile aydınlatılmıştır. Şalgam suyundan elde edilen KN'ların FL spektrumlarının düzey çizgili grafiği ve 3D renkli harita yüzey görüntüsü çizildi. Maksimum FL emisyonu, 364 nm’de uyarıldığında, 434 nm’de bulunmuştur. CD'lerin pH’a bağlı lüminesans özellikleri, fosfat tampon çözeltisi kullanılarak pH 2-12 aralığından araştırılmıştır. Ortaya çıkan CD'ler, sahteciliğe karşı korumadan biyogörüntülemeye kadar çeşitli uygulama alanlarında değerlendirilebilir.

Project Number

Project Number: 2019/5-21 M)

References

  • Chen, T., Lin, Y., Li, H., Yang, R., Hou, X., Zheng, B., & Zheng, C. (2020). Reduction of mercury(II) by electrons contained in carbon dots: An environmentally friendly cold vapor generation for mercury analysis. Chinese Chemical Letters. https://doi.org/https://doi.org/10.1016/j.cclet.2020.06.005
  • Dinç, S. & Kara, M. (2018). Synthesis and Applications of Carbon Dots from Food and Natural Products: A Mini- Review. Journal of Apitherapy and Nature, 1(1), 33–37.
  • Zhang, J., & Yu, S. H. (2016). Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 19(7), 382–393. https://doi.org/10.1016/j.mattod.2015.11.008
  • Eskalen, H. (2020). Influence of carbon quantum dots on electro–optical performance of nematic liquid crystal. Applied Physics A, 126(9), 708. https://doi.org/10.1007/s00339-020-03906-7
  • Singh, I., Arora, R., Dhiman, H., & Pahwa, R. (2018). Carbon quantum dots: Synthesis, characterization and biomedical applications. Turkish Journal of Pharmaceutical Sciences, 15(2), 219–230. https://doi.org/10.4274/tjps.63497
  • Zuo, P., Lu, X., Sun, Z., Guo, Y., & He, H. (2016). A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta, 183(2), 519–542. https://doi.org/10.1007/s00604-015-1705-3
  • Boobalan, T., Sethupathi, M., Sengottuvelan, N., Kumar, P., Balaji, P., Gulyás, B., … & Arun, A. (2020). Mushroom-Derived Carbon Dots for Toxic Metal Ion Detection and as Antibacterial and Anticancer Agents. ACS Applied Nano Materials, 3(6), 5910–5919. https://doi.org/10.1021/acsanm.0c01058
  • Shi, W., Li, X., & Ma, H. (2012). A Tunable Ratiometric pH Sensor Based on Carbon Nanodots for the Quantitative Measurement of the Intracellular pH of Whole Cells. Angewandte Chemie, 124(26), 6538–6541. https://doi.org/10.1002/ange.201202533
  • Wang, Q., Liu, X., Zhang, L., & Lv, Y. (2012). Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst, 137(22), 5392–5397. https://doi.org/10.1039/C2AN36059D
  • Ghosal, K., & Ghosh, A. (2019). Carbon dots: The next generation platform for biomedical applications. Materials Science and Engineering C, 96, 887–903. https://doi.org/10.1016/j.msec.2018.11.060
  • Aslan, M., & Eskalen, H. (2021). A study of carbon nanodots (carbon quantum dots) synthesized from tangerine juice using one-step hydrothermal method. Fullerenes, Nanotubes and Carbon Nanostructures, 1–8. https://doi.org/10.1080/1536383X.2021.1926452
  • Hola, K., Zhang, Y., Wang, Y., Giannelis, E. P., Zboril, R., & Rogach, A. L. (2014). Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 9(5), 590–603. https://doi.org/https://doi.org/10.1016/j.nantod.2014.09.004
  • Jia, X., Li, J., & Wang, E. (2012). One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4(18), 5572–5575. https://doi.org/10.1039/c2nr31319g
  • Ghanem, A., Al-Qassar Bani Al-Marjeh, R., & Atassi, Y. (2020). Novel nitrogen-doped carbon dots prepared under microwave-irradiation for highly sensitive detection of mercury ions. Heliyon, 6(4), e03750. https://doi.org/10.1016/j.heliyon.2020.e03750
  • Zhang, C., Cui, Y., Song, L., Liu, X., & Hu, Z. (2016). Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta, 150, 54–60. https://doi.org/10.1016/j.talanta.2015.12.015
  • Karaoglan, H. A., Keklik, N. M., & Develi Isıklı, N. (2019). Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of Food Science and Technology, 56(1), 30–39. https://doi.org/10.1007/s13197-018-3434-1
  • Tulun, Ş., Şimşek, İ., Bahadır, T., & Çelebi, H. (2019). Investigation of removal of anthocyanin in turnip juice wastewater by using different adsorbents. SN Applied Sciences, 1(9), 967. https://doi.org/10.1007/s42452-019-1019-x
  • Coskun, F. (2017). A Traditional Turkish Fermented Non-Alcoholic Beverage, “Shalgam.” Beverages, 3(4), 49. https://doi.org/10.3390/beverages3040049
  • Eskalen, H., Uruş, S., Cömertpay, S., Kurt, A. H., & Özgan, Ş. (2020). Microwave-assisted ultra-fast synthesis of carbon quantum dots from linter: Fluorescence cancer imaging and human cell growth inhibition properties. Industrial Crops and Products, 147, 112209.
  • Eskalen, H. (2020). Influence of carbon quantum dots on electro–optical performance of nematic liquid crystal. Applied Physics A, 126(9), 1–10.
  • Zulfajri, M., Rasool, A., & Huang, G. G. (2020). A fluorescent sensor based on oyster mushroom-carbon dots for sensing nitroarenes in aqueous solutions. New Journal of Chemistry, 44(25), 10525–10535. https://doi.org/10.1039/D0NJ02134B
  • Atchudan, R., Edison, T. N. J. I., Perumal, S., Muthuchamy, N., & Lee, Y. R. (2020). Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel, 275, 117821. https://doi.org/10.1016/j.fuel.2020.117821
  • Murugan, N., & Sundramoorthy, A. K. (2018). Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe3+ ions. New Journal of Chemistry, 42(16), 13297–13307. https://doi.org/10.1039/c8nj01894d
  • Sinha, R., Bidkar, A. P., Rajasekhar, R., Ghosh, S. S., & Mandal, T. K. (2020). A facile synthesis of nontoxic luminescent carbon dots for detection of chromium and iron in real water sample and bio‐imaging. The Canadian Journal of Chemical Engineering, 98(1), 194–204. https://doi.org/10.1002/cjce.23630
  • Wang, Y., Man, Y., Li, S., Wu, S., Zhao, X., Xie, F., … & Zou, W. S. (2020). Pesticide-derived bright chlorine-doped carbon dots for selective determination and intracellular imaging of Fe(III). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 226, 117594.
  • Zhang, H., You, J., Wang, J., Dong, X., Guan, R., & Cao, D. (2020). Highly luminescent carbon dots as temperature sensors and “off-on” sensing of Hg2+ and biothiols. Dyes and Pigments, 173, 107950. https://doi.org/10.1016/j.dyepig.2019.107950
  • Çeşme, M., & Eskalen, H. (2020). Green synthesis of carbon quantum dots from sumac: characterization and investigation with cyclic voltammetry technique. Cumhuriyet Science Journal, 41(4), 808-814.
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hasan Eskalen 0000-0002-4523-6573

Mustafa Çeşme 0000-0002-2020-5965

Project Number Project Number: 2019/5-21 M)
Publication Date December 31, 2021
Submission Date August 5, 2021
Acceptance Date September 27, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Eskalen, H., & Çeşme, M. (2021). Carbon Dots from Turnip Juice: Synthesis, Characterization and Investigation of pH-Dependent Optical Properties. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 924-930. https://doi.org/10.35193/bseufbd.979306