Review
BibTex RIS Cite

A Review on Edible Film and Coating Applications for Fresh and Dried Fruits and Vegetables

Year 2021, Volume: 8 Issue: 2, 1073 - 1085, 31.12.2021
https://doi.org/10.35193/bseufbd.996827

Abstract

Techniques in food packaging are varying depending on the global trends, changes in technology, sense of responsibility for nature, and consumer expectations. One of the new techniques using in the packaging industry in recent years is edible films and coatings. Edible films and coatings are biomaterials that are applied as a thin layer on food and can be consumed with food. Films and coatings obtained from different sources are applied to foods with different application techniques. Films and coatings can be applied to fresh fruits and vegetables, as well as dried foods. However, the investigation on the application operations of films and coating on food particularly fresh fruits and vegetables are taking a very important role. In this review, according to research in the last 20 years, not only the effects of the films and coatings on food (fresh and dried fruits and vegetables) properties but also applied procedures are summarized and discussed.

Thanks

This study was produced from a part of the doctoral thesis that Ece Giray Tufan will complete at Eskişehir Technical University.

References

  • Otoni, C. G., Avena‐Bustillos, R. J., Azeredo, H. M. C., Lorevice, M. V., Moura, M. R., Mattoso, L. H. C., & McHugh, T. H. (2017). Recent Advances on Edible Films Based on Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 16, 1151-1169.
  • Cemeroğlu, B. (2003). Meyve ve Sebze İşleme Teknolojisi, Gıda Teknolojisi Derneği - Ankara Üniversitesi Ziraat Fakültesi Gıda Mühendisliği Bölümü, 1, 246-251.
  • Pavlath, A. E., & Orts, W. (2009). Edible Films and Coatings: Why, What, and How?. In K. Huber, M. Embuscado (Eds.), Edible Films and Coatings for Food Applications Springer, New York, 1-23.
  • Erkmen, O., & Barazi, A. O. (2018). General Characteristics of Edible Films. Journal of Food Biotechnology Research, 2(1).
  • Mellinas, C. Valdes, A., Ramos, M., Burgos, N., Garrigos, M. C., & Jimenez, A. (2016). Active edible films: Current state and future trends. Journal of Applied Polymer Science, 1-15.
  • Falguera, V., Quintero, J. P., Jimenez, A., Munoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22, 292-303.
  • Han, J. H. (2014). Edible Films and Coatings: A Review, In J. H. Han (Ed.), Innovations in Food Packaging, Plano, TX. Elsevier Ltd., 213-241.
  • Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: A review. Trends in Food Science, 8, 228-237.
  • Alvarez, M. V., Ponce, A. G., & Moreira, M. R. (2013). Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT - Food Science and Technology, 50, 78-87.
  • Calderon-Castro, A., Vega-Garcia, M. O., Zazueta-Morales, J. J., Fitch-Vargas, P. R., Carrillo-Lopez, A., Gutierrez-Dorado, R., Limon-Valenzuela, V., & Aguilar-Palazuelos, E. (2018). Effect of extrusion process on the functional properties of high amylose corn starch edible films and its application in mango (Mangifera indica L.) cv. Tommy Atkins. J Food Sci Technol, 55(3), 905–914.
  • Marquez, G. R., Pierro, P., Mariniello, L., Esposito, M., Giosafatto, C. V. L., & Porta, R. (2017). Fresh-cut fruit and vegetable coatings by transglutamin a secrosslinked whey protein/pectin edible films, LWT - Food Science and Technology, 75, 124-130.
  • Song, Z., Li, F., Guan, H. Xu, Y., Fu, Q., & Li, D. (2017). Combination of nisin and ε-polylysine with chitosan coating inhibits the white blush of fresh-cut carrots. Food Control, 74, 34-44.
  • Ali, A., Noh, N. M., & Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packaging and Shelf Life, 3, 56-61.
  • Gol, N. B., Patel, P. R., & Rao, T. V. R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan.Postharvest Biology and Technology, 85, 185–195.
  • Guimarães, I. C., dos Reis, K. C., Tavares Menezes, E. G., Siriano Borges, P. R., Costa Rodrigues, A., Leal, R., Hernandes, T., Nunes de Carvalho, E. H., & Vilas-Boas, E. V. B. (2016). Combined effect of starch/montmorillonite coating and passive MAP in antioxidant activity, total phenolics, organic acids and volatile of fresh-cut carrots. International Journal of Food Sciences and Nutrition, 67, 141–152.
  • Mastromatteo, M., Mastromatteo, M., Conte, A., & Del Nobile, M. A. (2011). Combined effect of active coating and MAP to prolong the shelf life of minimally processed kiwifruit (Actinidia deliciosa cv. Hayward). Food Research International, 44, 1224–1230.
  • Sanchís, E., Ghidelli, C., Sheth, C. C., Mateos, M., Palou, L., & Pérez-Gago, M. B. (2017). Integration of antimicrobial pectin-based edible coating and active modified atmosphere packaging to preserve the quality and microbial safety of fresh-cut persimmon (Diospyros kaki Thunb. cv. Rojo Brillante). Journal of the Science of Food and Agriculture, 97, 252–260.
  • Ghidelli, C., & Pérez-Gago, M. B. (2018). Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Critical Reviews in Food Science and Nutrition, 58(4), 662–679.
  • Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). Global Food Losses and Food Waste: Extent Causes and Prevention. Rome, Food and Agriculture Organization (FAO) of the United Nations.
  • FAO. (2019). The State of Food and Agriculture, Muving Forward on food loss and waste reduction. Food and Agriculture Organization of the United Nations.
  • Soliva-Fortuny, R., Rojas-Graü, M. A., & Martín-Belloso, O. (2012). Polysaccharide coatings, In E. A. Baldwin, R. Hagenmaier, J. Bai (Eds.), Edible Coatings and Films to Improve Food Quality, Boca Raton, CRC Press Taylor & Francis Group, 103-127.
  • Zhang, Y., Rempel, C., & Mclaren, D. (2014a). Edible Coating and Film Materials: Carbohydrates, In J. H. Han (Ed.), Innovations in Food Packaging Plano, TX. Elsevier Ltd., 305-323.
  • Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3), 237-248.
  • Tural, S., Sarıcaoğlu, F. T., & Turhan, S. (2017). Yenilebilir Film ve Kaplamalar: Üretimleri, Uygulama Yöntemleri, Fonksiyonları ve Kaslı Gıdalarda Kullanımları. Akademik Gıda, 15(1), 84-94.
  • Tural, S., Sarıcaoğlu, F. T., & Turhan, S. (2017). Yenilebilir Film ve Kaplamalar: Üretimleri, Uygulama Yöntemleri, Fonksiyonları ve Kaslı Gıdalarda Kullanımları. Akademik Gıda, 15(1), 84-94.
  • Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent Advances in Edible Coatings for Fresh and Minimally Processed Fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496-511.
  • Perez-Gago, M. B., & Rhim, J. W. (2014). Edible Coating and Film Materials: Lipid Bilayers and Lipid Emulsions, J. H. Han (Ed.), Innovations in Food Packaging Plano, TX. Elsevier Ltd., pp. 325-350.
  • Hall, D. J. (2012). Edible Coatings from Lipids, Waxes and Resins, In E. A. Baldwin, R. Hagenmaier, J. Bai (Eds.), Edible Coatings and Films to Improve Food Quality, Boca Raton, CRC Press Taylor & Francis Group., 79-101.
  • Ansorena, M. R., Pereda M., & Marcovich, N. E. (2018). Edible Films. In T. Gutiérrez (Eds.), Polymers for Food Applications, Springer, Cham., 335-368.
  • Baldwin, E. A., & Hagenmaier, R. D. (2011). Introduction. In E. A. Baldwin, R. Hagenmaier, J. Bai (Eds.), Edible Coatings and Films to Improve Food Quality, 2nd ed., CRC Press., 1-12.
  • Dubey, N. K., & Dubey, R. (2020). Edible films and coatings: an update on recent advances, In K. Pal, I. Banerjee, P. Sarkar, D. Kim, W. P. Deng, N. K. Dubey, K. Majumder (Eds.), Biopolymer-Based Formulations, Elsevier, 675-695.
  • Dhall, R. K. (2013). Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Critical Reviews in Food Science and Nutrition, 53, 435–450.
  • Lin, D., & Zhao, Y. (2007). Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 6, 6-75.
  • Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018), Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107.
  • Dhumal, C. V., & Sarkar, P. (2018). Composite edible films and coatings from food-grade biopolymers. Journal of Food Science and Technology, 55(11), 4369–4383.
  • Parreidt, T. S., Schmid, M., & Müller, K. (2018). Effect of Dipping and Vacuum Impregnation Coating Techniques with Alginate Based Coating on Physical Quality Parameters of Cantaloupe Melon. Journal of Food Science, 83(4), 929-936.
  • Suhag, R., Kumar, N., Petkoska, A. T., & Upadhyay, A. (2020). Film formation and deposition methods of edible coating on food products: A review. Food Research International, 136, 109582.
  • Dangaran, K., Tomasula, P. M., & Qi, P. (2009). Structure and Function of Protein-Based Edible Films and Coatings. In K. Huber, M. Embuscado (Eds.), Edible Films and Coatings for Food Applications Springer, New York, NY. 25-56.
  • Debeaufort F., & Voilley A. (2009). Lipid-Based Edible Films and Coatings. In K. Huber, M. Embuscado (Eds.), Edible Films and Coatings for Food Applications Springer, New York, NY., 135-168.
  • Dhanapal, A., Sasikala, P., Rajamani, L., Kavitha, V., Yazhini, G., & Banu, M. S. (2012). Edible films from Polysaccharides. Food Science and Quality Management, 3, 9-17.
  • Zhang, Y., Rempel, C., & Mclaren, D. (2014b). Thermoplastic Starch, In J. H. Han (Ed.), Innovations in Food Packaging, TX. Elsevier Ltd., Plano, 305-323.
  • Janjarasskul, T., & Krochta, J. M. (2010). Edible Packaging Materials. The Annual Review of Food Science and Technology, 1, 415-448.
  • Leceta, I., Molinaro, S., Guerrero P., Kerry, J. P., & Caba, K. (2015). Quality attributes of map packaged ready-to-eat baby carrots by using chitosan-based coatings. Postharvest Biology and Technology, 100, 142–150.
  • Thakur, R., Pristijono, P., Bowyer, M., Singh, S. P., Scarletta, C. J., Stathopoulos, C. E., &Vuong, Q. V. (2019). A starch edible surface coating delays banana fruit ripening. LWT - Food Science and Technology, 100, 341–347.
  • Limchoonwong, N., Sricharoen, P., Techawongstien, S. & Chanthai, S. (2016). An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan. Food Chemistry, 200, 223–229.
  • Aquino, A. B., Blank, A. F., & Santana, L. C. L. A. (2015). Impact of edible chitosan–cassava starch coatings enriched with Lippiagracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chemistry, 171, 108–116.
  • Özdemir, K. S., & Gökmen V. (2017). Extending the shelf-life of pomegranate arils with chitosan-ascorbic acid coating. LWT - Food Science and Technology, 76, 172-180.
  • Lago-Vanzela, E. S., Nascimento, P. Fontes, E. A. F., Mauro, M. A., & Kimura, M. (2013). Edible coatings from native and modified starches retain carotenoids in pumpkin during drying. LWT - Food Science and Technology, 50, 420-425.
  • Moreira, M. R., Roura, S. I., & Ponce, A. (2011). Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh cut broccoli. LWT - Food Science and Technology, 44, 2335-2341.
  • Zhang, L., Chen, F., Lai, S., Wang, H., & Yang, H. (2018). Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT - Food Science and Technology, 96, 604–611.
  • Torres-León, C., Vicente, A. A., Flores-López, M. L., Rojas, R., Serna-Cock, L., Alvarez-Pérez, O. B., & Aguilar, C. N. (2018). Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT - Food Science and Technology, 97, 624–631.
  • Nawab, A., Alam, F., & Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato (Solanum lycopersicum) fruit. International Journal of Biological Macromolecules, 103, 581–586.
  • Tesfay, S. Z., & Magwaza, L. S. (2017). Evaluating the efficacy of moringa leaf extract, chitosan and carboxymethyl cellulose as edible coatings for enhancing quality and extending postharvest life of avocado (Persea americana Mill.) fruit. Food Packaging and Shelf Life, 11, 40–48.
  • Zhou, R., Li, Y., Yan, L., & Xie, J. (2011). Effect of edible coatings on enzymes, cell-membrane integrity, and cell-wall constituents in relation to brittleness and firmness of Huanghua pears (Pyrus pyrifolia Nakai, cv. Huanghua) during storage. Food Chemistry, 124, 569–575.
  • Sena, E. O. A., Silva, P. S. O, Batista, M. C. A., Sargent, S. A., Oliveira Junior, L. F. G., Pagani, A. A. C., & Carnelossi, M. A. G. (2019). Calcium application via hydrocooling and edible coating for the conservation and quality of cashew apples. Scientia Horticulturae, 256, 108531.
  • Pavinatto, A., Mattos, A. V. A., Malpass, A. C. G., Okura, M. H., Balogh, D. T. & Sanfelice, R. C. (2020). Coating with chitosan-based edible films for mechanical/biological protection of strawberries. International Journal of Biological Macromolecules, 151, 1004–1011.
  • Formiga, A. S., Junior, J. S. P., Pereira, E. M., Cordeiro, I. N. F., & Mattiuz, B. H. (2019). Use of edible coatings based on hydroxypropyl methylcellulose and beeswax in the conservation of red guava ‘Pedro Sato’. Food Chemistry, 290, 144–151.
  • Mannozzi, C., Cecchini, J. P., Tylewicz, U., Siroli, L., Patrignani, F., Lanciotti, R. Rocculi, P., Rosa, M., & Romani, S. (2017). Study on the efficacy of edible coatings on quality of blueberry fruits during shelf-life. LWT - Food Science and Technology, 85, 440-444.
  • Zhang, L., Liu, Z., Wang, X., Dong, S., Sun, Y., & Zhao, Z. (2019). The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricusbisporus). Postharvest Biology and Technology, 155, 47–56.
  • Alves, M. M., Gonçalves, M. P., & Rocha, C. M. R. (2017). Effect of ferulic acid on the performance of soy protein isolate-based edible coatings applied to fresh-cut apples. LWT - Food Science and Technology, 80, 409-415.
  • Trevino-Garza, M. Z., García, S., Heredia, N., Alanís-Guzmánc, M.G., & Arévalo-Niño, K. (2017). Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus). Postharvest Biology and Technology, 128, 63–75.
  • Song, J., Wang, X., Li, D., Liu, C., Yang, Q. & Zhang, M. (2018). Effect of starch osmo-coating on carotenoids, colour and microstructure of dehydrated pumpkin slices. Journal of Food Science and Technology, 55(8), 3249–3256.
  • Garcia, C. C., Caetano, L. C., Silva, K. S., & Mauro, M. A. (2014). Influence of Edible Coating on the Drying and Quality of Papaya (Carica papaya). Food Bioprocess Technol, 7, 2828–2839.
  • Lenart, A., & Piotrowski, D. (2001). Drying Characteristics of Osmotically Dehydrated Fruits Coated with Semipermeable Edible Films. Drying Technology, 19(5), 849–877.
  • Matuska, M., Lenart, A., & Lazarides, H. N. (2006). On the use of edible coatings to monitor osmotic dehydration kinetics for minimal solids uptake. Journal of Food Engineering, 72, 85–91.
  • Khin, M. M., Zhou, W., & Yeo, S. Y. (2007). Mass transfer in the osmotic dehydration of coated apple cubes by using maltodextrin as the coating material and their textural properties. Journal of Food Engineering, 81, 514–522.
  • Lenart, A., & Dabrowska, R. (1999). Kinetics of Osmotic Dehydration of Apples with Pectin Coatings. Drying Technology, 17(7&8), 1359-1373.
  • Baysal, T., Bilek, S. E., & Apaydın, E. (2010). The effect of corn zein edible film coating on intermediate moisture apricot (prunusarmenica l.) quality. Gıda, 35(4), 245-249.
  • Garcia, M., Díaz, R., Martínez, Y., & Casariego, A. (2010). Effects of chitosan coating on mass transfer during osmotic dehydration of papaya. Food Research International, 43, 1656–1660.
  • Talens, P., Pérez-Masía, R., Fabra, M. J., Vargas, M., & Chiralt, A. (2012). Application of edible coatings to partially dehydrated pineapple for use in fruit–cereal products. Journal of Food Engineering, 112, 86–93.
  • Hossein, E., Farzaneh, P., Fatemian H., & Asadi, H. (2013). Influence of Edible Coating and Drying Methods on Quality and Thermal Properties of Apple Slices. World Applied Sciences Journal, 28(12), 2182-2187.
  • Silva, K. S., Garcia, C. C., Amado, L. R., & Mauro, M. A. (2015). Effects of Edible Coatings on Convective Drying and Characteristics of the Dried Pineapple.Food Bioprocess Technol, 8, 1465–1475.
  • Galvao, A. M. M. T., Rodrigues, S., & Fernandes, F. A. D. (2020). Probiotic dried apple snacks: Development of probiotic coating and shelf-life studies. Journal of Food Processing Preservation, 14974, 1-10.
  • Santagata, G., Mallardoa, S., Fasulo, G., Lavermicocca, P., Valerio, F., Biase, M., Stasio, M., Malinconico, M., & Volpe, M. G. (2018). Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits. Food Chemistry, 258, 104–110.
  • Giray, E., Akpınar Borazan, A., & Koçkar, Ö. M. (2019). Effect of Edible Coating on Rehydration Kinetics and Color of Dried Carrot, 5th International Congress on Natural and Engineering Sciences, 13-17.
  • Sakooei-Vayghan, R., Peighambardoust, S. H., Hesaria, J., & Peressini, D. (2020). Effects of osmotic dehydration (with and without sonication) and pectin based coating pretreatments on functional properties and color of hot-air dried apricot cubes. Food Chemistry, 311, 125978.
  • Avelar, M. H. M., Silva, L. B., Azevedo, F. B., & Efraim, P. (2019). A byproduct of uvaia (Eugenia pyriformis) processing as a natural source for coloring sugar hard-panning confections. Journal of Food Process Engineering, 13250, 1.
  • Xing, Y., Li, X., Xu, Q., Yun, J., Lu, Y., & Tang, Y. (2011). Effects of chitosan coating enriched with cinnamon oil on qualitative properties of sweet pepper (Capsicum annuum L.). Food Chemistry, 124, 1443–1450.
  • Aldana, D. S., Ochoa, S. A., Aguilar, C. N., Esquivel, J. C. C., & Moorillon, G. V. N. (2015). Antibacterial activity of pectic-based edible films incorporated with Mexican lime essential oil. Food Control, 50, 907-912.
  • Kalaycıoğlu, Z., Torlak, E., Akın-Evingür, G., Özen, İ, F., & Erim, F. B. (2017). Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. International Journal of Biological Macromolecules, 101, 882–888.
  • Dash, K. K., Ali, N. A., Das, D., & Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules, 139, 449–458.
  • Moghimi, R., Aliahmadi, A., & Rafati, H. (2017). Antibacterial hydroxypropyl methyl cellulose edible fms containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydrate Polymers, 175, 241–248.
  • Costa, C., Conte, A., Buonocore, G. G., Lavorgna, M., & Nobile, M. A. (2012). Calcium-alginate coating loaded with silver montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Research International, 48, 164–169.
  • Bustos, C. R. O., Alberti, R. F. V., & Matiacevich, S. B. (2016). Edible antimicrobial films based on microencapsulated lemongrass oil. J Food Sci Technol, 53(1), 832–839.
  • Mohkam, A. M., Garavand, F., Dehnad, D., Keramata, J., & Nasirpour, A. (2020). Physical, mechanical, thermal and structural characteristics of nanoencapsulated vitamin E loaded carboxymethyl cellulose films. Progress in Organic Coatings, 138, 105383.
  • Mendez, E. J. S., Vicente, A., Pinheiro, A. C., Ballesteros, L. F., Silva, P., García, R. R., Castillo, F. D. H., Jiménez, M. L. V. D., López, M .L. F., Quintanilla, J. A. V., Ramos, F. M. P., Lomeli, D. A. C., &Rodrigueza, D. J. (2019). Application of edible nanolaminate coatings with antimicrobial extract of Flourensiacernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 150, 19–27.
  • United Nations Sustainable Development Goals (2021). Retrieved from https://www.un.org/sustainabledevelopment/hunger/, 05.03.2021.

Taze ve Kuru Meyve ve Sebzelerde Yenilebilir Film ve Kaplama Uygulamaları

Year 2021, Volume: 8 Issue: 2, 1073 - 1085, 31.12.2021
https://doi.org/10.35193/bseufbd.996827

Abstract

Gıda paketlemede kullanılan teknikler küresel trendlere, teknolojideki değişimlere, doğaya karşı sorumluluk bilincine ve tüketici beklentilerine bağlı olarak değişmektedir. Ambalaj endüstrisinde son yıllarda kullanılan yeni tekniklerden biri de yenilebilir film ve kaplamalardır. Yenilebilir film ve kaplamalar, yiyeceklerin üzerine ince bir tabaka halinde uygulanan ve yiyeceklerle birlikte tüketilebilen biyomalzemelerdir. Farklı kaynaklardan elde edilen film ve kaplamalar farklı uygulama teknikleri ile gıdalara uygulanmaktadır. Filmler ve kaplamalar, taze meyve ve sebzelerin yanı sıra kuru gıdalara da uygulanabilir. Bununla birlikte, özellikle taze meyve ve sebzeler olmak üzere gıdaların üzerine film ve kaplama uygulama operasyonlarının araştırılması çok önemli bir rol oynamaktadır. Bu derlemede, son 20 yılda yapılan araştırmalara göre film ve kaplamaların sadece gıda (taze ve kuru meyve ve sebzeler) özelliklerine etkileri değil, uygulanan prosedürler de özetlenmiş ve tartışılmıştır.

References

  • Otoni, C. G., Avena‐Bustillos, R. J., Azeredo, H. M. C., Lorevice, M. V., Moura, M. R., Mattoso, L. H. C., & McHugh, T. H. (2017). Recent Advances on Edible Films Based on Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 16, 1151-1169.
  • Cemeroğlu, B. (2003). Meyve ve Sebze İşleme Teknolojisi, Gıda Teknolojisi Derneği - Ankara Üniversitesi Ziraat Fakültesi Gıda Mühendisliği Bölümü, 1, 246-251.
  • Pavlath, A. E., & Orts, W. (2009). Edible Films and Coatings: Why, What, and How?. In K. Huber, M. Embuscado (Eds.), Edible Films and Coatings for Food Applications Springer, New York, 1-23.
  • Erkmen, O., & Barazi, A. O. (2018). General Characteristics of Edible Films. Journal of Food Biotechnology Research, 2(1).
  • Mellinas, C. Valdes, A., Ramos, M., Burgos, N., Garrigos, M. C., & Jimenez, A. (2016). Active edible films: Current state and future trends. Journal of Applied Polymer Science, 1-15.
  • Falguera, V., Quintero, J. P., Jimenez, A., Munoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22, 292-303.
  • Han, J. H. (2014). Edible Films and Coatings: A Review, In J. H. Han (Ed.), Innovations in Food Packaging, Plano, TX. Elsevier Ltd., 213-241.
  • Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: A review. Trends in Food Science, 8, 228-237.
  • Alvarez, M. V., Ponce, A. G., & Moreira, M. R. (2013). Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT - Food Science and Technology, 50, 78-87.
  • Calderon-Castro, A., Vega-Garcia, M. O., Zazueta-Morales, J. J., Fitch-Vargas, P. R., Carrillo-Lopez, A., Gutierrez-Dorado, R., Limon-Valenzuela, V., & Aguilar-Palazuelos, E. (2018). Effect of extrusion process on the functional properties of high amylose corn starch edible films and its application in mango (Mangifera indica L.) cv. Tommy Atkins. J Food Sci Technol, 55(3), 905–914.
  • Marquez, G. R., Pierro, P., Mariniello, L., Esposito, M., Giosafatto, C. V. L., & Porta, R. (2017). Fresh-cut fruit and vegetable coatings by transglutamin a secrosslinked whey protein/pectin edible films, LWT - Food Science and Technology, 75, 124-130.
  • Song, Z., Li, F., Guan, H. Xu, Y., Fu, Q., & Li, D. (2017). Combination of nisin and ε-polylysine with chitosan coating inhibits the white blush of fresh-cut carrots. Food Control, 74, 34-44.
  • Ali, A., Noh, N. M., & Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packaging and Shelf Life, 3, 56-61.
  • Gol, N. B., Patel, P. R., & Rao, T. V. R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan.Postharvest Biology and Technology, 85, 185–195.
  • Guimarães, I. C., dos Reis, K. C., Tavares Menezes, E. G., Siriano Borges, P. R., Costa Rodrigues, A., Leal, R., Hernandes, T., Nunes de Carvalho, E. H., & Vilas-Boas, E. V. B. (2016). Combined effect of starch/montmorillonite coating and passive MAP in antioxidant activity, total phenolics, organic acids and volatile of fresh-cut carrots. International Journal of Food Sciences and Nutrition, 67, 141–152.
  • Mastromatteo, M., Mastromatteo, M., Conte, A., & Del Nobile, M. A. (2011). Combined effect of active coating and MAP to prolong the shelf life of minimally processed kiwifruit (Actinidia deliciosa cv. Hayward). Food Research International, 44, 1224–1230.
  • Sanchís, E., Ghidelli, C., Sheth, C. C., Mateos, M., Palou, L., & Pérez-Gago, M. B. (2017). Integration of antimicrobial pectin-based edible coating and active modified atmosphere packaging to preserve the quality and microbial safety of fresh-cut persimmon (Diospyros kaki Thunb. cv. Rojo Brillante). Journal of the Science of Food and Agriculture, 97, 252–260.
  • Ghidelli, C., & Pérez-Gago, M. B. (2018). Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Critical Reviews in Food Science and Nutrition, 58(4), 662–679.
  • Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). Global Food Losses and Food Waste: Extent Causes and Prevention. Rome, Food and Agriculture Organization (FAO) of the United Nations.
  • FAO. (2019). The State of Food and Agriculture, Muving Forward on food loss and waste reduction. Food and Agriculture Organization of the United Nations.
  • Soliva-Fortuny, R., Rojas-Graü, M. A., & Martín-Belloso, O. (2012). Polysaccharide coatings, In E. A. Baldwin, R. Hagenmaier, J. Bai (Eds.), Edible Coatings and Films to Improve Food Quality, Boca Raton, CRC Press Taylor & Francis Group, 103-127.
  • Zhang, Y., Rempel, C., & Mclaren, D. (2014a). Edible Coating and Film Materials: Carbohydrates, In J. H. Han (Ed.), Innovations in Food Packaging Plano, TX. Elsevier Ltd., 305-323.
  • Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3), 237-248.
  • Tural, S., Sarıcaoğlu, F. T., & Turhan, S. (2017). Yenilebilir Film ve Kaplamalar: Üretimleri, Uygulama Yöntemleri, Fonksiyonları ve Kaslı Gıdalarda Kullanımları. Akademik Gıda, 15(1), 84-94.
  • Tural, S., Sarıcaoğlu, F. T., & Turhan, S. (2017). Yenilebilir Film ve Kaplamalar: Üretimleri, Uygulama Yöntemleri, Fonksiyonları ve Kaslı Gıdalarda Kullanımları. Akademik Gıda, 15(1), 84-94.
  • Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent Advances in Edible Coatings for Fresh and Minimally Processed Fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496-511.
  • Perez-Gago, M. B., & Rhim, J. W. (2014). Edible Coating and Film Materials: Lipid Bilayers and Lipid Emulsions, J. H. Han (Ed.), Innovations in Food Packaging Plano, TX. Elsevier Ltd., pp. 325-350.
  • Hall, D. J. (2012). Edible Coatings from Lipids, Waxes and Resins, In E. A. Baldwin, R. Hagenmaier, J. Bai (Eds.), Edible Coatings and Films to Improve Food Quality, Boca Raton, CRC Press Taylor & Francis Group., 79-101.
  • Ansorena, M. R., Pereda M., & Marcovich, N. E. (2018). Edible Films. In T. Gutiérrez (Eds.), Polymers for Food Applications, Springer, Cham., 335-368.
  • Baldwin, E. A., & Hagenmaier, R. D. (2011). Introduction. In E. A. Baldwin, R. Hagenmaier, J. Bai (Eds.), Edible Coatings and Films to Improve Food Quality, 2nd ed., CRC Press., 1-12.
  • Dubey, N. K., & Dubey, R. (2020). Edible films and coatings: an update on recent advances, In K. Pal, I. Banerjee, P. Sarkar, D. Kim, W. P. Deng, N. K. Dubey, K. Majumder (Eds.), Biopolymer-Based Formulations, Elsevier, 675-695.
  • Dhall, R. K. (2013). Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Critical Reviews in Food Science and Nutrition, 53, 435–450.
  • Lin, D., & Zhao, Y. (2007). Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 6, 6-75.
  • Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018), Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107.
  • Dhumal, C. V., & Sarkar, P. (2018). Composite edible films and coatings from food-grade biopolymers. Journal of Food Science and Technology, 55(11), 4369–4383.
  • Parreidt, T. S., Schmid, M., & Müller, K. (2018). Effect of Dipping and Vacuum Impregnation Coating Techniques with Alginate Based Coating on Physical Quality Parameters of Cantaloupe Melon. Journal of Food Science, 83(4), 929-936.
  • Suhag, R., Kumar, N., Petkoska, A. T., & Upadhyay, A. (2020). Film formation and deposition methods of edible coating on food products: A review. Food Research International, 136, 109582.
  • Dangaran, K., Tomasula, P. M., & Qi, P. (2009). Structure and Function of Protein-Based Edible Films and Coatings. In K. Huber, M. Embuscado (Eds.), Edible Films and Coatings for Food Applications Springer, New York, NY. 25-56.
  • Debeaufort F., & Voilley A. (2009). Lipid-Based Edible Films and Coatings. In K. Huber, M. Embuscado (Eds.), Edible Films and Coatings for Food Applications Springer, New York, NY., 135-168.
  • Dhanapal, A., Sasikala, P., Rajamani, L., Kavitha, V., Yazhini, G., & Banu, M. S. (2012). Edible films from Polysaccharides. Food Science and Quality Management, 3, 9-17.
  • Zhang, Y., Rempel, C., & Mclaren, D. (2014b). Thermoplastic Starch, In J. H. Han (Ed.), Innovations in Food Packaging, TX. Elsevier Ltd., Plano, 305-323.
  • Janjarasskul, T., & Krochta, J. M. (2010). Edible Packaging Materials. The Annual Review of Food Science and Technology, 1, 415-448.
  • Leceta, I., Molinaro, S., Guerrero P., Kerry, J. P., & Caba, K. (2015). Quality attributes of map packaged ready-to-eat baby carrots by using chitosan-based coatings. Postharvest Biology and Technology, 100, 142–150.
  • Thakur, R., Pristijono, P., Bowyer, M., Singh, S. P., Scarletta, C. J., Stathopoulos, C. E., &Vuong, Q. V. (2019). A starch edible surface coating delays banana fruit ripening. LWT - Food Science and Technology, 100, 341–347.
  • Limchoonwong, N., Sricharoen, P., Techawongstien, S. & Chanthai, S. (2016). An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan. Food Chemistry, 200, 223–229.
  • Aquino, A. B., Blank, A. F., & Santana, L. C. L. A. (2015). Impact of edible chitosan–cassava starch coatings enriched with Lippiagracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chemistry, 171, 108–116.
  • Özdemir, K. S., & Gökmen V. (2017). Extending the shelf-life of pomegranate arils with chitosan-ascorbic acid coating. LWT - Food Science and Technology, 76, 172-180.
  • Lago-Vanzela, E. S., Nascimento, P. Fontes, E. A. F., Mauro, M. A., & Kimura, M. (2013). Edible coatings from native and modified starches retain carotenoids in pumpkin during drying. LWT - Food Science and Technology, 50, 420-425.
  • Moreira, M. R., Roura, S. I., & Ponce, A. (2011). Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh cut broccoli. LWT - Food Science and Technology, 44, 2335-2341.
  • Zhang, L., Chen, F., Lai, S., Wang, H., & Yang, H. (2018). Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT - Food Science and Technology, 96, 604–611.
  • Torres-León, C., Vicente, A. A., Flores-López, M. L., Rojas, R., Serna-Cock, L., Alvarez-Pérez, O. B., & Aguilar, C. N. (2018). Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT - Food Science and Technology, 97, 624–631.
  • Nawab, A., Alam, F., & Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato (Solanum lycopersicum) fruit. International Journal of Biological Macromolecules, 103, 581–586.
  • Tesfay, S. Z., & Magwaza, L. S. (2017). Evaluating the efficacy of moringa leaf extract, chitosan and carboxymethyl cellulose as edible coatings for enhancing quality and extending postharvest life of avocado (Persea americana Mill.) fruit. Food Packaging and Shelf Life, 11, 40–48.
  • Zhou, R., Li, Y., Yan, L., & Xie, J. (2011). Effect of edible coatings on enzymes, cell-membrane integrity, and cell-wall constituents in relation to brittleness and firmness of Huanghua pears (Pyrus pyrifolia Nakai, cv. Huanghua) during storage. Food Chemistry, 124, 569–575.
  • Sena, E. O. A., Silva, P. S. O, Batista, M. C. A., Sargent, S. A., Oliveira Junior, L. F. G., Pagani, A. A. C., & Carnelossi, M. A. G. (2019). Calcium application via hydrocooling and edible coating for the conservation and quality of cashew apples. Scientia Horticulturae, 256, 108531.
  • Pavinatto, A., Mattos, A. V. A., Malpass, A. C. G., Okura, M. H., Balogh, D. T. & Sanfelice, R. C. (2020). Coating with chitosan-based edible films for mechanical/biological protection of strawberries. International Journal of Biological Macromolecules, 151, 1004–1011.
  • Formiga, A. S., Junior, J. S. P., Pereira, E. M., Cordeiro, I. N. F., & Mattiuz, B. H. (2019). Use of edible coatings based on hydroxypropyl methylcellulose and beeswax in the conservation of red guava ‘Pedro Sato’. Food Chemistry, 290, 144–151.
  • Mannozzi, C., Cecchini, J. P., Tylewicz, U., Siroli, L., Patrignani, F., Lanciotti, R. Rocculi, P., Rosa, M., & Romani, S. (2017). Study on the efficacy of edible coatings on quality of blueberry fruits during shelf-life. LWT - Food Science and Technology, 85, 440-444.
  • Zhang, L., Liu, Z., Wang, X., Dong, S., Sun, Y., & Zhao, Z. (2019). The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricusbisporus). Postharvest Biology and Technology, 155, 47–56.
  • Alves, M. M., Gonçalves, M. P., & Rocha, C. M. R. (2017). Effect of ferulic acid on the performance of soy protein isolate-based edible coatings applied to fresh-cut apples. LWT - Food Science and Technology, 80, 409-415.
  • Trevino-Garza, M. Z., García, S., Heredia, N., Alanís-Guzmánc, M.G., & Arévalo-Niño, K. (2017). Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus). Postharvest Biology and Technology, 128, 63–75.
  • Song, J., Wang, X., Li, D., Liu, C., Yang, Q. & Zhang, M. (2018). Effect of starch osmo-coating on carotenoids, colour and microstructure of dehydrated pumpkin slices. Journal of Food Science and Technology, 55(8), 3249–3256.
  • Garcia, C. C., Caetano, L. C., Silva, K. S., & Mauro, M. A. (2014). Influence of Edible Coating on the Drying and Quality of Papaya (Carica papaya). Food Bioprocess Technol, 7, 2828–2839.
  • Lenart, A., & Piotrowski, D. (2001). Drying Characteristics of Osmotically Dehydrated Fruits Coated with Semipermeable Edible Films. Drying Technology, 19(5), 849–877.
  • Matuska, M., Lenart, A., & Lazarides, H. N. (2006). On the use of edible coatings to monitor osmotic dehydration kinetics for minimal solids uptake. Journal of Food Engineering, 72, 85–91.
  • Khin, M. M., Zhou, W., & Yeo, S. Y. (2007). Mass transfer in the osmotic dehydration of coated apple cubes by using maltodextrin as the coating material and their textural properties. Journal of Food Engineering, 81, 514–522.
  • Lenart, A., & Dabrowska, R. (1999). Kinetics of Osmotic Dehydration of Apples with Pectin Coatings. Drying Technology, 17(7&8), 1359-1373.
  • Baysal, T., Bilek, S. E., & Apaydın, E. (2010). The effect of corn zein edible film coating on intermediate moisture apricot (prunusarmenica l.) quality. Gıda, 35(4), 245-249.
  • Garcia, M., Díaz, R., Martínez, Y., & Casariego, A. (2010). Effects of chitosan coating on mass transfer during osmotic dehydration of papaya. Food Research International, 43, 1656–1660.
  • Talens, P., Pérez-Masía, R., Fabra, M. J., Vargas, M., & Chiralt, A. (2012). Application of edible coatings to partially dehydrated pineapple for use in fruit–cereal products. Journal of Food Engineering, 112, 86–93.
  • Hossein, E., Farzaneh, P., Fatemian H., & Asadi, H. (2013). Influence of Edible Coating and Drying Methods on Quality and Thermal Properties of Apple Slices. World Applied Sciences Journal, 28(12), 2182-2187.
  • Silva, K. S., Garcia, C. C., Amado, L. R., & Mauro, M. A. (2015). Effects of Edible Coatings on Convective Drying and Characteristics of the Dried Pineapple.Food Bioprocess Technol, 8, 1465–1475.
  • Galvao, A. M. M. T., Rodrigues, S., & Fernandes, F. A. D. (2020). Probiotic dried apple snacks: Development of probiotic coating and shelf-life studies. Journal of Food Processing Preservation, 14974, 1-10.
  • Santagata, G., Mallardoa, S., Fasulo, G., Lavermicocca, P., Valerio, F., Biase, M., Stasio, M., Malinconico, M., & Volpe, M. G. (2018). Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits. Food Chemistry, 258, 104–110.
  • Giray, E., Akpınar Borazan, A., & Koçkar, Ö. M. (2019). Effect of Edible Coating on Rehydration Kinetics and Color of Dried Carrot, 5th International Congress on Natural and Engineering Sciences, 13-17.
  • Sakooei-Vayghan, R., Peighambardoust, S. H., Hesaria, J., & Peressini, D. (2020). Effects of osmotic dehydration (with and without sonication) and pectin based coating pretreatments on functional properties and color of hot-air dried apricot cubes. Food Chemistry, 311, 125978.
  • Avelar, M. H. M., Silva, L. B., Azevedo, F. B., & Efraim, P. (2019). A byproduct of uvaia (Eugenia pyriformis) processing as a natural source for coloring sugar hard-panning confections. Journal of Food Process Engineering, 13250, 1.
  • Xing, Y., Li, X., Xu, Q., Yun, J., Lu, Y., & Tang, Y. (2011). Effects of chitosan coating enriched with cinnamon oil on qualitative properties of sweet pepper (Capsicum annuum L.). Food Chemistry, 124, 1443–1450.
  • Aldana, D. S., Ochoa, S. A., Aguilar, C. N., Esquivel, J. C. C., & Moorillon, G. V. N. (2015). Antibacterial activity of pectic-based edible films incorporated with Mexican lime essential oil. Food Control, 50, 907-912.
  • Kalaycıoğlu, Z., Torlak, E., Akın-Evingür, G., Özen, İ, F., & Erim, F. B. (2017). Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. International Journal of Biological Macromolecules, 101, 882–888.
  • Dash, K. K., Ali, N. A., Das, D., & Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules, 139, 449–458.
  • Moghimi, R., Aliahmadi, A., & Rafati, H. (2017). Antibacterial hydroxypropyl methyl cellulose edible fms containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydrate Polymers, 175, 241–248.
  • Costa, C., Conte, A., Buonocore, G. G., Lavorgna, M., & Nobile, M. A. (2012). Calcium-alginate coating loaded with silver montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Research International, 48, 164–169.
  • Bustos, C. R. O., Alberti, R. F. V., & Matiacevich, S. B. (2016). Edible antimicrobial films based on microencapsulated lemongrass oil. J Food Sci Technol, 53(1), 832–839.
  • Mohkam, A. M., Garavand, F., Dehnad, D., Keramata, J., & Nasirpour, A. (2020). Physical, mechanical, thermal and structural characteristics of nanoencapsulated vitamin E loaded carboxymethyl cellulose films. Progress in Organic Coatings, 138, 105383.
  • Mendez, E. J. S., Vicente, A., Pinheiro, A. C., Ballesteros, L. F., Silva, P., García, R. R., Castillo, F. D. H., Jiménez, M. L. V. D., López, M .L. F., Quintanilla, J. A. V., Ramos, F. M. P., Lomeli, D. A. C., &Rodrigueza, D. J. (2019). Application of edible nanolaminate coatings with antimicrobial extract of Flourensiacernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 150, 19–27.
  • United Nations Sustainable Development Goals (2021). Retrieved from https://www.un.org/sustainabledevelopment/hunger/, 05.03.2021.
There are 87 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ece Giray Tufan 0000-0002-2885-4230

Alev Akpinar Borazan 0000-0002-3815-2101

Ömer Mete Koçkar This is me 0000-0002-8860-9309

Publication Date December 31, 2021
Submission Date September 20, 2021
Acceptance Date October 21, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Giray Tufan, E., Akpinar Borazan, A., & Koçkar, Ö. M. (2021). A Review on Edible Film and Coating Applications for Fresh and Dried Fruits and Vegetables. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 1073-1085. https://doi.org/10.35193/bseufbd.996827