Research Article
BibTex RIS Cite

Synthesis and Characterization of Yttrium Doped Gadolinium Oxide Samples

Year 2022, Volume: 9 Issue: 1, 186 - 194, 30.06.2022
https://doi.org/10.35193/bseufbd.1002866

Abstract

In this study, detailed information about the un-doped and yttrium (Y)-doped gadolinium oxide (Gd2O3) structures produced by the wet chemical synthesis was presented. For the characterization of the samples, X-ray diffraction analysis, Fourier transform infrared spectroscopy,and scanning electron microscopy technique were used. It was observed that the lattice parameter, crystallite size, and crystallization degree changed with the amount of Y. The crystallite sizes of the samples were calculated in the range of 31.17 nm to 35.49 nm. The crystallization values of the samples were found between 88.6% and 90.2%. It was determined that the morphology of Gd2O3 was affected by the amount of Y.

References

  • MTA Genel Müdürlüğü. (2017). Dünyada ve Türkiye’de Nadir Toprak Elementleri (NTE). Fizibilite Etütleri Daire Başkanlığı Ankara. https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/maden-serisi/dunyada_ve_turkiyede_nadir_toprak_elementleri.pdf. (19.09.2021).
  • Celep, O., Yazıcı, E. Y., & Deveci, H. (2021). Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. GümüşhaneÜniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(1), 264-280.
  • Perevalov, T. V., Dolbak, A. E., Shvets, V. A., Gritsenko, V. A., Asanova, T. I., & Erenburg, S. B. (2014). Atomic and electronic structure of gadolinium oxide. The European Physical Journal-Applied Physics, 65(1), 10702.
  • Whba, F., Mohamed, F., Rosli, N. R. A. M., Rahman, I. A., & Idris, M. I. (2021). The crystalline structure of gadolinium oxide nanoparticles (Gd2O3-NPs) synthesized at different temperatures via X-ray diffraction (XRD) technique. Radiation Physics and Chemistry, 179, 109212.
  • Özdemir, H. (2020). Preparation of Gd2O3 Nanomaterials via Solution Combustion Synthesis for Oxidative Coupling of Methane. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 21(1), 165-172.
  • Bolukbasi, M. J., Middleburgh, S. C., Dahlfors, M., & Lee, W. E. (2021). Performance and economic assessment of enriched gadolinia burnable absorbers. Progress in Nuclear Energy, 137, 103752.
  • Jamnezhad, H., & Jafari, M. (2016). Structure of Gd2O3 nanoparticles at high temperature. Journal of Magnetism and Magnetic Materials, 408, 164-167.
  • Cheraghali, R., & Aghazadeh, M. (2016). A Simple and Facile Electrochemical Route to Synthesis of Metal Hydroxides and Oxides Ultrafine Nanoparticles (M=La, Gd, Ni and Co). Analytical & Bioanalytical Electrochemistry, 8(1), 64-77.
  • Majeed, S., & Shivashankar, S. A. (2014). Microspherical, hierarchical structures of blue–green-emitting Dy: GdOOH and Dy: Gd2O3. Materials Letters, 125, 136-139.
  • Tamrakar, R. K., Tiwari, N., Dubey, V., & Upadhyay, K. (2015). Infrared spectroscopy and luminescence spectra of Yb3+ doped ZrO2 nanophosphor. Journal of Radiation Research and Applied Sciences, 8(3), 399-403.
  • Bedekar, V., Dutta, D. P., & Tyagi, A. K. (2010). White light emission from spin coated Gd2O3: Dynano phosphors synthesized using polyol technique. Journal of Nanoscience and Nanotechnology, 10(12), 8234-8238.
  • Santos, M. H., Oliveira, M. D., Souza, L. P. D. F., Mansur, H. S., & Vasconcelos, W. L. (2004). Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Materials Research, 7(4), 625-630.
  • Ersöz, M., Işıtan, A., & Balaban, M. (2018). Nano Teknoloji I NanoteknolojininTemelleri, Bilal Ofset, Denizli. ISBN 978-975-6992-80-7.
  • de Moura, A. P., Oliveira, L. H., Nogueira, I. C., Pereira, P. F., Li, M. S., Longo, E., & Rosa, I. L. (2014). Synthesis, structural and photophysical properties of Gd2O3: Eu3+ nanostructures prepared by a microwave sintering process. Advances in Chemical Engineering and Science, 4(03), 374-388.
  • Durante, L. P., Rocha, L. A., Dos Santos, D. P., Coelho, F. O., Schiavon, M. A., Ribeiro, S. J. L., & Ferrari, J. L. (2015). Synthesis, characterization and evaluation of scintillation properties of Eu3+-doped Gd2O3 obtained using PEG as precursor. Journal of Alloys and Compounds, 648, 467-473.
  • Glaspell, G., Wilkins, J. R., Anderson, J., & El-Shall, M. S. (2008). Formation of rare-earth upconverting nanoparticles using laser vaporization controlled condensation. In Infrared Technology and Applications XXXIV. 17-20 March, Florida, 6940, 69403B.
  • Das, G. K., Heng, B. C., Ng, S. C., White, T., Loo, J. S. C., D’Silva, L., & Tan, T. T. Y. (2010). Gadolinium oxide ultranarrownanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir, 26(11), 8959-8965.
  • Huang, D., Zhang, X., Liu, J., & Zhang, D. (2010). Synthesis of polycrystalline Yb: Gd3Ga5O12 nanopowders by homogeneous precipitation method. Journal of Wuhan University of Technology-Mater. Sci. Ed., 25(1), 123-126.
  • Szysiak, A., Zhydachevskii, Y., &Suchocki, A. (2014). Upconversion in Gd2O3: Er, Yb nanophosphors obtained by hydrothermal and reverse microemulsion methods. In International Conference on Oxide Materials for Electronic Engineering-fabrication, properties and applications (OMEE-2014). 26-30 May, Lviv, 155-156.
  • Tamrakar, R. K., &Bisen, D. P. (2015). Thermoluminescence studies of ultraviolet and gamma irradiated erbium (III)-and ytterbium (III)-doped gadolinium oxide phosphors. Materials Science in Semiconductor Processing, 33, 169-188.
  • Kamińska, I., Elbaum, D., Sikora, B., Kowalik, P., Mikulski, J., Felcyn, Z., &Fronc, K. (2017). Single-step synthesis of Er3+ and Yb3+ ions doped molybdate/ Gd2O3 core–shell nanoparticles for biomedical imaging. Nanotechnology, 29(2), 025702.
  • Sivasamy, R., Venugopal, P., &Mosquera, E. (2020). Synthesis of Gd2O3/CdO composite by sol-gel method: Structural, morphological, optical, electrochemical and magnetic studies. Vacuum, 175, 109255.
  • Zekri, M., Herrmann, A., Erlebach, A., Damak, K., Rüssel, C., Sierka, M., & Maâlej, R. (2021). The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations. Materials, 14(12), 3265.
  • Madshal, M. A., El-Damrawi, G., Abdelghany, A. M., & Abdelghany, M. I. (2021). Structural studies and physical properties of Gd2O3-doped borate glass. Journal of Materials Science: Materials in Electronics, 32, 14642–14653.
  • Kulkarni, S., Duttagupta, S., & Phatak, G. (2015). Sol–gel synthesis and protonic conductivity of yttrium doped barium cerate. Journal of Sol-Gel Science and Technology, 74(1), 94-102.
  • Loureiro, F. J., Ramasamy, D., Ribeiro, A. F., Mendes, A., & Fagg, D. P. (2020). Underscoring the transport properties of yttrium-doped barium cerate in nominally dry oxidising conditions. Electrochimica Acta, 334, 135625.
  • Loureiro, F. J., Shakel, Z., Graça, V. C., & Fagg, D. P. (2021). Effect of humidification on the grain boundary conductivity and space-charge effects in yttrium-doped barium cerate. International Journal of Hydrogen Energy, 46, 23828-23838.
  • Kelley, K. P., Sachet, E., Shelton, C. T., & Maria, J. P. (2017). High mobility yttrium doped cadmium oxide thin films. APL Materials, 5(7), 076105.
  • Devkar, J. V., Patankar, K. K., Ghone, D. M., & Mathe, V. L. (2021). Investigations of yttrium-doped cobalt–zinc ferrite as potential material for transducer application. Emergent Materials, 1-9.
  • Babilo, P., Uda, T., & Haile, S. M. (2007). Processing of yttrium-doped barium zirconate for high proton conductivity. Journal of Materials Research, 22(5), 1322-1330.
  • Shim, J. H., Gür, T. M., & Prinz, F. B. (2008). Proton conduction in thin film yttrium-doped barium zirconate. Applied Physics Letters, 92(25), 253115.
  • Yamazaki, Y., Hernandez-Sanchez, R., &Haile, S. M. (2009). High total proton conductivity in large-grained yttrium-doped barium zirconate. Chemistry of Materials, 21(13), 2755-2762.
  • Shimada, H., Takami, E., Ohba, F., Takei, C., Hagiwara, A., & Ihara, M. (2011). Effect of yttrium-doped barium zirconate on reactions in electrochemically active zone of nickel/yttria-stabilized zirconia anodes. Journal of the Electrochemical Society, 158(11), B1341.
  • Blanc, F., Sperrin, L., Lee, D., Dervişoğlu, R., Yamazaki, Y., Haile, S. M., Paëpe, G. D., & Grey, C. P. (2014). Dynamic nuclear polarization NMR of low-γ nuclei: structural insights into hydrated yttrium-doped BaZrO3. The Journal of Physical Chemistry Letters, 5(14), 2431-2436.
  • Xie, H., Biswas, M., Fan, L., Li, Y., & Su, P. C. (2017). Rapid thermal processing of chemical-solution-deposited yttrium-doped barium zirconate thin films. Surface and Coatings Technology, 320, 213-216.
  • Iguchi, F., & Hinata, K. (2021). High-Temperature Elastic Properties of Yttrium-Doped Barium Zirconate. Metals, 11(6), 968.
  • Rajan, A. R., Rajan, A., John, A., Vilas, V., & Philip, D. (2019). Biogenic synthesis of nanostructured Gd2O3: Structural, optical and bioactive properties. Ceramics International, 45(17), 21947-21952.
  • Ortega-Berlanga, B., Hernández-Adame, L., del Angel-Olarte, C., Aguilar, F., Rosales-Mendoza, S., & Palestino, G. (2020). Optical and biological evaluation of upconverting Gd2O3: Tb3+/Er3+ particles as microcarriers of a Zika virus antigenic peptide. Chemical Engineering Journal, 385, 123414.
  • Cullity, B.D. (1978). Elements of X-ray Diffraction, 2nd ed., Addison–Wesley Publishing Company, Massachusetts, 100-105.
  • Kaygili, O. (2014). Synthesis and characterization of Na2O–CaO–SiO2 glass–ceramic. Journal of Thermal Analysis and Calorimetry, 117(1), 223-227.
  • Selvalakshmi, T., & ChandraBose, A. (2012). Optical study on gadoliniumoxide nano particles synthesized by hydro thermal method. Advanced Materials Research, 585, 105-109.
  • Ge, R., Zhao, X., Qin, L., Feng, Z., Dong, B., Chen, Q., & Li, Q. (2011). Synthesisand Optical Properties of Gd2O3:Er3+,Yb3+Microcrystal Using Different Solvent. Symposium on Photonics and Optoelectronics (SOPO).16-18 May, Wuhan, 1-6.
  • Azizian, G., Riyahi-Alam, N., Haghgoo, S., Moghimi, H.R., Zohdiaghdam, R., Rafiei, B., & Gorji, E. (2012). Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging.. Nanoscale Research Letters, 7, 549.
  • Vijayaprasath, G.,Habibulla, I., Dharuman, V., Balasubramanian, S., & Ganesan, R. (2020). Fabrication of Gd2O3 Nanosheet-Modified Glassy Carbon Electrode for Nonenzymatic Highly Selective Electrochemical Detection of Vitamin B2. ACS Omega, 5(29), 17892-17899.
  • Rahman, M.M., Alam, M.M., Asiri, A.M., & Opo, F.A.D.M. (2020). Fabrication of selective and sensitive chemical sensorprobe based on ternarynano-formulated CuO/MnO2/Gd2O3 spikes by hydro thermal approach. Scientific Reports, 10, 20248.

İtriyum Katkılı Gadolinyum Oksit Numunelerinin Sentez ve Karakterizasyonu

Year 2022, Volume: 9 Issue: 1, 186 - 194, 30.06.2022
https://doi.org/10.35193/bseufbd.1002866

Abstract

Bu çalışmada, yaş kimyasal sentez ile üretilen katkısız ve itriyum (Y) katkılı gadolinyum oksit (Gd2O3) yapıların karakterizasyonu hakkında detaylı bilgi sunuldu. Numunelerin karakterizasyonu için, X-ışını kırınımı analizi, Fourier dönüşümlü kızılötesi spektroskopisi ve taramalı elektron mikroskopi tekniği kullanıldı. Örgü parametresinin, kristal büyüklüğünün ve kristalleşme derecesinin Y miktarıyla değişim gösterdiği gözlendi. Numunelerin kristal büyüklükleri, 31,17 nm ile 35,49 nm aralığında hesaplandı. Numunelerin kristalleşme değerleri, % 88,6 ile % 90,2 aralığında bulunmuştur. Gd2O3’ün morfolojisinin Y miktarından etkilendiği belirlendi.

References

  • MTA Genel Müdürlüğü. (2017). Dünyada ve Türkiye’de Nadir Toprak Elementleri (NTE). Fizibilite Etütleri Daire Başkanlığı Ankara. https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/maden-serisi/dunyada_ve_turkiyede_nadir_toprak_elementleri.pdf. (19.09.2021).
  • Celep, O., Yazıcı, E. Y., & Deveci, H. (2021). Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. GümüşhaneÜniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(1), 264-280.
  • Perevalov, T. V., Dolbak, A. E., Shvets, V. A., Gritsenko, V. A., Asanova, T. I., & Erenburg, S. B. (2014). Atomic and electronic structure of gadolinium oxide. The European Physical Journal-Applied Physics, 65(1), 10702.
  • Whba, F., Mohamed, F., Rosli, N. R. A. M., Rahman, I. A., & Idris, M. I. (2021). The crystalline structure of gadolinium oxide nanoparticles (Gd2O3-NPs) synthesized at different temperatures via X-ray diffraction (XRD) technique. Radiation Physics and Chemistry, 179, 109212.
  • Özdemir, H. (2020). Preparation of Gd2O3 Nanomaterials via Solution Combustion Synthesis for Oxidative Coupling of Methane. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 21(1), 165-172.
  • Bolukbasi, M. J., Middleburgh, S. C., Dahlfors, M., & Lee, W. E. (2021). Performance and economic assessment of enriched gadolinia burnable absorbers. Progress in Nuclear Energy, 137, 103752.
  • Jamnezhad, H., & Jafari, M. (2016). Structure of Gd2O3 nanoparticles at high temperature. Journal of Magnetism and Magnetic Materials, 408, 164-167.
  • Cheraghali, R., & Aghazadeh, M. (2016). A Simple and Facile Electrochemical Route to Synthesis of Metal Hydroxides and Oxides Ultrafine Nanoparticles (M=La, Gd, Ni and Co). Analytical & Bioanalytical Electrochemistry, 8(1), 64-77.
  • Majeed, S., & Shivashankar, S. A. (2014). Microspherical, hierarchical structures of blue–green-emitting Dy: GdOOH and Dy: Gd2O3. Materials Letters, 125, 136-139.
  • Tamrakar, R. K., Tiwari, N., Dubey, V., & Upadhyay, K. (2015). Infrared spectroscopy and luminescence spectra of Yb3+ doped ZrO2 nanophosphor. Journal of Radiation Research and Applied Sciences, 8(3), 399-403.
  • Bedekar, V., Dutta, D. P., & Tyagi, A. K. (2010). White light emission from spin coated Gd2O3: Dynano phosphors synthesized using polyol technique. Journal of Nanoscience and Nanotechnology, 10(12), 8234-8238.
  • Santos, M. H., Oliveira, M. D., Souza, L. P. D. F., Mansur, H. S., & Vasconcelos, W. L. (2004). Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Materials Research, 7(4), 625-630.
  • Ersöz, M., Işıtan, A., & Balaban, M. (2018). Nano Teknoloji I NanoteknolojininTemelleri, Bilal Ofset, Denizli. ISBN 978-975-6992-80-7.
  • de Moura, A. P., Oliveira, L. H., Nogueira, I. C., Pereira, P. F., Li, M. S., Longo, E., & Rosa, I. L. (2014). Synthesis, structural and photophysical properties of Gd2O3: Eu3+ nanostructures prepared by a microwave sintering process. Advances in Chemical Engineering and Science, 4(03), 374-388.
  • Durante, L. P., Rocha, L. A., Dos Santos, D. P., Coelho, F. O., Schiavon, M. A., Ribeiro, S. J. L., & Ferrari, J. L. (2015). Synthesis, characterization and evaluation of scintillation properties of Eu3+-doped Gd2O3 obtained using PEG as precursor. Journal of Alloys and Compounds, 648, 467-473.
  • Glaspell, G., Wilkins, J. R., Anderson, J., & El-Shall, M. S. (2008). Formation of rare-earth upconverting nanoparticles using laser vaporization controlled condensation. In Infrared Technology and Applications XXXIV. 17-20 March, Florida, 6940, 69403B.
  • Das, G. K., Heng, B. C., Ng, S. C., White, T., Loo, J. S. C., D’Silva, L., & Tan, T. T. Y. (2010). Gadolinium oxide ultranarrownanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir, 26(11), 8959-8965.
  • Huang, D., Zhang, X., Liu, J., & Zhang, D. (2010). Synthesis of polycrystalline Yb: Gd3Ga5O12 nanopowders by homogeneous precipitation method. Journal of Wuhan University of Technology-Mater. Sci. Ed., 25(1), 123-126.
  • Szysiak, A., Zhydachevskii, Y., &Suchocki, A. (2014). Upconversion in Gd2O3: Er, Yb nanophosphors obtained by hydrothermal and reverse microemulsion methods. In International Conference on Oxide Materials for Electronic Engineering-fabrication, properties and applications (OMEE-2014). 26-30 May, Lviv, 155-156.
  • Tamrakar, R. K., &Bisen, D. P. (2015). Thermoluminescence studies of ultraviolet and gamma irradiated erbium (III)-and ytterbium (III)-doped gadolinium oxide phosphors. Materials Science in Semiconductor Processing, 33, 169-188.
  • Kamińska, I., Elbaum, D., Sikora, B., Kowalik, P., Mikulski, J., Felcyn, Z., &Fronc, K. (2017). Single-step synthesis of Er3+ and Yb3+ ions doped molybdate/ Gd2O3 core–shell nanoparticles for biomedical imaging. Nanotechnology, 29(2), 025702.
  • Sivasamy, R., Venugopal, P., &Mosquera, E. (2020). Synthesis of Gd2O3/CdO composite by sol-gel method: Structural, morphological, optical, electrochemical and magnetic studies. Vacuum, 175, 109255.
  • Zekri, M., Herrmann, A., Erlebach, A., Damak, K., Rüssel, C., Sierka, M., & Maâlej, R. (2021). The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations. Materials, 14(12), 3265.
  • Madshal, M. A., El-Damrawi, G., Abdelghany, A. M., & Abdelghany, M. I. (2021). Structural studies and physical properties of Gd2O3-doped borate glass. Journal of Materials Science: Materials in Electronics, 32, 14642–14653.
  • Kulkarni, S., Duttagupta, S., & Phatak, G. (2015). Sol–gel synthesis and protonic conductivity of yttrium doped barium cerate. Journal of Sol-Gel Science and Technology, 74(1), 94-102.
  • Loureiro, F. J., Ramasamy, D., Ribeiro, A. F., Mendes, A., & Fagg, D. P. (2020). Underscoring the transport properties of yttrium-doped barium cerate in nominally dry oxidising conditions. Electrochimica Acta, 334, 135625.
  • Loureiro, F. J., Shakel, Z., Graça, V. C., & Fagg, D. P. (2021). Effect of humidification on the grain boundary conductivity and space-charge effects in yttrium-doped barium cerate. International Journal of Hydrogen Energy, 46, 23828-23838.
  • Kelley, K. P., Sachet, E., Shelton, C. T., & Maria, J. P. (2017). High mobility yttrium doped cadmium oxide thin films. APL Materials, 5(7), 076105.
  • Devkar, J. V., Patankar, K. K., Ghone, D. M., & Mathe, V. L. (2021). Investigations of yttrium-doped cobalt–zinc ferrite as potential material for transducer application. Emergent Materials, 1-9.
  • Babilo, P., Uda, T., & Haile, S. M. (2007). Processing of yttrium-doped barium zirconate for high proton conductivity. Journal of Materials Research, 22(5), 1322-1330.
  • Shim, J. H., Gür, T. M., & Prinz, F. B. (2008). Proton conduction in thin film yttrium-doped barium zirconate. Applied Physics Letters, 92(25), 253115.
  • Yamazaki, Y., Hernandez-Sanchez, R., &Haile, S. M. (2009). High total proton conductivity in large-grained yttrium-doped barium zirconate. Chemistry of Materials, 21(13), 2755-2762.
  • Shimada, H., Takami, E., Ohba, F., Takei, C., Hagiwara, A., & Ihara, M. (2011). Effect of yttrium-doped barium zirconate on reactions in electrochemically active zone of nickel/yttria-stabilized zirconia anodes. Journal of the Electrochemical Society, 158(11), B1341.
  • Blanc, F., Sperrin, L., Lee, D., Dervişoğlu, R., Yamazaki, Y., Haile, S. M., Paëpe, G. D., & Grey, C. P. (2014). Dynamic nuclear polarization NMR of low-γ nuclei: structural insights into hydrated yttrium-doped BaZrO3. The Journal of Physical Chemistry Letters, 5(14), 2431-2436.
  • Xie, H., Biswas, M., Fan, L., Li, Y., & Su, P. C. (2017). Rapid thermal processing of chemical-solution-deposited yttrium-doped barium zirconate thin films. Surface and Coatings Technology, 320, 213-216.
  • Iguchi, F., & Hinata, K. (2021). High-Temperature Elastic Properties of Yttrium-Doped Barium Zirconate. Metals, 11(6), 968.
  • Rajan, A. R., Rajan, A., John, A., Vilas, V., & Philip, D. (2019). Biogenic synthesis of nanostructured Gd2O3: Structural, optical and bioactive properties. Ceramics International, 45(17), 21947-21952.
  • Ortega-Berlanga, B., Hernández-Adame, L., del Angel-Olarte, C., Aguilar, F., Rosales-Mendoza, S., & Palestino, G. (2020). Optical and biological evaluation of upconverting Gd2O3: Tb3+/Er3+ particles as microcarriers of a Zika virus antigenic peptide. Chemical Engineering Journal, 385, 123414.
  • Cullity, B.D. (1978). Elements of X-ray Diffraction, 2nd ed., Addison–Wesley Publishing Company, Massachusetts, 100-105.
  • Kaygili, O. (2014). Synthesis and characterization of Na2O–CaO–SiO2 glass–ceramic. Journal of Thermal Analysis and Calorimetry, 117(1), 223-227.
  • Selvalakshmi, T., & ChandraBose, A. (2012). Optical study on gadoliniumoxide nano particles synthesized by hydro thermal method. Advanced Materials Research, 585, 105-109.
  • Ge, R., Zhao, X., Qin, L., Feng, Z., Dong, B., Chen, Q., & Li, Q. (2011). Synthesisand Optical Properties of Gd2O3:Er3+,Yb3+Microcrystal Using Different Solvent. Symposium on Photonics and Optoelectronics (SOPO).16-18 May, Wuhan, 1-6.
  • Azizian, G., Riyahi-Alam, N., Haghgoo, S., Moghimi, H.R., Zohdiaghdam, R., Rafiei, B., & Gorji, E. (2012). Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging.. Nanoscale Research Letters, 7, 549.
  • Vijayaprasath, G.,Habibulla, I., Dharuman, V., Balasubramanian, S., & Ganesan, R. (2020). Fabrication of Gd2O3 Nanosheet-Modified Glassy Carbon Electrode for Nonenzymatic Highly Selective Electrochemical Detection of Vitamin B2. ACS Omega, 5(29), 17892-17899.
  • Rahman, M.M., Alam, M.M., Asiri, A.M., & Opo, F.A.D.M. (2020). Fabrication of selective and sensitive chemical sensorprobe based on ternarynano-formulated CuO/MnO2/Gd2O3 spikes by hydro thermal approach. Scientific Reports, 10, 20248.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tankut Ateş 0000-0002-4519-2953

Aydan Aksoğan Korkmaz 0000-0002-3309-9719

Niyazi Bulut 0000-0003-2863-7700

Serhat Keser 0000-0002-9678-1053

Omer Kaygılı 0000-0002-2321-1455

Publication Date June 30, 2022
Submission Date September 30, 2021
Acceptance Date February 6, 2022
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

APA Ateş, T., Aksoğan Korkmaz, A., Bulut, N., Keser, S., et al. (2022). İtriyum Katkılı Gadolinyum Oksit Numunelerinin Sentez ve Karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 186-194. https://doi.org/10.35193/bseufbd.1002866