Review
BibTex RIS Cite

Agricultural Use of Wood Vinegar

Year 2022, Volume: 9 Issue: 1, 596 - 608, 30.06.2022

Abstract

Wood vinegar (WV), which is defined as pyrolignous acid by the scientists from different disciplines, is a product of biomass pyrolysis. The middle layer of the three-layer formation, which is formed after the liquid formed by the distillation of the steam, gas, and smoke released during the pyrolysis process of the biomass, is rested and kept for a while, is called WV. The composition of wood vinegar varies considerably depending on the type of biomass used in biochar production and the pyrolysis conditions. However, the water ratio in liquid wood vinegar varies between 80-90%. The most dominant component of WV after water is acetic acid (30.45-70.60 mg mL-1), followed by other acids, alcohols, phenols, esters, carbonyl, furans, and other organic compounds. The pH of WV varies between 2-4, the specific gravity is between 1.0051-016 g mL-1, and the dissolved tar content varies between 0.23-0.89 %. The WV provides organic matter and nutrients to the soil, therefore, the WV increasesthe soil quality, as well as being effective in combating various diseases and pests, helping the germination of seeds, increasing plant growth, contributing plant growth and yield parameters and improving fruit quality. The WV also increases the availability of nutrients by decreasing the pH, especially in alkaline soils. The WV causes an increase in the formation of aggregates. Thus, it is expected to have a positive effect on the activities of soil microorganisms. The aforementioned benefits indicate that this product can be widely used in agricultural production systems in the future. WV is a useful product that will turn waste into an environmentally friendly product.

References

  • Demirbaş, A. (2002). Partly chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate, Energy Convers. Manage. 43: 1801–1809.
  • Grewal, A., Abbey, L., & Gunupuru, L. R. (2018). Production, prospects and potential application of pyroligneous acid in agriculture. Journal of Analytical and Applied Pyrolysis, 135, 152-159.
  • Crepier, J., Le Masle, A., Charon, N., Albrieux, F., Duchene, P., & Heinisch, S. (2018). Ultra-high performance supercritical fluid chromatography hyphenated to atmospheric pressure chemical ionization high resolution mass spectrometry for the characterization of fast pyrolysis bio-oils. Journal of Chromatography B, 1086, 38-46.
  • Akkurt, B., Günal, H., Erdem, H., & Günal, E. (2020). Piroliz sıcaklığının biyoçarların bazı fiziksel ve kimyasal özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 8(1), 1-13.
  • Burnette, R. (2010). An introduction to wood vinegar. ECHO Asia Regional Office, http://majidorganic.ir/wp-content/uploads/2015/11/Wood_Vinegar.pdf Erişim tarihi 11 Eylül 2021.
  • Mopoung, S., & Udeye, V. (2015). Wood charcoal and wood vinegar production from mango tree wood by using 3 m 3 carbonization dome kiln. International Journal of Applied Environmental Sciences, 10(5), 1911-1922.
  • Ogawa, M., & Okimori, Y. (2010). Pioneering works in biochar research, Japan. Soil Research, 48(7), 489-500.
  • Li, Z., Wu, L., Sun, S., Gao, J., Zhang, H., Zhang, Z., & Wang, Z. (2019). Disinfection and removal performance for Escherichia coli, toxic heavy metals and arsenic by wood vinegar-modified zeolite. Ecotoxicology and environmental safety, 174, 129-136.
  • Zhang, F., Shao, J., Yang, H., Guo, D., Chen, Z., Zhang, S., & Chen, H. (2019). Effects of biomass pyrolysis derived wood vinegar on microbial activity and communities of activated sludge. Bioresource technology, 279, 252-261.
  • Pangnakorn, U., Kanlaya, S., & Kuntha, C. (2011). Efficiency of wood vinegar and extracts from some medicinal plants on insect control. Advances in Environmental Biology, 5(2), 477-482.
  • Apai, W., & Thongdeethae, S. (2001). Wood vinegar: new organic for Thai Agriculture. In The 4 th Toxicity Division Conference, Department of Agriculture, 166-169.
  • Fagernäs, L., Kuoppala, E., & Arpiainen, V. (2015). Composition, utilization and economic assessment of torrefaction condensates. Energy & Fuels, 29(5), 3134-3142.
  • Zheng, H., Sun, C., Hou, X., Wu, M., Yao, Y., & Li, F. (2018). Pyrolysis of Arundo donax L. to produce pyrolytic vinegar and its effect on the growth of dinoflagellate Karenia brevis. Bioresource technology, 247, 273-281.
  • Simma, B., Polthanee, A., Goggi, A. S., Siri, B., Promkhambut, A., & Caragea, P. C. (2017). Wood vinegar seed priming improves yield and suppresses weeds in dryland direct-seeding rice under rainfed production. Agronomy for sustainable development, 37(6), 1-9.
  • Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., ... & Yu, X. (2013). Effects of amendment of biocharmanure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, 113-118.
  • Polthanee, A., Kumla, N., & Simma, B. (2015). Effect of Pistia stratiotes, cattle manure and wood vinegar (pyroligneous acid) application on growth and yield of organic rainfed rice. Paddy and water environment, 13(4), 337-342.Pyrolysis, 135, 152-159.
  • Sun, H., Feng, Y., Ji, Y., Shi, W., Yang, L., & Xing, B. (2018). N2O and CH4 emissions from N-fertilized rice paddy soil can be mitigated by wood vinegar application at an appropriate rate. Atmospheric Environment, 185, 153-158.
  • Mathew, S., & Zakaria, Z. A. (2015). Pyroligneous acid—the smoky acidic liquid from plant biomass. Applied microbiology and biotechnology, 99(2), 611-622.
  • Tiilikkala, K., Fagernäs, L., & Tiilikkala, J. (2010). History and use of wood pyrolysis liquids as biocide and plant protection product.
  • Bahcivanji, L., Gasco, G., Paz-Ferreiro, J., & Mendez, A. (2020). The effect of post-pyrolysis treatment on waste biomass derived hydrochar. Waste Management, 106, 55-61.
  • Mun, S. P., & Ku, C. S. (2010). Pyrolysis GC-MS analysis of tars formed during the aging of wood and bamboo crude vinegars. Journal of wood science, 56(1), 47-52.
  • Theapparat, Y., Chandumpai, A., & Faroongsarng, D. (2018). Physicochemistry and utilization of wood vinegar from carbonization of tropical biomass waste. Tropical Forests, 163-183.
  • Souza, J. B. G., Ré-Poppi, N., & Raposo Jr, J. L. (2012). Characterization of pyroligneous acid used in agriculture by gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 23(4), 610-617.
  • Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic geochemistry, 30(12), 1479-1493.
  • Kacem, I., Koubaa, M., Maktouf, S., Chaari, F., Najar, T., Chaabouni, M., ... & Chaabouni, S. E. (2016). Multistage process for the production of bioethanol from almond shell. Bioresource technology, 211, 154-163.
  • Mmojieje, J., & Hornung, A. (2015). The potential application of pyroligneous acid in the UK agricultural industry. Journal of Crop Improvement, 29(2), 228-246.
  • Mungkunkamchao, T., Kesmala, T., Pimratch, S., Toomsan, B., & Jothityangkoon, D. (2013). Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Scientia Horticulturae, 154, 66-72.
  • Kadota, M., & Niimi, Y. (2004). Effects of charcoal with pyroligneous acid and barnyard manure on bedding plants. Scientia Horticulturae, 101(3), 327-332.
  • Mangano, S., Pacheco, J. M., Marino-Buslje, C., & Estevez, J. M. (2018). How does pH fit in with oscillating polar growth?. Trends in plant science, 23(6), 479-489.
  • Tsuzuki, E., Wakiyama, Y., Eto, H., & Handa, H. (1989). Effect of pyroligneous acid and mixture of charcoal with pyroligneous acid on the growth and yield of rice [Oryza sativa] plant. Japanese Journal of Crop Science (Japan).
  • Kadota, M., Hirano, T., Imizu, K., & Niimi, Y. (2002). Pyroligneous acid improves in vitro rooting of Japanese pear cultivars. HortScience, 37(1), 194-195.
  • Wei, Q., Liu, G., Wei, X., Ma, X., Xu, D., & Dong, R. (2009). Influence of wood vinegar as leaves fertilizer on yield and quality of celery. Journal of China Agricultural University, 14(1), 89-92.
  • Mu, J., Uehara, T., & Furuno, T. (2004). Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants II: composition of moso bamboo vinegar at different collection temperature and its effects. Journal of Wood Science, 50(5), 470-476.
  • Mu, J., Yu, Z. M., Wu, W. Q., & Wu, Q. L. (2006). Preliminary study of application effect of bamboo vinegar on vegetable growth. Forestry Studies in China, 8(3), 43-47.
  • Mahmud, K. N., Yahayu, M., Sarip, S. H. M., Rizan, N. H., Min, C. B., Mustafa, N. F., ... & Zakaria, Z. A. (2016). Evaluation on efficiency of pyroligneous acid from palm kernel shell as antifungal and solid pineapple biomass as antibacterial and plant growth promoter. Sains Malaysiana, 45(10), 1423-1434.
  • Steiner, C., de Arruda, M. R., Teixeira, W. G., & Zech, W. (2007). Soil respiration curves as soil fertility indicators in perennial central Amazonian plantations treated with charcoal, and mineral or organic fertilisers. Tropical Science, 47(4), 218-230.
  • Tsuzuki, E., Morimitsu, T., & Matsui, T. (2000). Effect of chemical compounds in pyroligneous acid on root growth in rice plant. Report of the Kyushu Branch of the Crop Science Society of Japan, (66), 15-16.
  • Uddin, S., M. M., Murayama, S., Ishimine, Y., Tsuzuki, E. H., & Harada, J. (1995). J. Effect of the Mixture of Charcoal with Pyroligneous Acid on dry mather production and root growth of summer planted sugarcane (Saccharum officinarum L.). Japan Journal Crop Science, Bankyo-ku, Tokyo, 64(4), 747-753.
  • Shibayama, H., Mashima, K., Mitsutomi, M., & Arima, S. (1998). Effects of application of pyroligneous acid solution produced in Karatsu city on growth and free sugar contents of storage roots of sweet potato. Marine and Highland Bioscience Center Report-Saga University (Japan).
  • Zulkarami, B., Ashrafuzzaman, M., Husni, M. O., & Ismail, M. R. (2011). Effect of pyroligneous acid on growth, yield and quality improvement of rockmelon in soilless culture. Australian Journal of Crop Science, 5(12), 1508.
  • FFTC (Food & Fertilizer Technology Center). (2005). Wood Vinegar. Accessed on December 2, 2008. Available at: http://www.fftc.agnet.org/library/pt/2005025/.
  • Tipparak, S., Jothityangkoon, D., & Polthanee, A. (2007). Effect of wood vinegar and farm yard manure on growth and yield of KDML 105 rice. Kaen Kaset.
  • Wang, Y., Qiu, L., Song, Q., Wang, S., Wang, Y., & Ge, Y. (2019). Root proteomics reveals the effects of wood vinegar on wheat growth and subsequent tolerance to drought stress. International journal of molecular sciences, 20(4), 943.
  • Zhu, K., Gu, S., Liu, J., Luo, T., Khan, Z., Zhang, K., & Hu, L. (2021). Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield, and Quality of Rapeseed. Agronomy, 11(3), 510.
  • Luo, X., Wang, Z., Meki, K., Wang, X., Liu, B., Zheng, H., ... & Li, F. (2019). Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments, 19(12), 3934-3944.
  • Orihashi, K., Kojima, Y., & Terazawa, M. (2001). Deterrent effect of rosin and wood tar against barking by the gray-sided vole (Clethrionomys rufocanus bedfordiae). Journal of Forest Research, 6(3), 191.
  • Kim, S. K., Kim, K. S., Lee, Y. H., & Kim, Y. H. (2001). Compostion of constituents of commercial wood vinegar liquor in Korea. Applied Biological Chemistry, 44(4), 262-268.
  • Baimark, Y., & Niamsa, N. (2009). Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets. Biomass and Bioenergy, 33(6-7), 994-998.
  • Velmurugan, N., Chun, S. S., Han, S. S., & Lee, Y. S. (2009). Characterization of chikusaku-eki and mokusaku-eki and its inhibitory effect on sapstaining fungal growth in laboratory scale. International Journal of Environmental Science & Technology, 6(1), 13-22.
  • Wititsiri, S. (2011). Production of wood vinegars from coconut shells and additional materials for control of termite workers, Odontotermes sp. and striped mealy bugs, Ferrisia virgata. Songklanakarin Journal of Science & Technology, 33(3).
  • Yatagai, M., Nishimoto, M., Hori, K., Ohira, T., & Shibata, A. (2002). Termiticidal activity of wood vinegar, its components and their homologues. Journal of Wood Science, 48(4), 338-342.
  • Tworkoski, T. (2002). Herbicide effects of essential oils. Weed science, 50(4), 425-431.
  • Salonen, J., Tiilikkala, K., Ruuttunen, P., Lindqvist, I., & Lindqvist, B. (2008). Birch Tar Oil: A Potential Herbicide from the Forests of Finland. In Abstracts of the 5th International Weed Science Congress. Weeds local problems/global challenge. Vancouver, British Columbia, Canada, June 23-27, 2008. IWSS.
  • Ruuttunen, P. (2007). Evaluation of birch oil distillate for weed control in potato. Trial Report.
  • Koç, İ., Yıldız, Ş., & Yardım, E. N. (2020). A Research On The Effects Of Pestıcıdes And Wood Vınegar On Weeds And Cultıvated Plants In Wheat Agro-Ecosystem. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 23(2), 94-106.
  • Koç, İ., Yardım, E. N., & Yıldız, Ş. (2017). In Vitro Şartlarında Küf Etmenlerine Karşı Tavuk Gübresinden Elde Edilmiş Odun Sirkesinin Antifungal Etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27(4), 516-520.
  • Gao, T., Bian, R., Joseph, S., Taherymoosavi, S., Mitchell, D. R., Munroe, P., ... & Shi, J. (2020). Wheat straw vinegar: A more cost-effective solution than chemical fungicides for sustainable wheat plant protection. Science of The Total Environment, 725, 138359.
  • Namlı, A., Akça, M. O., Turgay, E. B., & Soba, M. R. (2014). Odun sirkesinin tarımsal kullanım potansiyelinin araştırılması. Toprak Su Dergisi, 3(1), 44-52.
  • Koç, I & Namlı, A., (2020). Odun Sirkesinin Önemi ve Geleceği, Geleceğin Dünyasında Bilimsel ve Mesleki Çalışmalar 2020 Doğa Bilimleri Ve Ziraat/I., 72-84.
  • Shan, X., Liu, X., & Zhang, Q. (2018, March). Impacts of adding different components of wood vinegar on rape (Brassica napus L.) seed germiantion. In IOP Conference Series: Earth and Environmental Science (Vol. 128, No. 1, p. 012183). IOP Publishing.
  • Theapparat, Y., Chandumpai, A., Leelasuphakul, W., & Laemsak, N. (2015). Pyroligneous acids from carbonisation of wood and bamboo: their components and antifungal activity. Journal of Tropical Forest Science, 517-526.
  • Koç, İ. (2019). Study of some biological parameters of the red Californian earthworm Eisenia Foetida (Savigny, 1826) in vermicompost following the application of wood vinegar. Applied Ecology and Environmental Research, 17(2), 4527-4538.
  • Koç, İ. (2019). Investigation of the effect of wood vinegar produced from chicken manure and nutshells on soil nematodes in the pasture area of Bitlis province. IESS 2019, International Engineering and Science Symposium’19, 20-22 June, 2019. 1243-1250, Siirt.
  • Lashari, M. S., Ye, Y., Ji, H., Li, L., Kibue, G. W., Lu, H., ... & Pan, G. (2015). Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2‐ year field experiment. Journal of the Science of Food and Agriculture, 95(6), 1321-1327.
  • Benzon, H. R. L., Rubenecia, M. R. U., Ultra Jr, V. U., & Lee, S. C. (2015). Chemical and biological properties of paddy soil treated with herbicides and pyroligneous acid. Journal of agricultural science, 7(4), 20.
  • Zhang, Y., Wang, X., Liu, B., Liu, Q., Zheng, H., You, X., ... & Li, F. (2020). Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. Chemosphere, 246, 125699.
  • Win, K. T., Toyota, K., Motobayashi, T., & Hosomi, M. (2009). Suppression of ammonia volatilization from a paddy soil fertilized with anaerobically digested cattle slurry by wood vinegar application and floodwater management. Soil science and plant nutrition, 55(1), 190-202.
  • Liu, L., Guo, X., Wang, S., Li, L., Zeng, Y., & Liu, G. (2018). Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts. Ecotoxicology and environmental safety, 150, 270-279.
  • Lee, J., Park, H. J., Cha, S. J., Kwon, S. J., & Park, J. H. (2021). Effect of pyroligneous acid on soil urease, amidase, and nitrogen use efficiency by Chinese cabbage (Brassica campestris var. Pekinensis). Environmental Pollution, 118132.
  • Steiner, C., Das, K. C., Garcia, M., Förster, B., & Zech, W. (2008). Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia, 51(5-6), 359-366.
  • Masum, S. M., Malek, M., Mandal, M. S. H., Haque, M. N., & Akther, Z. (2013). Influence of plant extracted pyroligneous acid on transplanted aman rice. World J. Exp. Biosci, 4, 31-34.
  • Cardelli, R., Becagli, M., Marchini, F., & Saviozzi, A. (2020). Soil biochemical activities after the application of pyroligneous acid to soil. Soil Research, 58(5), 461-467.
  • Cardelli, R., Becagli, M., Marchini, F., & Saviozzi, A. (2020). Soil biochemical activities after the application of pyroligneous acid to soil. Soil Research, 58(5), 461-467.
  • Koç, İ., & Yardım, E. N. (2019). Pestisitlerin ve Odun Sirkesinin Bazı Mikrobiyal ve Fiziko-Kimyasal Toprak Parametrelerine Etkilerinin Araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(6), 896-904.
  • Benzon, H.R.L., & Lee, S.C. (2017) Pyroligneous acids enhance phytoremediation of heavy metalcontaminated soils using mustard. Commun Soil Sci Plan 48(5):1–13.
  • Chen, Y. X., Huang, X. D., Han, Z. Y., Huang, X., Hu, B., Shi, D. Z., & Wu, W. X. (2010). Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere, 78(9), 1177-1181.
  • Zhang, L., & Sun, X. (2015). Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste management, 39, 119-129.
  • Wang, Q., Awasthi, M. K., Ren, X., Zhao, J., Li, R., Wang, Z., & Zhang, Z. (2018). Combining biochar, zeolite and wood vinegar for composting of pig manure: the effect on greenhouse gas emission and nitrogen conservation. Waste management, 74, 221-230.
  • Pan, B., Lam, S. K., Mosier, A., Luo, Y., & Chen, D. (2016). Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agriculture, Ecosystems & Environment, 232, 283-289.
  • Feng, Y., Li, D., Sun, H., Xue, L., Zhou, B., Yang, L., & Xing, B. (2020). Wood vinegar and biochar coapplication mitigates nitrous oxide and methane emissions from rice paddy soil: A two-year experiment. Environmental Pollution, 267, 115403.
  • Guo, X., Zheng, P., Zou, X., Chen, X., & Zhang, Q. (2021). Influence of Pyroligneous Acid on Fermentation Parameters, CO2 Production and Bacterial Communities of Rice Straw and Stylo Silage. Frontiers in Microbiology, 12, 1862.

Odun Sirkesinin Tarımda Kullanımı

Year 2022, Volume: 9 Issue: 1, 596 - 608, 30.06.2022

Abstract

Farklı disiplinlerden bilim insanlarının pirolignöz asit olarak da tanımladığı odun sirkesi (OS), biyokütlenin pirolizi ile ortaya çıkan bir üründür. Biyokütlenin piroliz işlemi sırasında açığa çıkan buhar, gaz ve dumanın damıtılması ile oluşan sıvının dinlendirilmesi ve bir süre bekletilmesi sonrasında oluşan üç katmanlı oluşumun orta katmanına OS denilmektedir. Odun sirkesinin bileşimi biyokömür üretiminde kullanılan biyokütlenin çeşidi ve piroliz koşullarına bağlı olarak önemli oranda değişmektedir. Bununla birlikte, sıvı haldeki odun sirkesinde su oranı %80-%90 arasında değişmektedir. Sudan sonra en baskın bileşen asetik asit (30.45-70.60 mg mL-1) olup bunu diğer asitler, alkoller, fenoller, esterler, karbonil, furanlar ve diğer organik bileşenler takip etmektedir. Bileşiminden de kolayca anlaşılacağı gibi OS’un pH’sı 2-4 arasında, özgül ağırlığı 1.005-1.016 g mL-1 ve çözünmüş katran içeriğinin %0.23-%0.89 arasında değiştiği rapor edilmiştir. Toprağa organik madde ve besin elementi sağladığından dolayı, toprağın kalitesinin artmasına katkı sağladığı bunun yanında, çeşitli hastalık ve zararlılar ile mücadelede etkili olduğu, tohumların çimlenmesine yardımcı olduğu, bitki büyüme ve verim parametrelerine katkıda bulunduğu ve meyve kalitesini iyileştirdiği bildilmiştir. Özellikle alkalin topraklarda, pH’nın düşmesine yardımcı olarak besin elementlerinin yarayışlılığını arttırdığı da bilinmektedir. İçerdiği organik bileşenler sayesinde toprağın agregatlaşmasını arttırması ve toprakta bulunan mikroorganizmaların yaşamlarını da olumlu etkilemesi beklenmektedir. Yukarıda özet olarak belirtilen faydaları, bu ürünün gelecekte tarımsal üretim sistemlerinde yaygın bir şekilde kullanılabileceğine işaret etmektedir. Bu kapsamda OS, atıkların çevreye dost bir ürüne dönüşmesini sağlayacak faydalı bir üründür.

References

  • Demirbaş, A. (2002). Partly chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate, Energy Convers. Manage. 43: 1801–1809.
  • Grewal, A., Abbey, L., & Gunupuru, L. R. (2018). Production, prospects and potential application of pyroligneous acid in agriculture. Journal of Analytical and Applied Pyrolysis, 135, 152-159.
  • Crepier, J., Le Masle, A., Charon, N., Albrieux, F., Duchene, P., & Heinisch, S. (2018). Ultra-high performance supercritical fluid chromatography hyphenated to atmospheric pressure chemical ionization high resolution mass spectrometry for the characterization of fast pyrolysis bio-oils. Journal of Chromatography B, 1086, 38-46.
  • Akkurt, B., Günal, H., Erdem, H., & Günal, E. (2020). Piroliz sıcaklığının biyoçarların bazı fiziksel ve kimyasal özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 8(1), 1-13.
  • Burnette, R. (2010). An introduction to wood vinegar. ECHO Asia Regional Office, http://majidorganic.ir/wp-content/uploads/2015/11/Wood_Vinegar.pdf Erişim tarihi 11 Eylül 2021.
  • Mopoung, S., & Udeye, V. (2015). Wood charcoal and wood vinegar production from mango tree wood by using 3 m 3 carbonization dome kiln. International Journal of Applied Environmental Sciences, 10(5), 1911-1922.
  • Ogawa, M., & Okimori, Y. (2010). Pioneering works in biochar research, Japan. Soil Research, 48(7), 489-500.
  • Li, Z., Wu, L., Sun, S., Gao, J., Zhang, H., Zhang, Z., & Wang, Z. (2019). Disinfection and removal performance for Escherichia coli, toxic heavy metals and arsenic by wood vinegar-modified zeolite. Ecotoxicology and environmental safety, 174, 129-136.
  • Zhang, F., Shao, J., Yang, H., Guo, D., Chen, Z., Zhang, S., & Chen, H. (2019). Effects of biomass pyrolysis derived wood vinegar on microbial activity and communities of activated sludge. Bioresource technology, 279, 252-261.
  • Pangnakorn, U., Kanlaya, S., & Kuntha, C. (2011). Efficiency of wood vinegar and extracts from some medicinal plants on insect control. Advances in Environmental Biology, 5(2), 477-482.
  • Apai, W., & Thongdeethae, S. (2001). Wood vinegar: new organic for Thai Agriculture. In The 4 th Toxicity Division Conference, Department of Agriculture, 166-169.
  • Fagernäs, L., Kuoppala, E., & Arpiainen, V. (2015). Composition, utilization and economic assessment of torrefaction condensates. Energy & Fuels, 29(5), 3134-3142.
  • Zheng, H., Sun, C., Hou, X., Wu, M., Yao, Y., & Li, F. (2018). Pyrolysis of Arundo donax L. to produce pyrolytic vinegar and its effect on the growth of dinoflagellate Karenia brevis. Bioresource technology, 247, 273-281.
  • Simma, B., Polthanee, A., Goggi, A. S., Siri, B., Promkhambut, A., & Caragea, P. C. (2017). Wood vinegar seed priming improves yield and suppresses weeds in dryland direct-seeding rice under rainfed production. Agronomy for sustainable development, 37(6), 1-9.
  • Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., ... & Yu, X. (2013). Effects of amendment of biocharmanure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, 113-118.
  • Polthanee, A., Kumla, N., & Simma, B. (2015). Effect of Pistia stratiotes, cattle manure and wood vinegar (pyroligneous acid) application on growth and yield of organic rainfed rice. Paddy and water environment, 13(4), 337-342.Pyrolysis, 135, 152-159.
  • Sun, H., Feng, Y., Ji, Y., Shi, W., Yang, L., & Xing, B. (2018). N2O and CH4 emissions from N-fertilized rice paddy soil can be mitigated by wood vinegar application at an appropriate rate. Atmospheric Environment, 185, 153-158.
  • Mathew, S., & Zakaria, Z. A. (2015). Pyroligneous acid—the smoky acidic liquid from plant biomass. Applied microbiology and biotechnology, 99(2), 611-622.
  • Tiilikkala, K., Fagernäs, L., & Tiilikkala, J. (2010). History and use of wood pyrolysis liquids as biocide and plant protection product.
  • Bahcivanji, L., Gasco, G., Paz-Ferreiro, J., & Mendez, A. (2020). The effect of post-pyrolysis treatment on waste biomass derived hydrochar. Waste Management, 106, 55-61.
  • Mun, S. P., & Ku, C. S. (2010). Pyrolysis GC-MS analysis of tars formed during the aging of wood and bamboo crude vinegars. Journal of wood science, 56(1), 47-52.
  • Theapparat, Y., Chandumpai, A., & Faroongsarng, D. (2018). Physicochemistry and utilization of wood vinegar from carbonization of tropical biomass waste. Tropical Forests, 163-183.
  • Souza, J. B. G., Ré-Poppi, N., & Raposo Jr, J. L. (2012). Characterization of pyroligneous acid used in agriculture by gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 23(4), 610-617.
  • Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic geochemistry, 30(12), 1479-1493.
  • Kacem, I., Koubaa, M., Maktouf, S., Chaari, F., Najar, T., Chaabouni, M., ... & Chaabouni, S. E. (2016). Multistage process for the production of bioethanol from almond shell. Bioresource technology, 211, 154-163.
  • Mmojieje, J., & Hornung, A. (2015). The potential application of pyroligneous acid in the UK agricultural industry. Journal of Crop Improvement, 29(2), 228-246.
  • Mungkunkamchao, T., Kesmala, T., Pimratch, S., Toomsan, B., & Jothityangkoon, D. (2013). Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Scientia Horticulturae, 154, 66-72.
  • Kadota, M., & Niimi, Y. (2004). Effects of charcoal with pyroligneous acid and barnyard manure on bedding plants. Scientia Horticulturae, 101(3), 327-332.
  • Mangano, S., Pacheco, J. M., Marino-Buslje, C., & Estevez, J. M. (2018). How does pH fit in with oscillating polar growth?. Trends in plant science, 23(6), 479-489.
  • Tsuzuki, E., Wakiyama, Y., Eto, H., & Handa, H. (1989). Effect of pyroligneous acid and mixture of charcoal with pyroligneous acid on the growth and yield of rice [Oryza sativa] plant. Japanese Journal of Crop Science (Japan).
  • Kadota, M., Hirano, T., Imizu, K., & Niimi, Y. (2002). Pyroligneous acid improves in vitro rooting of Japanese pear cultivars. HortScience, 37(1), 194-195.
  • Wei, Q., Liu, G., Wei, X., Ma, X., Xu, D., & Dong, R. (2009). Influence of wood vinegar as leaves fertilizer on yield and quality of celery. Journal of China Agricultural University, 14(1), 89-92.
  • Mu, J., Uehara, T., & Furuno, T. (2004). Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants II: composition of moso bamboo vinegar at different collection temperature and its effects. Journal of Wood Science, 50(5), 470-476.
  • Mu, J., Yu, Z. M., Wu, W. Q., & Wu, Q. L. (2006). Preliminary study of application effect of bamboo vinegar on vegetable growth. Forestry Studies in China, 8(3), 43-47.
  • Mahmud, K. N., Yahayu, M., Sarip, S. H. M., Rizan, N. H., Min, C. B., Mustafa, N. F., ... & Zakaria, Z. A. (2016). Evaluation on efficiency of pyroligneous acid from palm kernel shell as antifungal and solid pineapple biomass as antibacterial and plant growth promoter. Sains Malaysiana, 45(10), 1423-1434.
  • Steiner, C., de Arruda, M. R., Teixeira, W. G., & Zech, W. (2007). Soil respiration curves as soil fertility indicators in perennial central Amazonian plantations treated with charcoal, and mineral or organic fertilisers. Tropical Science, 47(4), 218-230.
  • Tsuzuki, E., Morimitsu, T., & Matsui, T. (2000). Effect of chemical compounds in pyroligneous acid on root growth in rice plant. Report of the Kyushu Branch of the Crop Science Society of Japan, (66), 15-16.
  • Uddin, S., M. M., Murayama, S., Ishimine, Y., Tsuzuki, E. H., & Harada, J. (1995). J. Effect of the Mixture of Charcoal with Pyroligneous Acid on dry mather production and root growth of summer planted sugarcane (Saccharum officinarum L.). Japan Journal Crop Science, Bankyo-ku, Tokyo, 64(4), 747-753.
  • Shibayama, H., Mashima, K., Mitsutomi, M., & Arima, S. (1998). Effects of application of pyroligneous acid solution produced in Karatsu city on growth and free sugar contents of storage roots of sweet potato. Marine and Highland Bioscience Center Report-Saga University (Japan).
  • Zulkarami, B., Ashrafuzzaman, M., Husni, M. O., & Ismail, M. R. (2011). Effect of pyroligneous acid on growth, yield and quality improvement of rockmelon in soilless culture. Australian Journal of Crop Science, 5(12), 1508.
  • FFTC (Food & Fertilizer Technology Center). (2005). Wood Vinegar. Accessed on December 2, 2008. Available at: http://www.fftc.agnet.org/library/pt/2005025/.
  • Tipparak, S., Jothityangkoon, D., & Polthanee, A. (2007). Effect of wood vinegar and farm yard manure on growth and yield of KDML 105 rice. Kaen Kaset.
  • Wang, Y., Qiu, L., Song, Q., Wang, S., Wang, Y., & Ge, Y. (2019). Root proteomics reveals the effects of wood vinegar on wheat growth and subsequent tolerance to drought stress. International journal of molecular sciences, 20(4), 943.
  • Zhu, K., Gu, S., Liu, J., Luo, T., Khan, Z., Zhang, K., & Hu, L. (2021). Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield, and Quality of Rapeseed. Agronomy, 11(3), 510.
  • Luo, X., Wang, Z., Meki, K., Wang, X., Liu, B., Zheng, H., ... & Li, F. (2019). Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments, 19(12), 3934-3944.
  • Orihashi, K., Kojima, Y., & Terazawa, M. (2001). Deterrent effect of rosin and wood tar against barking by the gray-sided vole (Clethrionomys rufocanus bedfordiae). Journal of Forest Research, 6(3), 191.
  • Kim, S. K., Kim, K. S., Lee, Y. H., & Kim, Y. H. (2001). Compostion of constituents of commercial wood vinegar liquor in Korea. Applied Biological Chemistry, 44(4), 262-268.
  • Baimark, Y., & Niamsa, N. (2009). Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets. Biomass and Bioenergy, 33(6-7), 994-998.
  • Velmurugan, N., Chun, S. S., Han, S. S., & Lee, Y. S. (2009). Characterization of chikusaku-eki and mokusaku-eki and its inhibitory effect on sapstaining fungal growth in laboratory scale. International Journal of Environmental Science & Technology, 6(1), 13-22.
  • Wititsiri, S. (2011). Production of wood vinegars from coconut shells and additional materials for control of termite workers, Odontotermes sp. and striped mealy bugs, Ferrisia virgata. Songklanakarin Journal of Science & Technology, 33(3).
  • Yatagai, M., Nishimoto, M., Hori, K., Ohira, T., & Shibata, A. (2002). Termiticidal activity of wood vinegar, its components and their homologues. Journal of Wood Science, 48(4), 338-342.
  • Tworkoski, T. (2002). Herbicide effects of essential oils. Weed science, 50(4), 425-431.
  • Salonen, J., Tiilikkala, K., Ruuttunen, P., Lindqvist, I., & Lindqvist, B. (2008). Birch Tar Oil: A Potential Herbicide from the Forests of Finland. In Abstracts of the 5th International Weed Science Congress. Weeds local problems/global challenge. Vancouver, British Columbia, Canada, June 23-27, 2008. IWSS.
  • Ruuttunen, P. (2007). Evaluation of birch oil distillate for weed control in potato. Trial Report.
  • Koç, İ., Yıldız, Ş., & Yardım, E. N. (2020). A Research On The Effects Of Pestıcıdes And Wood Vınegar On Weeds And Cultıvated Plants In Wheat Agro-Ecosystem. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 23(2), 94-106.
  • Koç, İ., Yardım, E. N., & Yıldız, Ş. (2017). In Vitro Şartlarında Küf Etmenlerine Karşı Tavuk Gübresinden Elde Edilmiş Odun Sirkesinin Antifungal Etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27(4), 516-520.
  • Gao, T., Bian, R., Joseph, S., Taherymoosavi, S., Mitchell, D. R., Munroe, P., ... & Shi, J. (2020). Wheat straw vinegar: A more cost-effective solution than chemical fungicides for sustainable wheat plant protection. Science of The Total Environment, 725, 138359.
  • Namlı, A., Akça, M. O., Turgay, E. B., & Soba, M. R. (2014). Odun sirkesinin tarımsal kullanım potansiyelinin araştırılması. Toprak Su Dergisi, 3(1), 44-52.
  • Koç, I & Namlı, A., (2020). Odun Sirkesinin Önemi ve Geleceği, Geleceğin Dünyasında Bilimsel ve Mesleki Çalışmalar 2020 Doğa Bilimleri Ve Ziraat/I., 72-84.
  • Shan, X., Liu, X., & Zhang, Q. (2018, March). Impacts of adding different components of wood vinegar on rape (Brassica napus L.) seed germiantion. In IOP Conference Series: Earth and Environmental Science (Vol. 128, No. 1, p. 012183). IOP Publishing.
  • Theapparat, Y., Chandumpai, A., Leelasuphakul, W., & Laemsak, N. (2015). Pyroligneous acids from carbonisation of wood and bamboo: their components and antifungal activity. Journal of Tropical Forest Science, 517-526.
  • Koç, İ. (2019). Study of some biological parameters of the red Californian earthworm Eisenia Foetida (Savigny, 1826) in vermicompost following the application of wood vinegar. Applied Ecology and Environmental Research, 17(2), 4527-4538.
  • Koç, İ. (2019). Investigation of the effect of wood vinegar produced from chicken manure and nutshells on soil nematodes in the pasture area of Bitlis province. IESS 2019, International Engineering and Science Symposium’19, 20-22 June, 2019. 1243-1250, Siirt.
  • Lashari, M. S., Ye, Y., Ji, H., Li, L., Kibue, G. W., Lu, H., ... & Pan, G. (2015). Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2‐ year field experiment. Journal of the Science of Food and Agriculture, 95(6), 1321-1327.
  • Benzon, H. R. L., Rubenecia, M. R. U., Ultra Jr, V. U., & Lee, S. C. (2015). Chemical and biological properties of paddy soil treated with herbicides and pyroligneous acid. Journal of agricultural science, 7(4), 20.
  • Zhang, Y., Wang, X., Liu, B., Liu, Q., Zheng, H., You, X., ... & Li, F. (2020). Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. Chemosphere, 246, 125699.
  • Win, K. T., Toyota, K., Motobayashi, T., & Hosomi, M. (2009). Suppression of ammonia volatilization from a paddy soil fertilized with anaerobically digested cattle slurry by wood vinegar application and floodwater management. Soil science and plant nutrition, 55(1), 190-202.
  • Liu, L., Guo, X., Wang, S., Li, L., Zeng, Y., & Liu, G. (2018). Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts. Ecotoxicology and environmental safety, 150, 270-279.
  • Lee, J., Park, H. J., Cha, S. J., Kwon, S. J., & Park, J. H. (2021). Effect of pyroligneous acid on soil urease, amidase, and nitrogen use efficiency by Chinese cabbage (Brassica campestris var. Pekinensis). Environmental Pollution, 118132.
  • Steiner, C., Das, K. C., Garcia, M., Förster, B., & Zech, W. (2008). Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia, 51(5-6), 359-366.
  • Masum, S. M., Malek, M., Mandal, M. S. H., Haque, M. N., & Akther, Z. (2013). Influence of plant extracted pyroligneous acid on transplanted aman rice. World J. Exp. Biosci, 4, 31-34.
  • Cardelli, R., Becagli, M., Marchini, F., & Saviozzi, A. (2020). Soil biochemical activities after the application of pyroligneous acid to soil. Soil Research, 58(5), 461-467.
  • Cardelli, R., Becagli, M., Marchini, F., & Saviozzi, A. (2020). Soil biochemical activities after the application of pyroligneous acid to soil. Soil Research, 58(5), 461-467.
  • Koç, İ., & Yardım, E. N. (2019). Pestisitlerin ve Odun Sirkesinin Bazı Mikrobiyal ve Fiziko-Kimyasal Toprak Parametrelerine Etkilerinin Araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(6), 896-904.
  • Benzon, H.R.L., & Lee, S.C. (2017) Pyroligneous acids enhance phytoremediation of heavy metalcontaminated soils using mustard. Commun Soil Sci Plan 48(5):1–13.
  • Chen, Y. X., Huang, X. D., Han, Z. Y., Huang, X., Hu, B., Shi, D. Z., & Wu, W. X. (2010). Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere, 78(9), 1177-1181.
  • Zhang, L., & Sun, X. (2015). Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste management, 39, 119-129.
  • Wang, Q., Awasthi, M. K., Ren, X., Zhao, J., Li, R., Wang, Z., & Zhang, Z. (2018). Combining biochar, zeolite and wood vinegar for composting of pig manure: the effect on greenhouse gas emission and nitrogen conservation. Waste management, 74, 221-230.
  • Pan, B., Lam, S. K., Mosier, A., Luo, Y., & Chen, D. (2016). Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agriculture, Ecosystems & Environment, 232, 283-289.
  • Feng, Y., Li, D., Sun, H., Xue, L., Zhou, B., Yang, L., & Xing, B. (2020). Wood vinegar and biochar coapplication mitigates nitrous oxide and methane emissions from rice paddy soil: A two-year experiment. Environmental Pollution, 267, 115403.
  • Guo, X., Zheng, P., Zou, X., Chen, X., & Zhang, Q. (2021). Influence of Pyroligneous Acid on Fermentation Parameters, CO2 Production and Bacterial Communities of Rice Straw and Stylo Silage. Frontiers in Microbiology, 12, 1862.
There are 81 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Murat Birol 0000-0003-1947-3193

Elif Günal 0000-0003-0624-2919

Publication Date June 30, 2022
Submission Date October 5, 2021
Acceptance Date March 21, 2022
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

APA Birol, M., & Günal, E. (2022). Odun Sirkesinin Tarımda Kullanımı. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 596-608. https://doi.org/10.35193/bseufbd.1004736