Research Article
BibTex RIS Cite

Priestly-Taylor Coefficient Evaluation for Konya Closed Basin

Year 2024, Volume: 11 Issue: 1, 26 - 36, 31.05.2024
https://doi.org/10.35193/bseufbd.1209924

Abstract

Measurement of evaporation in the field is difficult and expensive; thus, the empirical evaporation estimation methods have been developed. However, these estimation methods have both advantages and disadvantages. The main disadvantage is that their coefficients were determined by the climatic conditions of the study areas. One of these methods is Penman. The Penman method, accepted as a reference, has reached the closest estimations to the measurement of evaporation in the field of the different parts of the world. However, it needs lots of measured climatic data. The Priestley-Taylor method was derived to reduce the measured data needs of the Penman method. Priestly and Taylor represented the variables such as saturated and actual vapor pressures and wind speed with coefficient of 1.26. The researchers have continued to study on the calibration of the  coefficient for their studies’ area since this method has been known to underestimate evaporation value in areas where advection is effective. The present study consists of two stages. First, evaporation was tried to be estimated with these two methods by using the measured climatic data of five meteorological stations in the Konya Closed Basin. Estimated values were evaluated making comparison with the pan measurements. Although slightly higher values were estimated from the pan measurements with each method, the Penman method was found to be relatively more consistent on the basis of statistical indicators. Second,  coefficient was obtained as 1.28 for the study area by using three artificial intelligence-based optimization algorithms. The Penman method was used for comparison in this stage. It was concluded that there was no need for any calibration of the  coefficient and the original one was found to be valid for the study area as well.

References

  • Dingman, S.L. (2008). Physical Hydrology. Long Grove, Illinois, Waveland Press, Inc., 646.
  • Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings, Royal Society of London Ser. A, 193, 120–145.
  • Priestley, C. H. B. & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100 (2), 81–92.
  • Subedi, A. & Chavez, J.L. (2015). Crop evapotranspiration (ET) estimation models: A review and discussion of the applicability and limitations of ET methods. Journal of Agricultural Science, 7 (6), 50-68.
  • Sene, K.J., Gash, J.H.C. & McNeil, D.D. (1991). Evaporation from a tropical lake: comparison of theory with direct measurements. Journal of Hydrology, 127, 193-217.
  • Singh, V. P. & Xu, C.Y. (1997). Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrological Process, 11, 311-323.
  • Öztürk, F. & Apaydin, H. (1998). Estimating pan evaporation from limited meteorological observations from Turkey. Water International, 23 (3), 184-189.
  • Abtew, W. (2001). Evaporation estimation for lake Okeechobee in South Florida. Journal of Irrigation and Drainage Engineering, 127 (3), 140-147.
  • Mosner, M.S. & Aulenbach, B.T. (2003). Comparison of methods used to estimate lake evaporation for a water budget of lake Seminole, Southwestern Georgia and Northwestern Florida. Proceedings of the 2003 Georgia Water Resources Conference. The University of Georgia, Athens, Georgia, USA.
  • Sezer, Ç.Ö. & Öztekin, T. (2016). A sınıfı buharlaşma kabından olan günlük buharlaşmanın Penman ve Linacre modelleri ile tahmini. Journal of Agricultural Faculty of Gaziosmanpasa University, 33 (3), 137-147.
  • Irmak, S. & Haman, D. Z. (2003). Evaluation of five methods for estimating class A pan evaporation in a humid climate. HortTechnology, 13(3), 500–508.
  • Sezer, Ç.Ö., Öztekin, T. & Sezer, E.K. (2018). A-sınıfı buharlaşma kabından olan buharlaşma miktarının Penman ve Priestley-Taylor (PT) modelleri ile tahmini. Journal of Agriculture Faculty of Ege University, 55 (4), 379-388.
  • Althoff, D., Rodrigues, L. N. & Silva, D. D. (2019). Evaluating evaporation methods for estimating small reservoir water surface evaporation in the Brazilian savannah. Water, 11(9), 1942.
  • Jansen, F.A. & Teuling, A.J. (2020). Evaporation from a large lowland reservoir-(dis)agreement between evaporation models from hourly to decadal timescales. Hydrology and Earth System Sciences, 24, 1055-1072.
  • Terzi, Ö. (2004). Eğirdir gölü’ne ait buharlaşma modellerinin geliştirilmesi ve uygulanması. Ph.D. thesis, University of Süleyman Demirel, Isparta, Turkey.
  • Doğan, E., Isik, S. & Sandalci, M. (2007). Estimation of daily evaporation using Artificial Neural Networks. Technical Journal of Turkish Chamber of Civil Engineers, 18, 4119-4131.
  • Dalkilic, Y., Okkan, U. & Baykan, N. (2014). Comparison of different Ann approaches in daily pan evaporation prediction. Journal of water Resource and Protection, 6, 319-326.
  • Alsumaiei, A.A. (2020). Utility of artificial neural networks in modeling pan evaporation in hyper-arid climates. Water, 12, 1508.
  • Jasmine, M. (2020). A comparative study on prediction of evaporation in arid area based on artificial intelligence techniques. Master Thesis, University of Ottowa, Canada.
  • Üçler N. & Kutlu, F. (2021). Estimating daily pan evaporation data using adaptive neuro fuzzy inference system: Case study within Van local station-Turkey. Journal of Polytechnics, 24(1), 195-204.
  • Castellvi, F., Stockle, C.O., Perez, P.J. & Ibanez, M. (2001). Comparison of methods for applying the Priestly-Taylor equation at a regional scale. Hydrological Processes, 15, 1609-1620.
  • Ali, S., Ghosh, N. C. & Singh, R. (2008). Evaluating best evaporation estimate model for water surface evaporation in semi-arid region, India. Hydrological Processes, 22, 1093-1106.
  • Arasteh, P. D. & Tajrishy, M. (2008). Calibrating Priestly-Taylor model to estimate open water evaporation under regional advection using volume balance method-case study: Chahnimeh reservoir, Iran. Journal of Applied Sciences, 8 (22), 4097-4104.
  • Ai, Z. & Yang, Y. (2016). Modification and validation of Priestly-Taylor model for estimating cotton evapotranspiration under plastic mulch condition. American Meteorological Society, 17, 1281-1293.
  • Seleshi, Y. (2018). Calibration of the Priestly-Taylor evaporation model for Ethiopia. Journal of EEA, 36 (July), 28-40.
  • Gan, G., Liu, Y., Pan, X., Zhao, X., Li, M. & Wang, S. (2020). Seasonal and diurnal variations in the Priestly-Taylor coefficient for a large Ephemeral Lake. Water, 12, 849.
  • Cicibiyik, A. Şarlak, N. & Üstün, D. (2020). Karaman ili hava kirliliği durumu. KMÜ Mühendislik ve Doğa Bilimleri Dergisi, 1(1), 59-69.
  • Cicibiyik, A. Şarlak, N. & Üstün, D. (2022). Adjustment of the Evaporation Pan Coefficient: Case Study of Konya Closed Basin. In: Gökçekuş, H., Kassem, Y. (eds) Climate Change, Natural Resources and Sustainable Environmental Management. NRSEM 2021. Environmental Earth Sciences. 110-118, Springer, Cham.
  • Jensen, M.E. & Allen, R.G. (2016). Evaporation, evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Engineering Practice No.70, Reston-Virginia, USA.
  • Coşkun, A. (2007). Yapay zeka optimizasyon teknikleri: Literatür değerlendirmesi. Fırat Üniversitesi Doğu Araştırmaları Dergisi, 5(2), 142-146.
  • Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Network. 1942-1948, Perth, WA, Australia.
  • Karaboğa, D. & Basturk, B. (2007). Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. IFSA 2007: Foundations of Fuzzy Logic and Soft Computing. 789-798, Cancun.
  • Kaya, B. & Eke, İ. (2020). Yapay arı kolonisi algoritması ile yapılan geliştirmeler ve sonuçları. Journal of Productivity, Republic of Turkey Ministry of Industry and Technology, 1, 99-115.
  • Storn, R. & Price, K. (1997). Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.
  • Shi, Y., & Eberhart, R.C. (1998). Parameter Selection in Particle Swarm Optimization. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg.
  • Fındıklı, M. A. & Kocamaz, A.F. (2018). Yapay arı koloni algoritmalarının sürü robot hedef bulma problemine uygulanması. SETSCI Conference Indexing System, 3, 1034-1039.
  • Karaboğa, N. & Koyuncu, C.A. (2005). Diferansiyel geli̇şi̇m algori̇tması kullanılarak adapti̇f li̇neer toplayıcı tasarımı. EMO, III. Automation Symposium. 216-220, Denizli, Turkey.

Konya Kapalı Havzası için Priestly-Taylor Katsayısı Değerlendirmesi

Year 2024, Volume: 11 Issue: 1, 26 - 36, 31.05.2024
https://doi.org/10.35193/bseufbd.1209924

Abstract

Arazide buharlaşma ölçümü zor ve pahalıdır; bu sebepten ampirik buharlaşma tahmin yöntemleri geliştirilmektedir. Ancak bu tahmin yöntemlerinin avantaj ve dezavantajları vardır. Başlıca dezavantaj, katsayılarının çalışma alanlarının iklim koşullarına göre elde edilmiş olmasıdır. Ampirik yöntemlerden biri Penman'dır. Referans kabul edilen bu yöntem, dünyanın farklı yerlerinde arazide ölçülen verilere en yakın tahminlere ulaşmaktadır. Ancak, çok sayıda ölçülen iklimsel veriye ihtiyaç duymaktadır. Penman yönteminin ölçülen veri ihtiyaçlarını azaltmak için Priestley-Taylor yöntemi geliştirilmiştir. Priestly ve Taylor, doymuş ve gerçek buhar basınçları ve rüzgâr hızı gibi değişkenleri değeri 1,26 olan  katsayısı ile temsil etmişlerdir. Bu yöntemin adveksiyonun etkili olduğu yerlerde daha az buharlaşma değeri tahmin ettiği bilindiğinden, araştırmacılar hala katsayısının kalibrasyonu üzerinde çalışmaktadırlar. Sunulan çalışma iki aşamadan oluşmaktadır. İlk olarak Konya Kapalı Havzası'ndaki beş meteoroloji istasyonunun ölçülen iklimsel verileri kullanılarak bu iki yöntemle buharlaşma tahmin edilmeye çalışılmıştır. Tahmini değerler buharlaşma tavası ölçümleri ile karşılaştırılmıştır. Her bir yöntemle tava ölçümlerinden biraz yüksek değerler tahmin edilse de Penman yöntemi istatistiksel göstergeler temelinde nispeten daha uyumlu bulunmuştur. İkinci olarak, yapay zekâ tabanlı üç optimizasyon algoritması kullanılarak çalışma alanı için  katsayısı 1,28 olarak elde edildi. Bu aşamada karşılaştırma için Penman yöntemi kullanılmıştır.  katsayısı için herhangi bir kalibrasyona gerek olmadığı ve orijinal halinin çalışma alanı için de geçerli olduğu sonucuna varılmıştır.

References

  • Dingman, S.L. (2008). Physical Hydrology. Long Grove, Illinois, Waveland Press, Inc., 646.
  • Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings, Royal Society of London Ser. A, 193, 120–145.
  • Priestley, C. H. B. & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100 (2), 81–92.
  • Subedi, A. & Chavez, J.L. (2015). Crop evapotranspiration (ET) estimation models: A review and discussion of the applicability and limitations of ET methods. Journal of Agricultural Science, 7 (6), 50-68.
  • Sene, K.J., Gash, J.H.C. & McNeil, D.D. (1991). Evaporation from a tropical lake: comparison of theory with direct measurements. Journal of Hydrology, 127, 193-217.
  • Singh, V. P. & Xu, C.Y. (1997). Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrological Process, 11, 311-323.
  • Öztürk, F. & Apaydin, H. (1998). Estimating pan evaporation from limited meteorological observations from Turkey. Water International, 23 (3), 184-189.
  • Abtew, W. (2001). Evaporation estimation for lake Okeechobee in South Florida. Journal of Irrigation and Drainage Engineering, 127 (3), 140-147.
  • Mosner, M.S. & Aulenbach, B.T. (2003). Comparison of methods used to estimate lake evaporation for a water budget of lake Seminole, Southwestern Georgia and Northwestern Florida. Proceedings of the 2003 Georgia Water Resources Conference. The University of Georgia, Athens, Georgia, USA.
  • Sezer, Ç.Ö. & Öztekin, T. (2016). A sınıfı buharlaşma kabından olan günlük buharlaşmanın Penman ve Linacre modelleri ile tahmini. Journal of Agricultural Faculty of Gaziosmanpasa University, 33 (3), 137-147.
  • Irmak, S. & Haman, D. Z. (2003). Evaluation of five methods for estimating class A pan evaporation in a humid climate. HortTechnology, 13(3), 500–508.
  • Sezer, Ç.Ö., Öztekin, T. & Sezer, E.K. (2018). A-sınıfı buharlaşma kabından olan buharlaşma miktarının Penman ve Priestley-Taylor (PT) modelleri ile tahmini. Journal of Agriculture Faculty of Ege University, 55 (4), 379-388.
  • Althoff, D., Rodrigues, L. N. & Silva, D. D. (2019). Evaluating evaporation methods for estimating small reservoir water surface evaporation in the Brazilian savannah. Water, 11(9), 1942.
  • Jansen, F.A. & Teuling, A.J. (2020). Evaporation from a large lowland reservoir-(dis)agreement between evaporation models from hourly to decadal timescales. Hydrology and Earth System Sciences, 24, 1055-1072.
  • Terzi, Ö. (2004). Eğirdir gölü’ne ait buharlaşma modellerinin geliştirilmesi ve uygulanması. Ph.D. thesis, University of Süleyman Demirel, Isparta, Turkey.
  • Doğan, E., Isik, S. & Sandalci, M. (2007). Estimation of daily evaporation using Artificial Neural Networks. Technical Journal of Turkish Chamber of Civil Engineers, 18, 4119-4131.
  • Dalkilic, Y., Okkan, U. & Baykan, N. (2014). Comparison of different Ann approaches in daily pan evaporation prediction. Journal of water Resource and Protection, 6, 319-326.
  • Alsumaiei, A.A. (2020). Utility of artificial neural networks in modeling pan evaporation in hyper-arid climates. Water, 12, 1508.
  • Jasmine, M. (2020). A comparative study on prediction of evaporation in arid area based on artificial intelligence techniques. Master Thesis, University of Ottowa, Canada.
  • Üçler N. & Kutlu, F. (2021). Estimating daily pan evaporation data using adaptive neuro fuzzy inference system: Case study within Van local station-Turkey. Journal of Polytechnics, 24(1), 195-204.
  • Castellvi, F., Stockle, C.O., Perez, P.J. & Ibanez, M. (2001). Comparison of methods for applying the Priestly-Taylor equation at a regional scale. Hydrological Processes, 15, 1609-1620.
  • Ali, S., Ghosh, N. C. & Singh, R. (2008). Evaluating best evaporation estimate model for water surface evaporation in semi-arid region, India. Hydrological Processes, 22, 1093-1106.
  • Arasteh, P. D. & Tajrishy, M. (2008). Calibrating Priestly-Taylor model to estimate open water evaporation under regional advection using volume balance method-case study: Chahnimeh reservoir, Iran. Journal of Applied Sciences, 8 (22), 4097-4104.
  • Ai, Z. & Yang, Y. (2016). Modification and validation of Priestly-Taylor model for estimating cotton evapotranspiration under plastic mulch condition. American Meteorological Society, 17, 1281-1293.
  • Seleshi, Y. (2018). Calibration of the Priestly-Taylor evaporation model for Ethiopia. Journal of EEA, 36 (July), 28-40.
  • Gan, G., Liu, Y., Pan, X., Zhao, X., Li, M. & Wang, S. (2020). Seasonal and diurnal variations in the Priestly-Taylor coefficient for a large Ephemeral Lake. Water, 12, 849.
  • Cicibiyik, A. Şarlak, N. & Üstün, D. (2020). Karaman ili hava kirliliği durumu. KMÜ Mühendislik ve Doğa Bilimleri Dergisi, 1(1), 59-69.
  • Cicibiyik, A. Şarlak, N. & Üstün, D. (2022). Adjustment of the Evaporation Pan Coefficient: Case Study of Konya Closed Basin. In: Gökçekuş, H., Kassem, Y. (eds) Climate Change, Natural Resources and Sustainable Environmental Management. NRSEM 2021. Environmental Earth Sciences. 110-118, Springer, Cham.
  • Jensen, M.E. & Allen, R.G. (2016). Evaporation, evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Engineering Practice No.70, Reston-Virginia, USA.
  • Coşkun, A. (2007). Yapay zeka optimizasyon teknikleri: Literatür değerlendirmesi. Fırat Üniversitesi Doğu Araştırmaları Dergisi, 5(2), 142-146.
  • Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Network. 1942-1948, Perth, WA, Australia.
  • Karaboğa, D. & Basturk, B. (2007). Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. IFSA 2007: Foundations of Fuzzy Logic and Soft Computing. 789-798, Cancun.
  • Kaya, B. & Eke, İ. (2020). Yapay arı kolonisi algoritması ile yapılan geliştirmeler ve sonuçları. Journal of Productivity, Republic of Turkey Ministry of Industry and Technology, 1, 99-115.
  • Storn, R. & Price, K. (1997). Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.
  • Shi, Y., & Eberhart, R.C. (1998). Parameter Selection in Particle Swarm Optimization. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg.
  • Fındıklı, M. A. & Kocamaz, A.F. (2018). Yapay arı koloni algoritmalarının sürü robot hedef bulma problemine uygulanması. SETSCI Conference Indexing System, 3, 1034-1039.
  • Karaboğa, N. & Koyuncu, C.A. (2005). Diferansiyel geli̇şi̇m algori̇tması kullanılarak adapti̇f li̇neer toplayıcı tasarımı. EMO, III. Automation Symposium. 216-220, Denizli, Turkey.
There are 37 citations in total.

Details

Primary Language English
Subjects Data Structures and Algorithms, Engineering
Journal Section Articles
Authors

Alara Cicibıyık 0000-0003-3225-6070

Nermin Şarlak 0000-0003-3632-2725

Deniz Üstün 0000-0002-5229-4018

Publication Date May 31, 2024
Submission Date November 25, 2022
Acceptance Date August 22, 2023
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

APA Cicibıyık, A., Şarlak, N., & Üstün, D. (2024). Priestly-Taylor Coefficient Evaluation for Konya Closed Basin. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 26-36. https://doi.org/10.35193/bseufbd.1209924