Research Article
BibTex RIS Cite

Subcutaneous Connective Tissue Reactions to New Calcium Silicate Cements: An Animal Study

Year 2021, Volume: 4 Issue: 3, 213 - 220, 01.09.2021
https://doi.org/10.19127/bshealthscience.889531

Abstract

The aim of this study was to determine the subcutaneous connective tissue reactions to Medcem MTA and Medcem Pure Portland Cement. Medcem MTA, Medcem Pure Portland Cement and ProRoot MTA were placed in polyethylene tubes and implanted into the dorsal connective tissue of Sprague Dawley rats. The presence of inflammation, edema, necrosis, dystrophic calcification, and thickness of fibrous capsule formation was recorded by histological examination 7, 30, and 60 days after the implantation procedure. Inflammation scores were defined as follows: 0 = no or few inflammatory cells, no reaction, 1 = <25 cells, mild reaction; 2 = 25 to 125 cells, moderate reaction; and 3 = ≥125 cells, severe reaction. Fibrous capsule thickness, necrosis, and formation of calcification were recorded. The Kruskal–Wallis test and repeated measures analysis of variance were used for statistically analyses (P < 0.05). No significant differences in edema, necrosis and fibrous capsule formation were observed between the groups on any of the three euthanasia days. All experimental groups exhibited significantly more inflammation than the control group. On Day 30 and 60, all experimental groups exhibited significantly more dystrophic calcification than the control group. Medcem MTA and Medcem Pure Portland Cement had similar biocompatibility to ProRoot MTA. Medcem MTA and Medcem Pure Portland Cement with the presence of dystrophic calcification in connective tissue have the potential to be clinic use as calcium silicate materials.

References

  • Abou ElReash A, Hamama H, Abdo W, Wu Q, Zaen El-Din A, Xiaoli X. 2019. Biocompatibility of new bioactive resin composite versus calcium silicate cements: an animal study. BMC Oral Health, 19(1): 194.
  • Benetti F, Queiroz ÍOdA, Cosme-Silva L, Conti LC, Oliveira SHPd, Cintra LTA. 2019. Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use bioceramic repair material. Brazilian Dental J, 30(4): 325-332.
  • Bodrumlu E. 2008. Biocompatibility of retrograde root filling materials: a review. Australian Endodontic J, 34(1): 30-35.
  • Bósio C, Felippe G, Bortoluzzi E, Felippe M, Felippe W, Rivero E. 2014. Subcutaneous connective tissue reactions to iR oot SP, mineral trioxide aggregate (MTA) F illapex, D ia R oot B io A ggregate and MTA. Int Endod J, 47(7): 667-674.
  • Camilleri J, Pitt Ford T. 2006. Mineral trioxide aggregate: a review of the constituents and biological properties of the material. International Endodontic J, 39(10): 747-754.
  • Cintra LTA, Ribeiro TAA, Gomes‐Filho JE, Bernabé PFE, Watanabe S, Facundo ACdS, Samuel RO, Dezan‐Junior E. 2013. Biocompatibility and biomineralization assessment of a new root canal sealer and root‐end filling material. Dental Traum, 29(2): 145-150.
  • Dawood AE, Parashos P, Wong RH, Reynolds EC, Manton DJ. 2017. Calcium silicate‐based cements: composition, properties, and clinical applications. J Invest Clin Dent, 8(2): e12195.
  • Gomes-Filho JE, Watanabe S, Bernabé PFE, de Moraes Costa MT. 2009. A mineral trioxide aggregate sealer stimulated mineralization. J Endodontics, 35(2): 256-260.
  • Hinata G, Yoshiba K, Han L, Edanami N, Yoshiba N, Okiji T. 2017. Bioactivity and biomineralization ability of calcium silicate-based pulp-capping materials after subcutaneous implantation. Int Endod J, 50(Sup 2): e40-e51.
  • Holland R, de SOUZA V, Nery MJ, Faraco Júnior IM, Bernabé P, Otoboni Filho JA, Dezan Júnior E. 2001. Reaction of rat connective tissue to implanted dentin tube filled with mineral trioxide aggregate, Portland cement or calcium hydroxide. Braz Dent J, 12(1): 3-8.
  • Hungaro Duarte MA, de Oliveira El Kadre GD, Vivan RR, Guerreiro Tanomaru JM, Tanomaru Filho M, de Moraes IG. 2009. Radiopacity of portland cement associated with different radiopacifying agents. J Endod, 35(5): 737-740.
  • Islam I, Chng HK, Yap AUJ. 2006. Comparison of the physical and mechanical properties of MTA and Portland cement. J Endodontics, 32(3): 193-197.
  • Jefferies SR. 2014. Bioactive and biomimetic restorative materials: a comprehensive review. Part I. J Esthetic and Resto Dent, 26(1): 14-26.
  • Junior ES, dos Santos MGC, Oliveira LB, Mercadé M. 2019. MTA and biodentine for primary teeth pulpotomy: a systematic review and meta-analysis of clinical trials. Clinical Oral Invest, 23(4): 1967-1976.
  • Kaplan AE, Ormaechea M, Picca M, Canzobre M, Ubios A. 2003. Rheological properties and biocompatibility of endodontic sealers. Int Endod J, 36(8): 527-532.
  • Karanth P, Manjunath M, Kuriakose E. 2013. Reaction of rat subcutaneous tissue to mineral trioxide aggregate and Portland cement: a secondary level biocompatibility test. J Indian Soc of Pedodontics and Preventive Dent, 31(2): 74.
  • Lotfi M, Vosoughhosseini S, Saghiri MA, Mesgariabbasi M, Ranjkesh B. 2009. Effect of white mineral trioxide aggregate mixed with disodium hydrogen phosphate on inflammatory cells. J Endodontics, 35(5): 703-705.
  • Maeda H, Hashiguchi I, Nakamuta H, Toriya Y, Wada N, Akamine A. 1999. Histological study of periapical tissue healing in the rat molar after retrofilling with various materials. J Endodontics, 25(1): 38-42.
  • Marques NCT, Lourenço Neto N, Fernandes AP, Rodini CdO, Duarte MAH, Oliveira TM. 2013. Rat subcutaneous tissue response to MTA Fillapex® and Portland cement. Brazilian Dental J, 24(1): 10-14.
  • Moretton TR, Brown CE, Legan JJ, Kafrawy AH. 2000. Tissue reactions after subcutaneous and intraosseous implantation of mineral trioxide aggregate and ethoxybenzoic acid cement. J Biomed Mater Res, 52(3): 528-533.
  • Oliveira TMd, Moretti A, Sakai VT, Neto NL, Santos CFd, Machado MAdAM, Abdo RCC. 2013. Clinical, radiographic and histologic analysis of the effects of pulp capping materials used in pulpotomies of human primary teeth. European Archives of Paediatric Dent, 14(2): 65-71.
  • Olsson B, Sliwkowski A, Langeland K. 1981. Subcutaneous implantation for the biological evaluation of endodontic materials. J Endodontics, 7(8): 355-369.
  • Parirokh M, Torabinejad M. 2010. Mineral trioxide aggregate: a comprehensive literature review--Part III: Clinical applications, drawbacks, and mechanism of action. J Endod, 36(3): 400-413.
  • Parirokh M, Torabinejad M, Dummer P. 2018. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview–part I: vital pulp therapy. Int Endod J, 51(2): 177-205.
  • Petrou MA, Alhamoui FA, Welk A, Altarabulsi MB, Alkilzy M, Splieth HC. 2014. A randomized clinical trial on the use of medical Portland cement, MTA and calcium hydroxide in indirect pulp treatment. Clinical Oral Invest, 18(5): 1383-1389.
  • Roberts HW, Toth JM, Berzins DW, Charlton DG. 2008. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dental Materials, 24(2): 149-164.
  • Sabari MH, Kavitha M, Shobana S. 2019. Comparative Evaluation of Tissue Response of MTA and Portland Cement with Three Radiopacifying Agents: An Animal Study. J Contemp Dent Pract, 20(1): 20-25.
  • Saghiri MA, Lotfi M, Shokouhinejad N, Asgar K, Mehrvarzfar P. 2012. Influence of white mineral trioxide aggregate on inflammatory cells before and after expiry date. Dent Traumatol, 28(4): 302-305.
  • Saidon J, He J, Zhu Q, Safavi K, Spångberg L. S. 2003. Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, and Endodontology, 95(4): 483-489.
  • Sakai VT, Moretti ABdS, Oliveira TMd, Fornetti APC, Santos CFd, Machado MAdAM, Abdo RCC. 2009. Pulpotomy of human primary molars with MTA and Portland cement: a randomised controlled trial. British Dental J, 207(3): E5.
  • Sarkar N, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. 2005. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endodontics, 31(2): 97-100.
  • Shayegan A, Jurysta C, Atash R, Petein M, Abbeele AV. 2012. Biodentine used as a pulp-capping agent in primary pig teeth. Pediatric Dent, 34(7): 202E-208E.
  • Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. 2019. Bioactive Glass Applications in Dentistry. Int J Mol Sci, 20: 23.
  • Steffen R, Van Waes H. 2009. Understanding mineral trioxide aggregate/Portlandcement: a review of literature and background factors. European Archives of Paediatric Dent, 10(2): 93-97.
  • Torabinejad M, Hong CU, Lee SJ, Monsef M, Ford TRP. 1995. Investigation of mineral trioxide aggregate for root-end filling in dogs. J Endodontics, 21(12): 603-608.
  • Torneck CD. 1966. Reaction of rat connective tissue to polyethylene tube implants. I. Oral Surg Oral Med Oral Pathol, 21(3): 379-387.
  • Vilimek VM, Gateva N, Christof BS. 2018. Success rate of medcem portland cement as a pulp capping agent in pulpotomies of primary teeth. J IMAB–Annual Proceeding Sci Papers, 24(1): 1866-1871.
  • Yaltirik M, Ozbas H, Bilgic B, Issever H. 2004. Reactions of connective tissue to mineral trioxide aggregate and amalgam. J Endod, 30(2): 95-99.
  • Zhang W, Peng B. 2015. Tissue reactions after subcutaneous and intraosseous implantation of iRoot SP, MTA and AH Plus. Dent Mater J, 34(6): 774-780.
  • Zmener O, Lalis RM, Pameijer CH, Chaves C, Kokubu G, Grana D. 2012. Reaction of rat subcutaneous connective tissue to a mineral trioxide aggregate–based and a zinc oxide and eugenol sealer. J Endodontics, 38(9): 1233-1238.
Year 2021, Volume: 4 Issue: 3, 213 - 220, 01.09.2021
https://doi.org/10.19127/bshealthscience.889531

Abstract

References

  • Abou ElReash A, Hamama H, Abdo W, Wu Q, Zaen El-Din A, Xiaoli X. 2019. Biocompatibility of new bioactive resin composite versus calcium silicate cements: an animal study. BMC Oral Health, 19(1): 194.
  • Benetti F, Queiroz ÍOdA, Cosme-Silva L, Conti LC, Oliveira SHPd, Cintra LTA. 2019. Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use bioceramic repair material. Brazilian Dental J, 30(4): 325-332.
  • Bodrumlu E. 2008. Biocompatibility of retrograde root filling materials: a review. Australian Endodontic J, 34(1): 30-35.
  • Bósio C, Felippe G, Bortoluzzi E, Felippe M, Felippe W, Rivero E. 2014. Subcutaneous connective tissue reactions to iR oot SP, mineral trioxide aggregate (MTA) F illapex, D ia R oot B io A ggregate and MTA. Int Endod J, 47(7): 667-674.
  • Camilleri J, Pitt Ford T. 2006. Mineral trioxide aggregate: a review of the constituents and biological properties of the material. International Endodontic J, 39(10): 747-754.
  • Cintra LTA, Ribeiro TAA, Gomes‐Filho JE, Bernabé PFE, Watanabe S, Facundo ACdS, Samuel RO, Dezan‐Junior E. 2013. Biocompatibility and biomineralization assessment of a new root canal sealer and root‐end filling material. Dental Traum, 29(2): 145-150.
  • Dawood AE, Parashos P, Wong RH, Reynolds EC, Manton DJ. 2017. Calcium silicate‐based cements: composition, properties, and clinical applications. J Invest Clin Dent, 8(2): e12195.
  • Gomes-Filho JE, Watanabe S, Bernabé PFE, de Moraes Costa MT. 2009. A mineral trioxide aggregate sealer stimulated mineralization. J Endodontics, 35(2): 256-260.
  • Hinata G, Yoshiba K, Han L, Edanami N, Yoshiba N, Okiji T. 2017. Bioactivity and biomineralization ability of calcium silicate-based pulp-capping materials after subcutaneous implantation. Int Endod J, 50(Sup 2): e40-e51.
  • Holland R, de SOUZA V, Nery MJ, Faraco Júnior IM, Bernabé P, Otoboni Filho JA, Dezan Júnior E. 2001. Reaction of rat connective tissue to implanted dentin tube filled with mineral trioxide aggregate, Portland cement or calcium hydroxide. Braz Dent J, 12(1): 3-8.
  • Hungaro Duarte MA, de Oliveira El Kadre GD, Vivan RR, Guerreiro Tanomaru JM, Tanomaru Filho M, de Moraes IG. 2009. Radiopacity of portland cement associated with different radiopacifying agents. J Endod, 35(5): 737-740.
  • Islam I, Chng HK, Yap AUJ. 2006. Comparison of the physical and mechanical properties of MTA and Portland cement. J Endodontics, 32(3): 193-197.
  • Jefferies SR. 2014. Bioactive and biomimetic restorative materials: a comprehensive review. Part I. J Esthetic and Resto Dent, 26(1): 14-26.
  • Junior ES, dos Santos MGC, Oliveira LB, Mercadé M. 2019. MTA and biodentine for primary teeth pulpotomy: a systematic review and meta-analysis of clinical trials. Clinical Oral Invest, 23(4): 1967-1976.
  • Kaplan AE, Ormaechea M, Picca M, Canzobre M, Ubios A. 2003. Rheological properties and biocompatibility of endodontic sealers. Int Endod J, 36(8): 527-532.
  • Karanth P, Manjunath M, Kuriakose E. 2013. Reaction of rat subcutaneous tissue to mineral trioxide aggregate and Portland cement: a secondary level biocompatibility test. J Indian Soc of Pedodontics and Preventive Dent, 31(2): 74.
  • Lotfi M, Vosoughhosseini S, Saghiri MA, Mesgariabbasi M, Ranjkesh B. 2009. Effect of white mineral trioxide aggregate mixed with disodium hydrogen phosphate on inflammatory cells. J Endodontics, 35(5): 703-705.
  • Maeda H, Hashiguchi I, Nakamuta H, Toriya Y, Wada N, Akamine A. 1999. Histological study of periapical tissue healing in the rat molar after retrofilling with various materials. J Endodontics, 25(1): 38-42.
  • Marques NCT, Lourenço Neto N, Fernandes AP, Rodini CdO, Duarte MAH, Oliveira TM. 2013. Rat subcutaneous tissue response to MTA Fillapex® and Portland cement. Brazilian Dental J, 24(1): 10-14.
  • Moretton TR, Brown CE, Legan JJ, Kafrawy AH. 2000. Tissue reactions after subcutaneous and intraosseous implantation of mineral trioxide aggregate and ethoxybenzoic acid cement. J Biomed Mater Res, 52(3): 528-533.
  • Oliveira TMd, Moretti A, Sakai VT, Neto NL, Santos CFd, Machado MAdAM, Abdo RCC. 2013. Clinical, radiographic and histologic analysis of the effects of pulp capping materials used in pulpotomies of human primary teeth. European Archives of Paediatric Dent, 14(2): 65-71.
  • Olsson B, Sliwkowski A, Langeland K. 1981. Subcutaneous implantation for the biological evaluation of endodontic materials. J Endodontics, 7(8): 355-369.
  • Parirokh M, Torabinejad M. 2010. Mineral trioxide aggregate: a comprehensive literature review--Part III: Clinical applications, drawbacks, and mechanism of action. J Endod, 36(3): 400-413.
  • Parirokh M, Torabinejad M, Dummer P. 2018. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview–part I: vital pulp therapy. Int Endod J, 51(2): 177-205.
  • Petrou MA, Alhamoui FA, Welk A, Altarabulsi MB, Alkilzy M, Splieth HC. 2014. A randomized clinical trial on the use of medical Portland cement, MTA and calcium hydroxide in indirect pulp treatment. Clinical Oral Invest, 18(5): 1383-1389.
  • Roberts HW, Toth JM, Berzins DW, Charlton DG. 2008. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dental Materials, 24(2): 149-164.
  • Sabari MH, Kavitha M, Shobana S. 2019. Comparative Evaluation of Tissue Response of MTA and Portland Cement with Three Radiopacifying Agents: An Animal Study. J Contemp Dent Pract, 20(1): 20-25.
  • Saghiri MA, Lotfi M, Shokouhinejad N, Asgar K, Mehrvarzfar P. 2012. Influence of white mineral trioxide aggregate on inflammatory cells before and after expiry date. Dent Traumatol, 28(4): 302-305.
  • Saidon J, He J, Zhu Q, Safavi K, Spångberg L. S. 2003. Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, and Endodontology, 95(4): 483-489.
  • Sakai VT, Moretti ABdS, Oliveira TMd, Fornetti APC, Santos CFd, Machado MAdAM, Abdo RCC. 2009. Pulpotomy of human primary molars with MTA and Portland cement: a randomised controlled trial. British Dental J, 207(3): E5.
  • Sarkar N, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. 2005. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endodontics, 31(2): 97-100.
  • Shayegan A, Jurysta C, Atash R, Petein M, Abbeele AV. 2012. Biodentine used as a pulp-capping agent in primary pig teeth. Pediatric Dent, 34(7): 202E-208E.
  • Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. 2019. Bioactive Glass Applications in Dentistry. Int J Mol Sci, 20: 23.
  • Steffen R, Van Waes H. 2009. Understanding mineral trioxide aggregate/Portlandcement: a review of literature and background factors. European Archives of Paediatric Dent, 10(2): 93-97.
  • Torabinejad M, Hong CU, Lee SJ, Monsef M, Ford TRP. 1995. Investigation of mineral trioxide aggregate for root-end filling in dogs. J Endodontics, 21(12): 603-608.
  • Torneck CD. 1966. Reaction of rat connective tissue to polyethylene tube implants. I. Oral Surg Oral Med Oral Pathol, 21(3): 379-387.
  • Vilimek VM, Gateva N, Christof BS. 2018. Success rate of medcem portland cement as a pulp capping agent in pulpotomies of primary teeth. J IMAB–Annual Proceeding Sci Papers, 24(1): 1866-1871.
  • Yaltirik M, Ozbas H, Bilgic B, Issever H. 2004. Reactions of connective tissue to mineral trioxide aggregate and amalgam. J Endod, 30(2): 95-99.
  • Zhang W, Peng B. 2015. Tissue reactions after subcutaneous and intraosseous implantation of iRoot SP, MTA and AH Plus. Dent Mater J, 34(6): 774-780.
  • Zmener O, Lalis RM, Pameijer CH, Chaves C, Kokubu G, Grana D. 2012. Reaction of rat subcutaneous connective tissue to a mineral trioxide aggregate–based and a zinc oxide and eugenol sealer. J Endodontics, 38(9): 1233-1238.
There are 40 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Research Article
Authors

Seçil Çalışkan 0000-0002-8099-584X

Nuray Tüloğlu 0000-0001-6410-9126

Barış Karabulut 0000-0001-5556-6237

Ceren Canbey 0000-0003-0564-4158

Şule Bayrak 0000-0001-7023-2358

Publication Date September 1, 2021
Submission Date March 2, 2021
Acceptance Date March 22, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Çalışkan, S., Tüloğlu, N., Karabulut, B., Canbey, C., et al. (2021). Subcutaneous Connective Tissue Reactions to New Calcium Silicate Cements: An Animal Study. Black Sea Journal of Health Science, 4(3), 213-220. https://doi.org/10.19127/bshealthscience.889531
AMA Çalışkan S, Tüloğlu N, Karabulut B, Canbey C, Bayrak Ş. Subcutaneous Connective Tissue Reactions to New Calcium Silicate Cements: An Animal Study. BSJ Health Sci. September 2021;4(3):213-220. doi:10.19127/bshealthscience.889531
Chicago Çalışkan, Seçil, Nuray Tüloğlu, Barış Karabulut, Ceren Canbey, and Şule Bayrak. “Subcutaneous Connective Tissue Reactions to New Calcium Silicate Cements: An Animal Study”. Black Sea Journal of Health Science 4, no. 3 (September 2021): 213-20. https://doi.org/10.19127/bshealthscience.889531.
EndNote Çalışkan S, Tüloğlu N, Karabulut B, Canbey C, Bayrak Ş (September 1, 2021) Subcutaneous Connective Tissue Reactions to New Calcium Silicate Cements: An Animal Study. Black Sea Journal of Health Science 4 3 213–220.
IEEE S. Çalışkan, N. Tüloğlu, B. Karabulut, C. Canbey, and Ş. Bayrak, “Subcutaneous Connective Tissue Reactions to New Calcium Silicate Cements: An Animal Study”, BSJ Health Sci., vol. 4, no. 3, pp. 213–220, 2021, doi: 10.19127/bshealthscience.889531.
ISNAD Çalışkan, Seçil et al. “Subcutaneous Connective Tissue Reactions to New Calcium Silicate Cements: An Animal Study”. Black Sea Journal of Health Science 4/3 (September 2021), 213-220. https://doi.org/10.19127/bshealthscience.889531.
JAMA Çalışkan S, Tüloğlu N, Karabulut B, Canbey C, Bayrak Ş. Subcutaneous Connective Tissue Reactions to New Calcium Silicate Cements: An Animal Study. BSJ Health Sci. 2021;4:213–220.
MLA Çalışkan, Seçil et al. “Subcutaneous Connective Tissue Reactions to New Calcium Silicate Cements: An Animal Study”. Black Sea Journal of Health Science, vol. 4, no. 3, 2021, pp. 213-20, doi:10.19127/bshealthscience.889531.
Vancouver Çalışkan S, Tüloğlu N, Karabulut B, Canbey C, Bayrak Ş. Subcutaneous Connective Tissue Reactions to New Calcium Silicate Cements: An Animal Study. BSJ Health Sci. 2021;4(3):213-20.