Research Article
BibTex RIS Cite

Identification of virulence resistance genes in Pseudomonas aeruginosa strains isolated from blood samples

Year 2022, Volume: 6 Issue: 1, 64 - 69, 30.04.2022
https://doi.org/10.34084/bshr.1090884

Abstract

Aim: In this it is aimed to the determine the presence of virulence resistance genes (toxA, algD, plcN, lasB, plcH) in P. aeruginosa isolates isolated from blood samples.
Materials and methods: DNA extraction of the study isolates was done by boiling method. Optimization was done using positive control after DNA extraction. After optimization, the presence of virulence (toxA, algD, plcN, lasB, plcH) resistance genes was investigated by polymerase chain reaction (PCR) method.
Results: As a result of PCR of the virulence gene regions (toxA, algD, lasB, plcN, plcH); Positive rates of KR 25 isolates were 80% (n=20), 100% (n=25), 100% (n=25), 100% (n=25), 96% (n=24) in KS 46 isolates. On the other hand, the positive rate distributions were found to be 93.47% (n=43), 100% (n=46), 100% (n=46), 100% (n=46), 97.82% (n=45).
Conclusion: As a result of PCR of virulence gene regions (toxA, algD, lasB, plcN, plcH) of P. aeruginosa, it was determined that algD, lasB, plcN genes were found in all 25 carbapenem resistant (KR) and 46 carbapenem sensitive (KS) isolates.

References

  • Palleroni NJ. Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. Microb. 2003;149(1):1-7.
  • Speert DP, Campbell ME, Davidson AGF, Wong LT. Pseudomonas aeruginosa colonization of the gastrointestinal tract in patients with cystic fibrosis. J Infect Dis. 1993;167(1):226-229.
  • Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582-610.
  • Blanc DS, Petignat C, Janin B, Bille J, Francioli P. Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study. Clin Microb Infect. 1998;4(5):242-247.
  • Varin A, Valot B, Cholley P, et al. High prevalence and moderate diversity of Pseudomonas aeruginosa in the U-bends of high-risk units in hospital. Int J Hyg Environ Health. 2017;220(5):880-885.
  • Witney A, Gould K, Pope C, et al. Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of Pseudomonas aeruginosa. Clin Microb Infect. 2014;20(10):O609-O618.
  • Öztürk C, Albayrak HT, Altinöz A, Ankarali H. Pseudomonas aeruginosa Suşlarinda Antibiyotiklere Direnç ve Beta-Laktamaz Oranları. Ankem derg. 2010;24(3):117-23.
  • Murray TS, Egan M, Kazmierczak BI. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Cur Opn Ped. 2007;19(1):83-88.
  • Wang Y, Dai Y, Zhang Y, Hu Y, Yang B, Chen S. Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Science in China Series C: Life Sciences. 2007;50(3):385-391.
  • Ra'oof WaM. Distribution of algD, lasB, pilB and nan1 genes among MDR clinical isolates of Pseudomonas aeruginosa in respect to site of infection. Tikrit Med J. 2011;17(2).
  • Jaffar-Bandjee MC, Lazdunski A, Bally M, Carrère J, Chazalette JP, Galabert C. Production of elastase, exotoxin A, and alkaline protease in sputa during pulmonary exacerbation of cystic fibrosis in patients chronically infected by Pseudomonas aeruginosa. J Clin Microb. 1995;33(4):924-929.
  • König B, Vasil M, König W. Role of haemolytic and non-haemolytic phospholipase C from Pseudomonas aeruginosa in interleukin-8 release from human monocytes. J Med Microb. 1997;46(6):471-478.
  • Ostroff R, Vasil A, Vasil M. Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol. 1990;172(10):5915-5923.
  • Berrin U, Güngör S, Sezak N, Afşar İ, ŞERİFHAN-İLGÜN M, Demirci M. Yoğun bakım hastalarının kan kültürlerinden izole edilen Pseudomonas aeruginosa ve Acinetobacter baumannii izolatlarının antibiyotik direnç yüzdelerindeki değişim. Türk Hij Den Biy Derg. 2012;71(1):25-30.
  • Faraji F, Mahzounieh M, Ebrahimi A, Fallah F, Teymournejad O, Lajevardi B. Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with Cystic Fibrosis and burn wounds in Iran. Microb Pathogen. 2016;99:1-4.
  • Maçin S, KITTANA FNA, YILMAZ YA. Çeşitli klinik örneklerden izole edilen pseudomonas aeruginosa suşlarının virulans faktörlerinin incelenmesi. Cukurova Med J. 2017;42(2):308-313.
  • Alvarez-Buylla A, Allen M, Betts D, et al. Multicentre study of the in vitro activity of ceftolozane/tazobactam and other commonly used antibiotics against Pseudomonas aeruginosa isolates from patients in the UK. J Antimicrob Chemother. 2020;2(2):dlaa024.
  • Trautmann M, Lepper PM, Haller M. Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. Am J Infect Cont. 2005;33(5):S41-S49.
  • Alhede M, Bjarnsholt T, Givskov M, Alhede M. Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. Adv Appl Microb. 2014;86:1-40.
  • Döring G. Significance of Pseudomonas aeruginosa virulence factors in acute and chronic Pseudomonas aeruginosa infections. Infect. 1987;15(1):47-50.
  • Özer B, BABAYİĞİT C, ÇOLAK S, et al. Pnömoni Etkenleri ve Antimikrobiyal Direnç Durumları. Mustafa Kemal Üni Tıp Derg. 2016;7(27).
  • Samad A, Ahmed T, Rahim A, Khalil A, Ali I. Antimicrobial susceptibility patterns of clinical isolates of Pseudomonas aeruginosa isolated from patients of respiratory tract infections in a Tertiary Care Hospital, Peshawar. Pak J Med Sci. 2017;33(3):670.
  • Sonmezer MC, Ertem G, Erdinc FS, et al. Evaluation of risk factors for antibiotic resistance in patients with nosocomial infections caused by Pseudomonas aeruginosa. Can J Infect Dis Med Microb. 2016;47:256-362.
  • Mitov I, Strateva T, Markova B. Prevalence of virulence genes among bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Brazil J Microb 2010;41(3):588-595.
  • Wolska K, Szweda P. Genetic features of clinical Pseudomonas aeruginosa strains. Pol J Microbiol. 2009;58(3):255-60.
  • Pournajaf A, Razavi S, Irajian G, et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med. 2018;26(3):226-36.
  • Andersson DI, Balaban NQ, Baquero F, et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microb Rev 2020;44(2):171-188.
  • Control CfD, Prevention. Pseudomonas aeruginosa in healthcare settings. HAI/CDC [online]< https://www cdc gov/hai/organisms/pseudomonas html>[accessed 27 August 2018]. 2018;

Kan örneklerinden izole edilen Pseudomonas aeruginosa suşlarında virülans direnç genlerinin belirlenmesi

Year 2022, Volume: 6 Issue: 1, 64 - 69, 30.04.2022
https://doi.org/10.34084/bshr.1090884

Abstract

Amaç: Kan örneklerinden izole edilen P. aeruginosa izolatlarındaki virülans direnç genlerinin (toxA, algD, plcN, lasB, plcH) varlığının belirlenmesidir.
Yöntem: Çalışma izolatlarının DNA ekstraksiyonu kaynatma yöntemiyle yapıldı. DNA ekstraksiyonundan sonra pozitif kontrol kullanılarak optimizasyon yapıldı. Optimizasyondan sonra virülans (toxA, algD, plcN, lasB, plcH) direnç genlerinin varlığının polimeraz zincir reaksiyonu (PZR) yöntemi ile araştırıldı.
Bulgular: Yapılan virülans gen bölgelerinin (toxA, algD, lasB, plcN, plcH) PZR işlemi sonucunda; karbapenem dirençli (KR) 25 izolatta pozitif oranları sırasıyla % 80 (n=20), % 100 (n=25), % 100 (n=25), % 100 (n=25), %96 (n=24) olduğu, karbapenem duyarlı (KS) 46 izolatta ise pozitif oran dağılımlarının % 93,47 (n=43), % 100 (n=46), % 100 (n=46), % 100 (n=46), %97,82 (n=45) olduğu saptanmıştır.
Sonuç: P. aeruginosa’ın virülans gen bölgelerinin (toxA, algD, lasB, plcN, plcH) PZR işlemi sonucunda KR 25 ve KS 46 izolatların hepsinde algD, lasB, plcN genlerinin bulunduğu belirlenmiştir.

References

  • Palleroni NJ. Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. Microb. 2003;149(1):1-7.
  • Speert DP, Campbell ME, Davidson AGF, Wong LT. Pseudomonas aeruginosa colonization of the gastrointestinal tract in patients with cystic fibrosis. J Infect Dis. 1993;167(1):226-229.
  • Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582-610.
  • Blanc DS, Petignat C, Janin B, Bille J, Francioli P. Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study. Clin Microb Infect. 1998;4(5):242-247.
  • Varin A, Valot B, Cholley P, et al. High prevalence and moderate diversity of Pseudomonas aeruginosa in the U-bends of high-risk units in hospital. Int J Hyg Environ Health. 2017;220(5):880-885.
  • Witney A, Gould K, Pope C, et al. Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of Pseudomonas aeruginosa. Clin Microb Infect. 2014;20(10):O609-O618.
  • Öztürk C, Albayrak HT, Altinöz A, Ankarali H. Pseudomonas aeruginosa Suşlarinda Antibiyotiklere Direnç ve Beta-Laktamaz Oranları. Ankem derg. 2010;24(3):117-23.
  • Murray TS, Egan M, Kazmierczak BI. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Cur Opn Ped. 2007;19(1):83-88.
  • Wang Y, Dai Y, Zhang Y, Hu Y, Yang B, Chen S. Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Science in China Series C: Life Sciences. 2007;50(3):385-391.
  • Ra'oof WaM. Distribution of algD, lasB, pilB and nan1 genes among MDR clinical isolates of Pseudomonas aeruginosa in respect to site of infection. Tikrit Med J. 2011;17(2).
  • Jaffar-Bandjee MC, Lazdunski A, Bally M, Carrère J, Chazalette JP, Galabert C. Production of elastase, exotoxin A, and alkaline protease in sputa during pulmonary exacerbation of cystic fibrosis in patients chronically infected by Pseudomonas aeruginosa. J Clin Microb. 1995;33(4):924-929.
  • König B, Vasil M, König W. Role of haemolytic and non-haemolytic phospholipase C from Pseudomonas aeruginosa in interleukin-8 release from human monocytes. J Med Microb. 1997;46(6):471-478.
  • Ostroff R, Vasil A, Vasil M. Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol. 1990;172(10):5915-5923.
  • Berrin U, Güngör S, Sezak N, Afşar İ, ŞERİFHAN-İLGÜN M, Demirci M. Yoğun bakım hastalarının kan kültürlerinden izole edilen Pseudomonas aeruginosa ve Acinetobacter baumannii izolatlarının antibiyotik direnç yüzdelerindeki değişim. Türk Hij Den Biy Derg. 2012;71(1):25-30.
  • Faraji F, Mahzounieh M, Ebrahimi A, Fallah F, Teymournejad O, Lajevardi B. Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with Cystic Fibrosis and burn wounds in Iran. Microb Pathogen. 2016;99:1-4.
  • Maçin S, KITTANA FNA, YILMAZ YA. Çeşitli klinik örneklerden izole edilen pseudomonas aeruginosa suşlarının virulans faktörlerinin incelenmesi. Cukurova Med J. 2017;42(2):308-313.
  • Alvarez-Buylla A, Allen M, Betts D, et al. Multicentre study of the in vitro activity of ceftolozane/tazobactam and other commonly used antibiotics against Pseudomonas aeruginosa isolates from patients in the UK. J Antimicrob Chemother. 2020;2(2):dlaa024.
  • Trautmann M, Lepper PM, Haller M. Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. Am J Infect Cont. 2005;33(5):S41-S49.
  • Alhede M, Bjarnsholt T, Givskov M, Alhede M. Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. Adv Appl Microb. 2014;86:1-40.
  • Döring G. Significance of Pseudomonas aeruginosa virulence factors in acute and chronic Pseudomonas aeruginosa infections. Infect. 1987;15(1):47-50.
  • Özer B, BABAYİĞİT C, ÇOLAK S, et al. Pnömoni Etkenleri ve Antimikrobiyal Direnç Durumları. Mustafa Kemal Üni Tıp Derg. 2016;7(27).
  • Samad A, Ahmed T, Rahim A, Khalil A, Ali I. Antimicrobial susceptibility patterns of clinical isolates of Pseudomonas aeruginosa isolated from patients of respiratory tract infections in a Tertiary Care Hospital, Peshawar. Pak J Med Sci. 2017;33(3):670.
  • Sonmezer MC, Ertem G, Erdinc FS, et al. Evaluation of risk factors for antibiotic resistance in patients with nosocomial infections caused by Pseudomonas aeruginosa. Can J Infect Dis Med Microb. 2016;47:256-362.
  • Mitov I, Strateva T, Markova B. Prevalence of virulence genes among bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Brazil J Microb 2010;41(3):588-595.
  • Wolska K, Szweda P. Genetic features of clinical Pseudomonas aeruginosa strains. Pol J Microbiol. 2009;58(3):255-60.
  • Pournajaf A, Razavi S, Irajian G, et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med. 2018;26(3):226-36.
  • Andersson DI, Balaban NQ, Baquero F, et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microb Rev 2020;44(2):171-188.
  • Control CfD, Prevention. Pseudomonas aeruginosa in healthcare settings. HAI/CDC [online]< https://www cdc gov/hai/organisms/pseudomonas html>[accessed 27 August 2018]. 2018;
There are 28 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

İlknur Bıyık 0000-0002-3247-883X

Yeliz Tanrıverdi Çaycı 0000-0002-9251-1953

Ege Berke Atıgan 0000-0002-0285-7994

Asuman Bırıncı 0000-0002-8653-4710

Publication Date April 30, 2022
Acceptance Date April 17, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

AMA Bıyık İ, Tanrıverdi Çaycı Y, Atıgan EB, Bırıncı A. Identification of virulence resistance genes in Pseudomonas aeruginosa strains isolated from blood samples. J Biotechnol and Strategic Health Res. April 2022;6(1):64-69. doi:10.34084/bshr.1090884

Journal of Biotechnology and Strategic Health Research