Research Article
BibTex RIS Cite

Structural Analysis of Composite Aircraft Wing Ribs Designed with Elliptical Cavities

Year 2023, Volume: 6 Issue: 2, 191 - 207, 31.12.2023
https://doi.org/10.55117/bufbd.1355812

Abstract

It is thought that composite wing ribs designed with different fiber angles compared to wing ribs produced with traditional materials will contribute to the aviation industry. In this study, Carbon-Epoxy, Aramid-Epoxy and Kevlar-Epoxy composite materials with different orientation angles were used for the wing root ribs of the MQ-1B Predator, an unmanned aerial vehicle. Solidworks program was used for three-dimensional designs of rib structures, elliptical discharges of different sizes were made on it to reduce its weight. ANSYS Workbench finite element program was used for modeling and structural analysis of aircraft wing ribs. The layer thickness of the composite rib structures studied is 0.25 mm and they are formed from a six-layer composite plate. The fiber orientation angles in the models are respectively 0°, 15°, 30°, 45°, 60°, 75° and it was used to be 90°. In the structural analyses of the wing root ribs modeled under aerodynamic load, the equivalent (von Mises) stress and total deformation values occurring in the wing root ribs were examined. As a result of the analyses performed, it has been determined that rib structures with different composite materials and orientation angles exhibit different behaviors under the applied load. It was found that the lowest deformation on the ribs occurred as 0.0084515 mm in the rib with Carbon-Epoxy material with a fiber angle of 0° and the lowest stress occurred as 0.59402 MPa in the rib models with Kevlar-Epoxy material with a fiber angle of 90°.

References

  • [1] K. Veeranjaneyulu, and S. Hussain. "Wing Rib Stress Analysis of DLR-F6 Aircraft," IOP Conference Series: Materials Science and Engineering, 2018, vol. 455. No. 1. IOP Publishing.
  • [2] D. S. Cairns, and L. A. Wood, "Composite Materials for Aircraft Structures, " Ind. Eng.s, 2009.
  • [3] P. V. Kumar, I. R. Raj, M. S. Reddy, and N. S. Prasad, “Design and Finite Element Analysis of Aircraft Wing Using Ribs and Spars,” Turkish Journal of Computer and Mathematics Education, vol. 12, pp. 3224-3230, Aug. 2021.
  • [4] P. M. C. Carneiro, and G. Pedro, "Structural analysis of wing ribs obtained by additive manufacturing," Rapid Prototyping Journal, vol. 25, pp. 708-720, Feb. 2019
  • [5] J. Polagangu, et al., "Finite Element Analysis of İnter Spar Ribs of Composite Wing of Light Transport Aircraft Against Brazier Load," in 2009 National Conference on Scientific Achievements of SC and ST Scientists and Technologists, 2009, Vol. 17, pp. 57-68.
  • [6] M. Yu-shan, et al., "Structural design and analysis of a composite wing with high aspect ratio," J. Zhejiang Univ. Vol. 20, pp. 781-793, Oct. 2019.
  • [7] A. Rinku, et al., "Topology and size optimization of modular ribs in aircraft wings," in 2015 Proceedings of the 11th World Congress on Structural and Multidisciplinary Optimization, 2015, pp. 7-12.
  • [8] S. Bairavi, and S. Balaji, "Design and Stress Analysis of Aircraft Wing Rib with Various Cut Outs," Indian Journal of Applied Research, vol. 6, pp. 511-514, Apr. 2016.
  • [9] S. Rahul, and G. Garg, "Design and Analysis of Wing Rib of Aircraft Review," in 2014 International Journal of innovative Research in Science and Engineering Technology, 2014, vol. 3, pp. 17999-18005.
  • [10] C. Kandemir, "Weight optimization of an aircraft wing composite rib using finite element method," Haccettepe Üniversitesi, 2020.
  • [11] Air Force, [Online]. Erişim: https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104469/mq-1b-predator/-. Erişildi: [04.07.2023]
  • [12] Airfoil Tools, [Online]. Erişim: http://airfoiltools.com/airfoil/details?airfoil=naca2412-il-. Erişildi: [10.07.2023]
  • [13] Nedelcu, et al. "Composites materials for aviation industry," in 2012 International Conference of Scientific Papers “Scientific Research and Education in The Air Force” AFASES. 2012, vol. 24, pp. 435-439.
  • [14] B. Wang, J. Xiong, X. Wang, L. Ma, G. Q. Zhang, L. Z. Wu, and J. C. Feng, “Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact,” Materials & Design, vol. 50, pp. 140-148, Sep. 2013.
  • [15] L. Yang, Y. Yan, and N. Kuang, “Experimental and numerical investigation of aramid fibre reinforced laminates subjected to low velocity impact,” Polymer Testing, vol. 32, pp. 1163-1173, Oct. 2013.
  • [16] J. Wang, J. Olortegui-Yume, and N. Muller, “Stress and vibration analysis for woven Composite axialimpeller,” In Power Conference, vol. 49354, pp. 443-449, Jan. 2010.
  • [17] S. R. Konayapalli, and Y. Sujatha, “Design and analysis of aircraftwing,” IJMETMR, vol. 2, pp. 1480-1487, Sep. 2015.
  • [18] T. V. Kumar, A. W. Basha, M. Pavithra, and V. Srilekha, “Static & dynamic analysis of a typical aircraft wing structure using Msc Nastran,” Int. J. Res. Aeronaut. Mech. Eng, vol. 3, pp. 1-12, Aug. 2015.
  • [19] K. J. Bathe, “Finite element method,” Wiley encyclopedia of computer science and engineering, pp. 1-12, June 2007.

Eliptik Boşluklarla Tasarlanmış Kompozit Uçak Kanat Kaburgalarının Yapısal Analizi

Year 2023, Volume: 6 Issue: 2, 191 - 207, 31.12.2023
https://doi.org/10.55117/bufbd.1355812

Abstract

Geleneksel malzemelerle üretilen kanat kaburgalarına kıyasla farklı fiber açılarıyla tasarlanan kompozit kanat kaburgalarının havacılık endüstrisine katkıda bulunulacağı düşünülmektedir. Bu çalışmada, insansız hava aracı olan MQ-1B Predator’ün kanat kök kaburgaları için farklı oryantasyon açılarına sahip Karbon-Epoksi, Aramid-Epoksi ve Kevlar-Epoksi kompozit malzemeleri kullanılmıştır. Kaburga yapıları üç boyutlu tasarımları için Solidworks programı kullanılmış, ağırlığının azaltılması için üzerinde farklı boyutlarda eliptik boşaltmalar yapılmıştır. Uçak kanat kaburgalarının modellemesi ve yapısal analizleri için ANSYS Workbench sonlu elemanlar programı kullanılmıştır. İncelenen kompozit kaburga yapılarının tabaka kalınlıkları 0,25 mm olup, altı tabakalı kompozit plakadan oluşturulmuştur. Modellerde fiber oryantasyon açıları ise sırasıyla 0°, 15°, 30°, 45°, 60°, 75° ve 90° olacak şekilde kullanılmıştır. Aerodinamik yük altında modellenen kanat kök kaburgaların yapısal analizlerinde kanat kök kaburgalarında meydana gelen eş değer (von Mises) gerilme ve toplam deformasyon değerleri incelenmiştir. Yapılan analizler sonucunda, farklı kompozit malzeme ve oryantasyon açılarına sahip kaburga yapıları uygulanan yükün altında farklı davranışlar sergilediği tespit edilmiştir. Kaburgalar üzerindeki en düşük deformasyon 0° fiber açılı Karbon-Epoksi malzemeli kaburgada modelinde 0,0084515 mm ve en düşük gerilme ise 90° fiber açılı Kevlar-Epoksi malzemeli kaburga modellerinde 0,59402 MPa olarak meydana geldiği tespit edilmiştir.

References

  • [1] K. Veeranjaneyulu, and S. Hussain. "Wing Rib Stress Analysis of DLR-F6 Aircraft," IOP Conference Series: Materials Science and Engineering, 2018, vol. 455. No. 1. IOP Publishing.
  • [2] D. S. Cairns, and L. A. Wood, "Composite Materials for Aircraft Structures, " Ind. Eng.s, 2009.
  • [3] P. V. Kumar, I. R. Raj, M. S. Reddy, and N. S. Prasad, “Design and Finite Element Analysis of Aircraft Wing Using Ribs and Spars,” Turkish Journal of Computer and Mathematics Education, vol. 12, pp. 3224-3230, Aug. 2021.
  • [4] P. M. C. Carneiro, and G. Pedro, "Structural analysis of wing ribs obtained by additive manufacturing," Rapid Prototyping Journal, vol. 25, pp. 708-720, Feb. 2019
  • [5] J. Polagangu, et al., "Finite Element Analysis of İnter Spar Ribs of Composite Wing of Light Transport Aircraft Against Brazier Load," in 2009 National Conference on Scientific Achievements of SC and ST Scientists and Technologists, 2009, Vol. 17, pp. 57-68.
  • [6] M. Yu-shan, et al., "Structural design and analysis of a composite wing with high aspect ratio," J. Zhejiang Univ. Vol. 20, pp. 781-793, Oct. 2019.
  • [7] A. Rinku, et al., "Topology and size optimization of modular ribs in aircraft wings," in 2015 Proceedings of the 11th World Congress on Structural and Multidisciplinary Optimization, 2015, pp. 7-12.
  • [8] S. Bairavi, and S. Balaji, "Design and Stress Analysis of Aircraft Wing Rib with Various Cut Outs," Indian Journal of Applied Research, vol. 6, pp. 511-514, Apr. 2016.
  • [9] S. Rahul, and G. Garg, "Design and Analysis of Wing Rib of Aircraft Review," in 2014 International Journal of innovative Research in Science and Engineering Technology, 2014, vol. 3, pp. 17999-18005.
  • [10] C. Kandemir, "Weight optimization of an aircraft wing composite rib using finite element method," Haccettepe Üniversitesi, 2020.
  • [11] Air Force, [Online]. Erişim: https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104469/mq-1b-predator/-. Erişildi: [04.07.2023]
  • [12] Airfoil Tools, [Online]. Erişim: http://airfoiltools.com/airfoil/details?airfoil=naca2412-il-. Erişildi: [10.07.2023]
  • [13] Nedelcu, et al. "Composites materials for aviation industry," in 2012 International Conference of Scientific Papers “Scientific Research and Education in The Air Force” AFASES. 2012, vol. 24, pp. 435-439.
  • [14] B. Wang, J. Xiong, X. Wang, L. Ma, G. Q. Zhang, L. Z. Wu, and J. C. Feng, “Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact,” Materials & Design, vol. 50, pp. 140-148, Sep. 2013.
  • [15] L. Yang, Y. Yan, and N. Kuang, “Experimental and numerical investigation of aramid fibre reinforced laminates subjected to low velocity impact,” Polymer Testing, vol. 32, pp. 1163-1173, Oct. 2013.
  • [16] J. Wang, J. Olortegui-Yume, and N. Muller, “Stress and vibration analysis for woven Composite axialimpeller,” In Power Conference, vol. 49354, pp. 443-449, Jan. 2010.
  • [17] S. R. Konayapalli, and Y. Sujatha, “Design and analysis of aircraftwing,” IJMETMR, vol. 2, pp. 1480-1487, Sep. 2015.
  • [18] T. V. Kumar, A. W. Basha, M. Pavithra, and V. Srilekha, “Static & dynamic analysis of a typical aircraft wing structure using Msc Nastran,” Int. J. Res. Aeronaut. Mech. Eng, vol. 3, pp. 1-12, Aug. 2015.
  • [19] K. J. Bathe, “Finite element method,” Wiley encyclopedia of computer science and engineering, pp. 1-12, June 2007.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Tümay Battal Akdoğan 0009-0009-6443-7037

İsmail Yasin Sülü 0000-0002-2648-6294

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Akdoğan, T. B., & Sülü, İ. Y. (2023). Eliptik Boşluklarla Tasarlanmış Kompozit Uçak Kanat Kaburgalarının Yapısal Analizi. Bayburt Üniversitesi Fen Bilimleri Dergisi, 6(2), 191-207. https://doi.org/10.55117/bufbd.1355812
AMA Akdoğan TB, Sülü İY. Eliptik Boşluklarla Tasarlanmış Kompozit Uçak Kanat Kaburgalarının Yapısal Analizi. Bayburt Üniversitesi Fen Bilimleri Dergisi. December 2023;6(2):191-207. doi:10.55117/bufbd.1355812
Chicago Akdoğan, Tümay Battal, and İsmail Yasin Sülü. “Eliptik Boşluklarla Tasarlanmış Kompozit Uçak Kanat Kaburgalarının Yapısal Analizi”. Bayburt Üniversitesi Fen Bilimleri Dergisi 6, no. 2 (December 2023): 191-207. https://doi.org/10.55117/bufbd.1355812.
EndNote Akdoğan TB, Sülü İY (December 1, 2023) Eliptik Boşluklarla Tasarlanmış Kompozit Uçak Kanat Kaburgalarının Yapısal Analizi. Bayburt Üniversitesi Fen Bilimleri Dergisi 6 2 191–207.
IEEE T. B. Akdoğan and İ. Y. Sülü, “Eliptik Boşluklarla Tasarlanmış Kompozit Uçak Kanat Kaburgalarının Yapısal Analizi”, Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 6, no. 2, pp. 191–207, 2023, doi: 10.55117/bufbd.1355812.
ISNAD Akdoğan, Tümay Battal - Sülü, İsmail Yasin. “Eliptik Boşluklarla Tasarlanmış Kompozit Uçak Kanat Kaburgalarının Yapısal Analizi”. Bayburt Üniversitesi Fen Bilimleri Dergisi 6/2 (December 2023), 191-207. https://doi.org/10.55117/bufbd.1355812.
JAMA Akdoğan TB, Sülü İY. Eliptik Boşluklarla Tasarlanmış Kompozit Uçak Kanat Kaburgalarının Yapısal Analizi. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2023;6:191–207.
MLA Akdoğan, Tümay Battal and İsmail Yasin Sülü. “Eliptik Boşluklarla Tasarlanmış Kompozit Uçak Kanat Kaburgalarının Yapısal Analizi”. Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 6, no. 2, 2023, pp. 191-07, doi:10.55117/bufbd.1355812.
Vancouver Akdoğan TB, Sülü İY. Eliptik Boşluklarla Tasarlanmış Kompozit Uçak Kanat Kaburgalarının Yapısal Analizi. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2023;6(2):191-207.

Indexing