Research Article
BibTex RIS Cite

Relationship between petroleum and iodine in Southeastern Anatolia Basin

Year 2019, Volume: 159 Issue: 159, 145 - 183, 15.08.2019
https://doi.org/10.19111/bulletinofmre.501519

Abstract

This study was made for
investigating the relationship between iodine and hydrocarbon accumulations and
to determine iodine contents of formation waters in the Southeastern Anatolia
basin oilfields where have been produced almost all of the Turkey oils (more
than 95%). Formation water samples have taken from 234 production wells in 49
oilfields which have different geological structures where oil and gas
production has performed by the Turkish Petroleum Company (TPAO). Also, the
drilling mud samples from EBY-17 oilwell in Elbeyli (Adıyaman) field has
collected, and their iodine analyses were carried out. Although the fields in
the Southeastern Anatolia basin are old and some fields the secondary
production methods are used, the high relationship between the oil and gas
deposits and iodine were proved. As well as in other oil and gas fields in the
world, not all reservoir waters in the Southeastern Anatolia basin are saline.
However, all of them are rich in iodine. Therefore, the iodine-rich waters are
a direct indicator for oil and gas producible reservoirs (containing mature
hydrocarbon). Reservoir-targeted iodine geology and hydrogeology methods have
simple sampling process, and laboratory analyses can result at a short time.
The results are low cost, reliable and consistent. In the case when these data
are utilized with other geological and geophysical methods, it is determined
will be a practical and useful tool to reduce the hydrocarbon exploration risk
to a minimum and to discover new deposits suitable for commercial production.



 

Thanks

The author special thanks to Melih Han Bilgin, General Manager of Turkish Petroleum Company (TPAO), who encouraged and supported the provision of iodine data for oilfi eld waters and carrying out this study. Furthermore; thanks to Abdurrahman Tiryaki, Head of Production Department, Abdullah Öner, Vice President of Research Center and Oğuz Şahin, Production Manager of Adıyaman Regional Directorate, who contributed a lot in providing formation waters of TPAO production fi elds and logistics, to laboratory chiefs Ender Taptık (Batman Regional Directorate) and Zekeriya Kılıçkara (Adıyaman Regional Directorate) who performed iodine analyses rigorously, Asst. Prof. Alperen Şahinoğlu (İstanbul Rumeli University) for his invaluable supports, Prof. Reyhan Kara Gülbay (Karadeniz Technical University) and to the other reviewer who contributed a lot in criticizing this article during the development of this study.

References

  • Allexan, S., Fausnaugh, J., Goudge, C., Tedesco, S. 1986. The use of iodine in geochemical exploration for hydrocarbons. Assoc. of Petroleum Geochemical Explorationist, II, 1, 12/86, pp.71-93.
  • Alvarez, A.A. Reich, M., Pe´rez-Fodich, A., Snyder, G., Muramatsu, Y., Vargas, G., Fehn, U., 2015. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin. Geochimica et Cosmochimica Acta, 161, pp.50- 70.
  • Alvarez, F., Reich, M., Snyder, G., Perez-Fodich, A., Muramatsu, Y., Daniele, L., Fehn, U. 2016. Iodine budget in surface waters from Atacama: Natural and anthropogenic iodine sources revealed by halogen geochemistry and iodine-129 isotopes. Applied Geochemistry, 68, pp.53-63.
  • Bagheri, R., Nadri, A., Raeisi, E., Shariati, A., Mirbagheri, M., Bahadori, F. 2014. Chemical evolution of a gas-capped deep aquifer, southwest of Iran. Environmental Earth Sciences, 71, 7, pp.3171- 3180.
  • Birkle, P. 2006. Application of 129I/127I to define the source of hydrocarbons of the Pol-Chuc, Abkatún and Taratunich-Batab oil reservoirs, Bay of Campeche, southern Mexico. Journal of Geochemical Exploration, 89, pp.15-18.
  • Birkle, P., Aragon, J.J.P., Portugal, E., Aguilar, J.L.F. 2002. Evolution and origin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico. AAPG Bulletin, 86(3), pp.457-484.
  • Birkle, P., García, B.M., Padrón, C.M.M. 2009. Origin and evolution of formation water at the Jujo- Tecominoacán oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction, Applied Geochemistry, 24, pp.543-554.
  • Bojarski, L. 1970. Die Anwendung der hydrochemischen klassifikation bei Sucharbeiten auf Erdol. 2. Angew. Geol., 16:123-125 (in Collins, A.G. 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science, 1, Elsevier Scientific Publishing Company, Amsterdam, 496p.).
  • Borodkin, V.N., Khorobrykh, D.L., Lyubimov, S.A. 2005. The Achimovka clinoform reservoir in northern West Siberia: groundwater chemistry data. Gornye Vedomosti, 8, pp.52-56.
  • Campos J.C., Borges R.M.H., Filho A.M.O., Nobrega R., and Sant’Anna Jr. G.L. 2002. Oilfield wastewater treatment by combined microfiltration and biological processes. Water Research, 36, pp.95- 104.
  • Chen, J., Liu, D., Peng, P., Ning, C., Xiaolin, H., Baoshou, Z. 2016. Iodine-129 chronological study of brines from an Ordovician paleokarst reservoir in the Lunnan oilfield, Tarim Basin. Applied Geochemistry, 65, pp.14-21.
  • Collins, A.G. 1969. Chemistry of some Anadarko Basin brines containing high concentration of iodine: Chemical Geology, 4, pp.169-187.
  • Collins, A.G. 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science-1, Elsevier, 496p.
  • Collins, A.G., Egleeson, G.C. 1967. Iodine abundance in oilfield brines in Oklahoma. Science, 156, pp.934-935.
  • Collins, A. G., Bennett, J. H., Manuel, O. H. 1971. Iodine and algae in sedimentary rocks associated with iodine rich brines. Geol. Soc. Am. Bull., 82, pp.2607-2610.
  • Cosgrove, M.E. 1970. Iodine in bituminous Kimmeridge shale of the Dorset coast in England: Geochim. Cosmochim. Acta, 34, pp.830-836.
  • Çelik, M., Sarı, A. 2002. Geochemistry of formation waters from upper cretaceous calcareous rocks of Southeast Turkey. Journal Geological Society of India. 59, pp.419-430.
  • Çelik, M., Sarı, A., Bahtiyar, I., Afşin, M. 1998. Origin of formation waters in Adıyaman oil fields. 12th International Petroleum Congress and Exhibition of Turkey, pp.149-159.
  • Demir, I., Seyler, B. 1999. Chemical composition and geologic history of saline waters in Aux Vases and Cypress Formations, Illinois Basin. Aquatic Geochemistry, 5, pp.281-311.
  • Dia, A.N., Castrec-Rouelle, M., Boulegue, J., Comeau, P. 1999. Trinidad mud volcanoes: Where do the expelled fluids come from ? . Geochimica et Cosmochimica Acta, 63(7/8), pp.1023-1038.
  • Dickey, P.A., Collins, A.G., Fajardo M.I. 1972. Chemical composition of deep formation waters in Southwestern Louisiana. AAPG Bulletin, 56(8), pp.1530-1570.
  • DPT (Devlet Planlama Teşkilatı), 2001. Petrol-Doğalgaz Çalışma Grubu Raporu, 130p.
  • Dresel, P. E., Rose, A.W. 2010. Chemistry and origin of oil and gas well brines in western Pennsylvania: Pennsylvania Geological Survey, 4th ser., Open- File Report OFOG 10-01.0, 48p.
  • Elderfield, H., Truesdale, V.W. 1980. On the biophilic nature of iodine in sea water. Earth Planet. Sci. Lett. 50, pp.105-111.
  • Engle, M.A., Reyes, F.R., Varonka, M.S., Orem, W.H., Ma, L., Ianno, A.J., Schell, T.M., Xu, P., Carroll, K.C. 2016. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA. Chemical Geology, 425, pp.76-92
  • Fabryka-Martin, J.T. 1984. Natural iodine-129 as environmental tracer. University of Arizona. MSc. Thesis, 149p.
  • Fehn, U. 2012. Tracing crustal fluids: Applications of natural 129I and 36Cl. Annu. Rev. Earth Planet. Sci, 40, pp.45-67.
  • Fehn, U., Tullai, S., Teng, R.T.D., Elmore, D., Kubik, P.W. 1987. Determination of 129I in heavy residues of two crude oils: Nucl. Instrum. Methods Phys. Res., B52, pp.446-450.
  • Fehn, U., Tullai-Fitzpatrick, S., Teng, R.T.D., Gove, H.E., Kubik, P.W., Sharma, P., Elmore, D. 1990. Dating of oil field brines using 129I. Nuclear Instruments and Methods in Physics Research B52, pp.446- 450.
  • Fehn, U., Snyder, G.T., Matsumoto, R., Muramatsu, Y., Tomaru, H. 2003. Iodine dating of pore waters associated with gas hydrates in the Nankai area, Japan. Geology, 31, pp.521-524.
  • Fehn, U., Snyder, G.T., Muramatsu, Y. 2007. Iodine as a tracer of organic material: 129I results from gas hydrate systems and fore arc fluids. Journal of Geochemical Exploration. 95(1-3), pp.66-80.
  • Fisher, R.S., Kreitler, C.W. 1987. Geochemistry and hydrodynamics of deep-basin brines, Palo Duro Basin, Texas, U.S.A. Applied Geochemistry, 2, pp.459-76.
  • Franks, S.G., Uchytil, S.J. 2016. Geochemistry of formation waters from the subsalt Tubular Bells Field, offshore Gulf of Mexico: Implications for fluid movement and reservoir continuity, AAPG Bulletin, 100(6), pp.943-967.
  • Fu, Y., Zhan, H. 2009. On the origin of oil-field water in the Biyang Depression of China. Environmental Geology, 58, pp.1191-1196.
  • Fuge, R. 1974. Iodine, Chapter 53 in: Handbook of Geochemistry, Vol. II, Pt. 4, (K. H. Wedepohl, ed.), Springer-Verlag NY. Fuge, R., Johnson, C.C. 1986. The geochemistry of iodine - a review. Environ. Geochem. Health. 8(2), pp.31- 54.
  • Gallagher, A.V. 1984. Iodine: A pathfinder for petroleum deposits, in Unconventional Methods in Exploration Ill, Southern Methodist University, Dallas, TX, pp.148-159.
  • GERM, 2004. Geochemical Reference Model. http:// earthref.Org/GERM/.
  • Ginis, Y.V. 1966. Hydrogeological conditions and hydrochemistry of iodine-bromine waters in the Kura lowlands and prospects of exploration for new fields. Dissertation. Baku.
  • Gieskes, J.M., Mahn, C. 2007. Halide systematics in interstitial waters of ocean drilling sediment cores. Appl. Geochem., 22, pp.515-533.
  • Gordon, T.L., Ikramuddin, M. 1988. The use of iodine and selected trace metals in petroleum and gas exploration. Geologic Society of America Abstracts with Programs, 20(7), 228p.
  • Goudge, C.K. 2007. Geochemical Exploration, Sample Collection and Survey Design in Society of Independent Professional Earth Scientists Quarterly, v. XXXXIIII, no. 1.
  • Goudge, C.K. 2009. Graystone Exploration Labs Inc, Golden, Colorado. Retrieved from www. graystonelab.com.
  • Greenhalgh, E. 2016. The Jurassic shales of the Wessex Area: geology and shale oil and shale gas resource estimation. British Geological Survey for the Oil and Gas Authority, 72p.
  • Gupta, A., Gupta, P., Saxena, E. 2016. First application of Multistage Fracturing Technology in onshore field of ONGC - A new breakthrough. PETROTECH-2016, 12th International Oil & Gas Conference and Exhibition. New Delhi, İndia, Technical Paper. http://petrotech. in/uploadfiles/434id_Abstract%20for%20 Multistage%20Fracturing.pdf.
  • Hach Chemical Co. 1992. DPD method for iodine (adapted Palin, A.T., 1967. Method for the determination, in water, of free and combined available chlorine, chlorine dioxide and chlorite, bromine, iodine, and ozone, using diethyl-p-phenylene diamine -DPD. J. Inst. Water Eng. 21, pp.537-547).
  • Harrison, W.J., Summa, L.L. 1991. Paleohydrology of the Gulf Coast of Mexico Basin. Am. J. Sci., 291, pp.109-176.
  • Harvey, G.R. 1980. A study of the chemistry of iodine and bromine in marine sediments. Marine Chemistry 8, pp.327-332.
  • Hilger, J. 2003. Combined utilization of oil shale energy and oil shale minerals within the production of cement and other hydraulic binders. Oil Shale, 20(3), pp.347-355.
  • Hitchon, B., Billings, G.K., Klovan, J.E. 1971. Geochemistry and origin of formation waters in the western Canada sedimentary basin-III. Factors controlling chemical composition. Geochimica et Cosmochimica Acta. 35, pp.567-598.
  • Hora, K. 2016. Iodine production and industrial applications. IDD Newsletter, http://www.ign.org/newsletter/ idd_aug16_iodine_production.pdf.
  • Hoşhan, P., Çelik, S., Çanga, B. 2008. Inspection and control of corrosion problems for production oil wells tubing and rod in Adıyaman oil fields. International Corrosion Symposium, Izmir, Turkey, pp.13-20.
  • Huang, L. 1984. Iodine contents in formation waters from wildcats, southern Taiwan. Petroleum Geology of Taiwan, 20, pp.231-235.
  • Hummel, S. 2011. The Use of Iodine to Characterize Formation Waters in Oil and Gas Fields. Syracuse University. MSc. Thesis, 66p.
  • Kaiho, T. (Ed.) 2015. Iodine Chemistry and Applications. John Wiley & Sons, Inc., 635p.
  • Kartsev, A.A., Tabasaranskii, S.A., Subbota, M.I., Mogilevsky, G.A. 1954. Geochemical methods of prospecting and exploration for petroleum and natural gas (P. A. Witherspoon and W. D, Romey, eds., English translation) : Berkeley, Univ. Calif. Press, 1959, 238p.
  • Kendrick, M.A., Phillips, D., Wallace, M., Miller, J.McL. 2011. Halogens and noble gases in sedimentary formation waters and Zn-Pb deposits: A case study from the Lennard Shelf, Australia. Applied Geochemistry, 26, pp.2089-2100.
  • Kennedy, H.A., Elderfiel, H. 1987. Iodine diagenesis in pelagic deep-sea sediments. Geochimica et Cosmochimica Acta, 51, pp.2489-2504.
  • Khajeh, M. 2007. Gorgan Bölgesi (İran) iyot üretimi çalışmaları sunumu (unpublished).
  • Kharaka, Y.K., Maest, A.S., Carothers, W.W., Law, L.M., Lamothe, P.J., Fries, T.L. 1987. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A., Applied Geochemistry, 2, pp.543-561.
  • Kireeva, T.A. 2010. Genesis of the underground water from the White Tiger Deposit, south Vietnam Shelf, in relation to its petroleum resource potential. Moscow University Geology Bulletin, 65(4), pp.244-249.
  • Kokh, A.A., Novikov, D.A. 2014. Hydrodynamic conditions and vertical hydrogeochemical zonality of groundwater in the western Khatanga artesian basin. Water Resources, 41(4), pp.396-405.
  • Kovda, V. A., Salvin, P. S. 1951. Soil-geochemical indicators of deep oil bearing rocks: Akad. Nauk. SSSR (Kartsev, A.A., Tabasaranskii, S.A., Subbota, M.I., Mogilevsky, G.A., 1954. Geochemical methods of prospecting and exploration for petroleum and natural gas (in P. A. Witherspoon and W. D, Romey, eds., English translation : Berkeley, Univ. Calif. Press, 1959, 238p.).
  • Kurchikov, A.R., Plavnik, A.G. 2009. Clustering of groundwater chemistry data with implications for reservoir appraisal in West Siberia. Russian Geology and Geophysics 50, pp.943-949.
  • Kudel’sky, A.V. 1977. Prediction of oil and gas properties on a basis of iodine content of subsurface waters. Geologiya Nefti i Gaza, 4, pp.45-49.
  • Land, L.S. 1991. Evidence for vertical movement of fluids, Gulf Coast Sedimentary Basin: Geophys. Res. Lett., 18(5), pp.919-922.
  • Land, L.S. 1995. Na-Ca-Cl saline formation waters, Frio Formation (Oligocene), south Texas, USA: Products of diagenesis. Geochimica et Cosmochimica Acta, 59, 11, pp.2163-2174.
  • Leaver, J.S., Thomasson, M.R. 2002. Case studies relating soil-iodine geochemistry to subsequent drilling results. in Schumacher, D., and LeSchack, L. D., eds., Surface Exploration Case Histories: Application of Geochemistry, Magnetics and Remote Sensing, AAPG Studies in Geology no. 48, and SEG Geophysical References Series no. 11, pp.41-57.
  • Lee, R., Seright, R., Hightower, M., Sattler, A., Cather, M., McPherson, B., Wrotenbery, L., Martin, D., Whitworth, M. 2002. Strategies for Produced Water Handling in New Mexico. Groundwater Protection Council Produced Water Conference, http://www.gwpc.org/meetings/special/PW%20 2002/Papers/ Robert_Lee_PWC2002.pdf.
  • Lemay, T.G., Konhauser, K.O. 2006. Water Chemistry of Coalbed Methane Reservoirs. Alberta Geological Survey. Special Report 081. 354p.
  • Levinson, A.A. 1980. Introduction to Exploration Geochemistry. Applied Publishing, IL, 924p.
  • Liu, X., Fehn, U., Teng, R.T.D. 1997. Oil formation and fluid convection in Railroad Valley, NV: a study using cosmogenic isotopes to determine the onset of hydrocarbon migration. Nuclear Instruments and Methods in Physics Research B 123 (1997), pp.356-360.
  • Lloyd, J.W., Howard, K.W.F., Pacey, N.R., Tellam, J.H. 1982. The value of iodide as a parameter in the chemical characterization of groundwaters, Journal of Hydrology, 57, pp.247-265.
  • Lu, Z., Hensen, C., Fehn, U., Wallmann, K. 2008. Halogen and 129I systematics in gas hydrate fields at the northern Cascadia margin (IODP Expedition 311): Insights from numerical modeling. Geochem. Geophys. Geosyst., 9, Q10006, doi:10.1029/2008GC002156.
  • Macpherson, G.L. 1992. Regional variations in formation water chemistry: major and minor elements, Frio formation fluids, Texas. AAPG Bulletin, 76(5), pp.740-757.
  • Mani, D., Kumar, T.S., Rasheed, M.A., Patil, D.J., Dayal, A.M., Rao, T.G., Balaram, V. 2011. Soil iodine determination in Deccan Syneclise, India: Implications for near surface geochemical hydrocarbon prospecting. Natural Resources Research, 20(1), pp.75-88.
  • Mann, P., Gahagan, L., Gordon, M.B. 2003. Tectonic setting of the world’s giant oil and gas fields, in M. T. Halbouty, ed., Giant oil and gas fields of the decade 1990-1999, AAPG Memoir 78, pp.15-105.
  • Martin, J.B., Gieskes, J.M., Torres, M., Kastner, M. 1993. Bromine and iodine in Peru margin sediments and pore fluids: Implications for fluid origins. Geochimico et Cosmochlmica Acta, 51, pp.4377- 4389.
  • Mirnejad, H., Sisakht, V., Mohammadzadeh, H., Amini, A.H., Rostron, B.R., G. Haghparast, G. 2011. Major, minor element chemistry and oxygen and hydrogen isotopic compositions of Marun oil-field brines, SW Iran: Source history and economic potential. Geological Journal, 46, pp.1-9.
  • Moran, J. E. 1996. Origin of iodine in the Anadarko Basin, Oklahoma: an 129I study. Am. Assoc. Petrol. Geol. Bull., 80(5), pp.685-694.
  • Moran, J.E., Fehn, U., Hanor, J.S. 1995. Determination of source ages and migration of brines from the U.S. Gulf Coast basin using 129 I. Geochim. Cosmochim. Acta 59, pp.5055-5069.
  • Moran, J.E., Fehn, U., Ray, T.D. 1998. Variations in 129I/127I in recent marine sediments: evidence for a fossil organic component. Chemical Geology, 152, pp.193-203.
  • Muramatsu, Y., Wedepohl, K.H. 1998. The distribution of iodine in the earth’s crust. Chemical Geology, 147, pp.201-216.
  • Muramatsu, Y., Doi, T., Tomaru, H., Fehn, U., Takeuchi, R., Matsumoto, R. 2007. Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: implications for the origin of gas hydrates. Appl. Geochem., 22, pp.534-556.
  • Novikov, D.A. 2012. Hydrogeology of oil-and-gas bearing deposits of the Severnyi arch (Northern areas of the West Siberian Megabasin (WSMB). Oil and Gas Business, 4, pp.521-535.
  • Novikov, D.A. 2013a. Hydrogeochemical features of petroleum-bearing deposits of the Yamal Peninsula. Oil and Gas Business, 1, pp.114-143.
  • Novikov, D.A. 2013b. Hydrogeology of the western part of the Yenisei-Khatanga regional trough. Neftegazovaya Geologiya, Teoriya I Praktika, 8(1), www.ngtp.ru/rub/4/2_2013.eng.pdf.
  • Novikov, D.A., Shvartsev, S.L. 2009. Hydrogeological conditions of the Pre-Yenisei petroleum subprovince. Russian Geology and Geophysics, 50, pp.873-883.
  • Okandan, E., Mehmetoğlu, T., Doyuran, V., Demiral, B., Parlaktuna, M., Gümrah, F., Kuru, E., Behlülgil, K., Karacan, Ö. ve Karaaslan, U. 1994. Petrol Arama ve Üretim Faaliyetlerinin Çevre Üzerindeki Etkisi, Proje No.YBAG-0057, 92p. (unpublished).
  • Oppo, D., Capozzi, R. 2015. Spatial association of mud volcano and sandstone intrusions, Boyadag anticline, western Turkmenistan. Basin Research, 1-13, doi: 10.1111/bre.12136.
  • Oppo, D., Capozzi, R., Nigarov, A., Esenov, P. 2014. Mud volcanism and fluid geochemistry in the Cheleken Peninsula, western Turkmenistan, Marine and Petroleum Geology, 57, pp.122-134.
  • Osborn, S.G., Mcintosh, J.C., Hanor, J.S., Biddulph, D. 2012. Iodine-129, 87Sr/86Sr, and trace elemental geochemistry of northern Appalachian basin brines: evidence for basinal-scale fluid migration and clay mineral diagenesis. American Journal of Science, 312, pp.263-287.
  • Özdemir, A. 2009. İyot üretimi amaçlı yapılan sondaj çalışmaları. Madencilik Türkiye Dergisi, 1, 26-28 . Pavlova, G.A., Shisekina O.V. 1973. Accumulation of iodine in interstitial water during metamorphism in relation to the iodine distribution in Pacific sediments. Geochem. Int. 10, pp.804-813.
  • Peterson, T.F. 1979. The geochemistry of sediments of the Panama Basin, Eastern Equatorial Pacific Ocean. PhD. Thesis, University of Edinburgh, 235 p.
  • Plavnik, A.G., Plavnik, G.I., Itskovich, M.V., Oleinik, E.V. 2007. Water chemistry of clinoform reservoirs BV4-5, BV6–7, and BV8–9, in: Karasev, V.I., Shpilman, A.V., Volkov, V.A. (Eds.), Development of the Petroleum Potential of the Khanty-Mansi Autonomous Area [in Russian]. Izdatnaukaservis, Khanty-Mansiisk, Book 1 (1), pp.205-212.
  • PİGM (Petrol İşleri Genel Müdürlüğü), 2008. 2005-2006- 2007 Türkiye Petrol Faaliyetleri, 288p.
  • Pirson, S.J. 1942. Theoretical and economic significance of geodynamic prospecting. World Petrol., 13, pp.38-42.
  • Pogodaeva, T.V., Zemskaya, T.I., Golobokova, L.P., Khlystov, O.M., Minami, H., Sakagami, H. 2007. Chemical composition of pore waters of bottom sediments in different Baikal basins. Russian Geology and Geophysics (Geologiya i Geofizika) 48 (11), pp.886-900 (1144-1160).
  • Price, N. B., Calvert, S.E. 1973. The geochemistry of iodine in oxidized and reduced recent marine sediments: Geochim. Cosmochim. Acta, 37, pp.2149-2158.
  • Price, N.B., Calvert, S.E. 1977. The contrasting geochemical behaviors of iodine and bromine in recent sediments from the Namibian shelf. Geochimica et Cosmochimica Acta 41, pp.1769-1775.
  • Price, N.B., Calvert, S.E., Jones P.G.W. 1970. The distribution of iodine and bromine in the sediments of the South Western Barents Sea. J. Mar. Res. 28, pp.22-34.
  • Qiao, X., Zhang, Z., Yu, J., Ye, X. 2008. Performance characteristics of a hybrid membrane pilot- scale plant for oilfield-produced wastewater. Desalination, 225(1-3), pp.113-122.
  • Rachinsky, M.Z., Kerimov, V.Y. 2015. Fluid Dynamics of Oil and Gas Reservoirs. Scrivener Publishing LLC - John Wiley and Sons, Inc., 613p.
  • Rebary, B., Raichura, M., Mangukia, S.R., Patidar, R. 2014. Mapping of iodine, lithium and strontium in oilfield water of Cambay basin, Gujarat. Journal Geological Society of India. 83, pp.669-675.
  • Rowan, E.L., Engle, M.A., Kraemer, T.F., Schroeder, K.T., Hammack, R.W., Doughten, M.W. 2015. Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian basin, Pennsylvania. AAPG Bulletin, 99(2), pp.181-206.
  • Santschi, P.H., Xu, C., Zhang, S., Schwehr, K.A., Grandbois, R., Kaplan, D.I., Yeager, C. 2016. Iodine and plutonium association with natural organic matter: A review of recent advances. Applied Geochemistry (2016), doi: 10.1016/j. apgeochem.2016.11.009.
  • Schoeneich, K. 1971. Indices of oil bearing deposits as based on the formation waters of Poland. Nafta (Pol.), 27, 154-157 (in Coustau, H. 1977. Formation waters and hydrodynamics. Journal of Geochemical Exploration, 7, pp.213-241).
  • Shishkina, O.V., Pavlova, G.A. 1965. Iodine distribution in marine and oceanicbottom muds and in their pore fluids. Geochemical Internatioal, 2, pp.559-565.
  • Shvartsev, C.L., Novikov, D.A. 2004. The nature of vertical hydrogeochemical zoning of petroleum deposits (exemplified by the Nadym-Taz interfluve, West Siberia). Geologiya i Geofizika (Russian Geology and Geophysics) 45 (8), pp.1008-1020 (960-972).
  • Singh, R.R. Saxena, J.G. Sahota, S.K., Chandra, K. 1987. On the use of iodine as an indicator of petroleum in Indian basins. 1st India Oil and Natural Gas Comm. Petroleum Geochemistry and Exploration in the Afro-Asian Region International Conference Proceedings, pp. 105-107.
  • Snyder, G.T., Fabryka-Martin, J.T. 2007. 129I and 36Cl in dilute hydrocarbon waters: Marine-cosmogenic, in situ, and anthropogenic sources. In: G.T. Snyder and J.E. Moran (Eds.), special issue: The halogens and their isotopes in marine and terrestrial aqueous systems, Applied Geochemistry, 22, pp.692-704.
  • Stueber, A.M., Walter, L.M. 1991. Origin and chemical evolution of formation waters from Silurian- Devonian strata in the Illinois basin, USA. Geochimica et Cosmochimica Acta, 55, pp.309- 325.
  • Stueber, A.M., Walter, L.M., Huston, T.J., Pushkar, P. 1993. Formation waters from Mississippian- Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration. Geochimica et Cosmochimica Acta, 57, pp.163-784.
  • Sudo, Y. 1967. Geochemical study of brine from oil and gas fields in Japan. Journal of The Japanese Association of Petroleum Technologists. 32, 5, pp.286-296.
  • Sukharev, G.M. 1948. Hydrogeological conditions of formation of oil and gas deposits in Tersk-Dagestan oil province. Groz. obi. izd-vo (in Kartsev, A. A., Tabasaranskii, S. A., Subbota, M. I., Mogilevsky,G. A., 1954. Geochemical methods of prospecting and exploration for petroleum and natural gas. P. A. Witherspoon and W. D, Romey, eds., English translation, Berkeley, Univ. Calif. Press, 1959, 238p.).
  • Surkov, V.S., Kazakov, A.M., Devyatov, V.P., Smirnov, L.V., Shiganova, O.V., Ekhanin, A.E., Zaitsev, S.P., Serebrennikova, O.V., Gulaya, E.V. 1999. Lower-Middle Jurassic strata of the southern West Siberia (geochemistry, groundwater geology, and petroleum potential). Geologiya Nefti i Gaza, 3-4, pp.3-11.
  • Tedesco, S.A. 1995. Surface Geochemistry in Petroleum Exploration. Springer-Science+Business Media, BV., 206p.
  • Tedesco, S., Goudge, C. 1989. Application of iodine surface geochemistry in the Denver-Julesburg Basin, Association of Petroleum Geochemical Explorationists Bulletin, 5(I), pp.49-72.
  • Tedesco, S.A., Goudge, C., Fausnaugh, J., Alexon, S. 1987. Iodine-an exploration tool for oil and gas: Oil & Gas Journal, 85(26), pp.74-77.
  • Togo, Y.S., Kazahaya, K., Tosaki, Y., Morikawa, N., Matsuzaki, H., Takahashi, M., Sato, T. 2014. Groundwater, possibly originated from subducted sediments, in Joban and Hamadori areas, southern Tohoku, Japan. Earth, Planets and Space, 66, 131p.
  • Tomaru, H., Lu, Z., Fehn, U., Muramatsu, Y. 2009a. Origin of hydrocarbons in the Green Tuff region of Japan: 129I results from oil field brines and hot springs in the Akita and Niigata Basins. Chemical Geology, 264, pp.221-231.
  • Tomaru, H., Fehn, U., Lu, Z., Takeuchi, R., Inagaki, F., Imachi, H., Kotani, R., Matsumoto, R., Aoike, K. 2009b. Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita Peninsula, Japan: 129I results from the D/V Chikyu Shakedown Cruise. Resource Geology, 59(4), pp.359-373
  • Tooth, J. 1987. Petroleum hydrogeology: a potential application of groundwater science. Journal of Geological Survey of India, 29(1), pp.172-179.
  • Tsunogai, S. 1971. Iodine in the deep water of the ocean. Deep Sea Research and Oceanographic Abstracts 18, pp.913-919. Tullai, S., Tubbs, L. E., Fehn, U. 1987. Iodine extraction from petroleum for analysis of 129I/I ratios by AMS: Nucl. Instrum. Methods Phys. Res. B, 29, pp.383-386.
  • U.S. Geological Survey National Produced Waters Geochemical Database v2.2.
  • Veil, J.A. 2006. Comparison of two international approaches to controlling risk from produced water discharges. Paper presented at the 70th PERF meeting, Paris, France.
  • Vinogradov A.P. 1939. Iodine in marine muds. To the problem of the origin of iodine-bromine waters in petroliferous regions (In Russian). Tr. Biogeokhim. Lab. Akad. Nauk SSSR 5, 19-32 (English pp.33-46).
  • Voutchkova, D.D., Ernstsen, V., Hansen, B., Sørensen, B.L., Zhang, C., Kristiansen, S.M. 2014. Assessment of spatial variation in drinking water iodine and its implications for dietary intake: A new conceptual model for Denmark. Science of the Total Environment, 493, pp.432-444.
  • Wallace, M.M., Middleton, H., Basil, J., Marshallsea, S. 2002. Hydrocarbons and Mississippi Valley type sulfides in the Devonian reef complexes of the eastern Lennard Shelf, Canning Basin, Western Australia. In: Keep, M., Moss, S.J. Eds. The Sedimentary Basins of Western Australia III: Procedings of the West Australasian Basins Symposium (WABS) III.; pp.795-816.
  • Warren, J.K. 2006. Evaporites: Sediments, Resources and Hydrocarbons. Springer-Verlag Berlin Heidelberg. 1035p.
  • Whittemore, D.O., Basel, C.L., Galle, O.K., Waugh, T.C. 1981. Geochemical Identification of Saltwater Sources in the Smoky Hill River Valley, McPherson, Saline, and Dickson Countries, Kansas, Kansas Geological Survey, Open-file Report 81-6, 78p.
  • Wilke-Dörfurt, E. 1927. Über den Jodgehalt einiger Gesteine und seine Beziehungen zum chemischen Teil des Kropfproblems. Ann. Chem., 453, 288 (in Correns, C.W. 1956. The geochemistry of the halogens. Physics and Chemistry of the Earth, 1, pp.181-233).
  • Worden, R.H. 1996. Controls on halogen concentrations in sedimentary formation waters. Mineralogical Magazine, 60, pp.259-274.
  • Xuejing, X., Binzhong, Y. 1989. Application of multiparametric geochemical methods in the search for oil in the Qinggang region near Daqing Oil Field: J. Geochem. Explor., 33, pp.203-213.
  • Xun, Z., Cijun, L., Xiumin, J., Qiang, D., Lihomg, T. 1997. Origin of subsurface brines in the Sichuan basin, Groundwater, 35(1), pp.53-58.
  • Yang, S. 2017. Fundamentals of Petrophysics. Springer- Verlag GmbH, 502p.
  • Zherebtsova, I.K., Volkova, N.N. 1966. Experimental study of behavior of trace elements in the process of natural solar evaporation of Black Sea water and Sasyk-Sivash brine. Geochemical International, 3, pp.656-670.
Year 2019, Volume: 159 Issue: 159, 145 - 183, 15.08.2019
https://doi.org/10.19111/bulletinofmre.501519

Abstract

 

References

  • Allexan, S., Fausnaugh, J., Goudge, C., Tedesco, S. 1986. The use of iodine in geochemical exploration for hydrocarbons. Assoc. of Petroleum Geochemical Explorationist, II, 1, 12/86, pp.71-93.
  • Alvarez, A.A. Reich, M., Pe´rez-Fodich, A., Snyder, G., Muramatsu, Y., Vargas, G., Fehn, U., 2015. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin. Geochimica et Cosmochimica Acta, 161, pp.50- 70.
  • Alvarez, F., Reich, M., Snyder, G., Perez-Fodich, A., Muramatsu, Y., Daniele, L., Fehn, U. 2016. Iodine budget in surface waters from Atacama: Natural and anthropogenic iodine sources revealed by halogen geochemistry and iodine-129 isotopes. Applied Geochemistry, 68, pp.53-63.
  • Bagheri, R., Nadri, A., Raeisi, E., Shariati, A., Mirbagheri, M., Bahadori, F. 2014. Chemical evolution of a gas-capped deep aquifer, southwest of Iran. Environmental Earth Sciences, 71, 7, pp.3171- 3180.
  • Birkle, P. 2006. Application of 129I/127I to define the source of hydrocarbons of the Pol-Chuc, Abkatún and Taratunich-Batab oil reservoirs, Bay of Campeche, southern Mexico. Journal of Geochemical Exploration, 89, pp.15-18.
  • Birkle, P., Aragon, J.J.P., Portugal, E., Aguilar, J.L.F. 2002. Evolution and origin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico. AAPG Bulletin, 86(3), pp.457-484.
  • Birkle, P., García, B.M., Padrón, C.M.M. 2009. Origin and evolution of formation water at the Jujo- Tecominoacán oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction, Applied Geochemistry, 24, pp.543-554.
  • Bojarski, L. 1970. Die Anwendung der hydrochemischen klassifikation bei Sucharbeiten auf Erdol. 2. Angew. Geol., 16:123-125 (in Collins, A.G. 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science, 1, Elsevier Scientific Publishing Company, Amsterdam, 496p.).
  • Borodkin, V.N., Khorobrykh, D.L., Lyubimov, S.A. 2005. The Achimovka clinoform reservoir in northern West Siberia: groundwater chemistry data. Gornye Vedomosti, 8, pp.52-56.
  • Campos J.C., Borges R.M.H., Filho A.M.O., Nobrega R., and Sant’Anna Jr. G.L. 2002. Oilfield wastewater treatment by combined microfiltration and biological processes. Water Research, 36, pp.95- 104.
  • Chen, J., Liu, D., Peng, P., Ning, C., Xiaolin, H., Baoshou, Z. 2016. Iodine-129 chronological study of brines from an Ordovician paleokarst reservoir in the Lunnan oilfield, Tarim Basin. Applied Geochemistry, 65, pp.14-21.
  • Collins, A.G. 1969. Chemistry of some Anadarko Basin brines containing high concentration of iodine: Chemical Geology, 4, pp.169-187.
  • Collins, A.G. 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science-1, Elsevier, 496p.
  • Collins, A.G., Egleeson, G.C. 1967. Iodine abundance in oilfield brines in Oklahoma. Science, 156, pp.934-935.
  • Collins, A. G., Bennett, J. H., Manuel, O. H. 1971. Iodine and algae in sedimentary rocks associated with iodine rich brines. Geol. Soc. Am. Bull., 82, pp.2607-2610.
  • Cosgrove, M.E. 1970. Iodine in bituminous Kimmeridge shale of the Dorset coast in England: Geochim. Cosmochim. Acta, 34, pp.830-836.
  • Çelik, M., Sarı, A. 2002. Geochemistry of formation waters from upper cretaceous calcareous rocks of Southeast Turkey. Journal Geological Society of India. 59, pp.419-430.
  • Çelik, M., Sarı, A., Bahtiyar, I., Afşin, M. 1998. Origin of formation waters in Adıyaman oil fields. 12th International Petroleum Congress and Exhibition of Turkey, pp.149-159.
  • Demir, I., Seyler, B. 1999. Chemical composition and geologic history of saline waters in Aux Vases and Cypress Formations, Illinois Basin. Aquatic Geochemistry, 5, pp.281-311.
  • Dia, A.N., Castrec-Rouelle, M., Boulegue, J., Comeau, P. 1999. Trinidad mud volcanoes: Where do the expelled fluids come from ? . Geochimica et Cosmochimica Acta, 63(7/8), pp.1023-1038.
  • Dickey, P.A., Collins, A.G., Fajardo M.I. 1972. Chemical composition of deep formation waters in Southwestern Louisiana. AAPG Bulletin, 56(8), pp.1530-1570.
  • DPT (Devlet Planlama Teşkilatı), 2001. Petrol-Doğalgaz Çalışma Grubu Raporu, 130p.
  • Dresel, P. E., Rose, A.W. 2010. Chemistry and origin of oil and gas well brines in western Pennsylvania: Pennsylvania Geological Survey, 4th ser., Open- File Report OFOG 10-01.0, 48p.
  • Elderfield, H., Truesdale, V.W. 1980. On the biophilic nature of iodine in sea water. Earth Planet. Sci. Lett. 50, pp.105-111.
  • Engle, M.A., Reyes, F.R., Varonka, M.S., Orem, W.H., Ma, L., Ianno, A.J., Schell, T.M., Xu, P., Carroll, K.C. 2016. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA. Chemical Geology, 425, pp.76-92
  • Fabryka-Martin, J.T. 1984. Natural iodine-129 as environmental tracer. University of Arizona. MSc. Thesis, 149p.
  • Fehn, U. 2012. Tracing crustal fluids: Applications of natural 129I and 36Cl. Annu. Rev. Earth Planet. Sci, 40, pp.45-67.
  • Fehn, U., Tullai, S., Teng, R.T.D., Elmore, D., Kubik, P.W. 1987. Determination of 129I in heavy residues of two crude oils: Nucl. Instrum. Methods Phys. Res., B52, pp.446-450.
  • Fehn, U., Tullai-Fitzpatrick, S., Teng, R.T.D., Gove, H.E., Kubik, P.W., Sharma, P., Elmore, D. 1990. Dating of oil field brines using 129I. Nuclear Instruments and Methods in Physics Research B52, pp.446- 450.
  • Fehn, U., Snyder, G.T., Matsumoto, R., Muramatsu, Y., Tomaru, H. 2003. Iodine dating of pore waters associated with gas hydrates in the Nankai area, Japan. Geology, 31, pp.521-524.
  • Fehn, U., Snyder, G.T., Muramatsu, Y. 2007. Iodine as a tracer of organic material: 129I results from gas hydrate systems and fore arc fluids. Journal of Geochemical Exploration. 95(1-3), pp.66-80.
  • Fisher, R.S., Kreitler, C.W. 1987. Geochemistry and hydrodynamics of deep-basin brines, Palo Duro Basin, Texas, U.S.A. Applied Geochemistry, 2, pp.459-76.
  • Franks, S.G., Uchytil, S.J. 2016. Geochemistry of formation waters from the subsalt Tubular Bells Field, offshore Gulf of Mexico: Implications for fluid movement and reservoir continuity, AAPG Bulletin, 100(6), pp.943-967.
  • Fu, Y., Zhan, H. 2009. On the origin of oil-field water in the Biyang Depression of China. Environmental Geology, 58, pp.1191-1196.
  • Fuge, R. 1974. Iodine, Chapter 53 in: Handbook of Geochemistry, Vol. II, Pt. 4, (K. H. Wedepohl, ed.), Springer-Verlag NY. Fuge, R., Johnson, C.C. 1986. The geochemistry of iodine - a review. Environ. Geochem. Health. 8(2), pp.31- 54.
  • Gallagher, A.V. 1984. Iodine: A pathfinder for petroleum deposits, in Unconventional Methods in Exploration Ill, Southern Methodist University, Dallas, TX, pp.148-159.
  • GERM, 2004. Geochemical Reference Model. http:// earthref.Org/GERM/.
  • Ginis, Y.V. 1966. Hydrogeological conditions and hydrochemistry of iodine-bromine waters in the Kura lowlands and prospects of exploration for new fields. Dissertation. Baku.
  • Gieskes, J.M., Mahn, C. 2007. Halide systematics in interstitial waters of ocean drilling sediment cores. Appl. Geochem., 22, pp.515-533.
  • Gordon, T.L., Ikramuddin, M. 1988. The use of iodine and selected trace metals in petroleum and gas exploration. Geologic Society of America Abstracts with Programs, 20(7), 228p.
  • Goudge, C.K. 2007. Geochemical Exploration, Sample Collection and Survey Design in Society of Independent Professional Earth Scientists Quarterly, v. XXXXIIII, no. 1.
  • Goudge, C.K. 2009. Graystone Exploration Labs Inc, Golden, Colorado. Retrieved from www. graystonelab.com.
  • Greenhalgh, E. 2016. The Jurassic shales of the Wessex Area: geology and shale oil and shale gas resource estimation. British Geological Survey for the Oil and Gas Authority, 72p.
  • Gupta, A., Gupta, P., Saxena, E. 2016. First application of Multistage Fracturing Technology in onshore field of ONGC - A new breakthrough. PETROTECH-2016, 12th International Oil & Gas Conference and Exhibition. New Delhi, İndia, Technical Paper. http://petrotech. in/uploadfiles/434id_Abstract%20for%20 Multistage%20Fracturing.pdf.
  • Hach Chemical Co. 1992. DPD method for iodine (adapted Palin, A.T., 1967. Method for the determination, in water, of free and combined available chlorine, chlorine dioxide and chlorite, bromine, iodine, and ozone, using diethyl-p-phenylene diamine -DPD. J. Inst. Water Eng. 21, pp.537-547).
  • Harrison, W.J., Summa, L.L. 1991. Paleohydrology of the Gulf Coast of Mexico Basin. Am. J. Sci., 291, pp.109-176.
  • Harvey, G.R. 1980. A study of the chemistry of iodine and bromine in marine sediments. Marine Chemistry 8, pp.327-332.
  • Hilger, J. 2003. Combined utilization of oil shale energy and oil shale minerals within the production of cement and other hydraulic binders. Oil Shale, 20(3), pp.347-355.
  • Hitchon, B., Billings, G.K., Klovan, J.E. 1971. Geochemistry and origin of formation waters in the western Canada sedimentary basin-III. Factors controlling chemical composition. Geochimica et Cosmochimica Acta. 35, pp.567-598.
  • Hora, K. 2016. Iodine production and industrial applications. IDD Newsletter, http://www.ign.org/newsletter/ idd_aug16_iodine_production.pdf.
  • Hoşhan, P., Çelik, S., Çanga, B. 2008. Inspection and control of corrosion problems for production oil wells tubing and rod in Adıyaman oil fields. International Corrosion Symposium, Izmir, Turkey, pp.13-20.
  • Huang, L. 1984. Iodine contents in formation waters from wildcats, southern Taiwan. Petroleum Geology of Taiwan, 20, pp.231-235.
  • Hummel, S. 2011. The Use of Iodine to Characterize Formation Waters in Oil and Gas Fields. Syracuse University. MSc. Thesis, 66p.
  • Kaiho, T. (Ed.) 2015. Iodine Chemistry and Applications. John Wiley & Sons, Inc., 635p.
  • Kartsev, A.A., Tabasaranskii, S.A., Subbota, M.I., Mogilevsky, G.A. 1954. Geochemical methods of prospecting and exploration for petroleum and natural gas (P. A. Witherspoon and W. D, Romey, eds., English translation) : Berkeley, Univ. Calif. Press, 1959, 238p.
  • Kendrick, M.A., Phillips, D., Wallace, M., Miller, J.McL. 2011. Halogens and noble gases in sedimentary formation waters and Zn-Pb deposits: A case study from the Lennard Shelf, Australia. Applied Geochemistry, 26, pp.2089-2100.
  • Kennedy, H.A., Elderfiel, H. 1987. Iodine diagenesis in pelagic deep-sea sediments. Geochimica et Cosmochimica Acta, 51, pp.2489-2504.
  • Khajeh, M. 2007. Gorgan Bölgesi (İran) iyot üretimi çalışmaları sunumu (unpublished).
  • Kharaka, Y.K., Maest, A.S., Carothers, W.W., Law, L.M., Lamothe, P.J., Fries, T.L. 1987. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A., Applied Geochemistry, 2, pp.543-561.
  • Kireeva, T.A. 2010. Genesis of the underground water from the White Tiger Deposit, south Vietnam Shelf, in relation to its petroleum resource potential. Moscow University Geology Bulletin, 65(4), pp.244-249.
  • Kokh, A.A., Novikov, D.A. 2014. Hydrodynamic conditions and vertical hydrogeochemical zonality of groundwater in the western Khatanga artesian basin. Water Resources, 41(4), pp.396-405.
  • Kovda, V. A., Salvin, P. S. 1951. Soil-geochemical indicators of deep oil bearing rocks: Akad. Nauk. SSSR (Kartsev, A.A., Tabasaranskii, S.A., Subbota, M.I., Mogilevsky, G.A., 1954. Geochemical methods of prospecting and exploration for petroleum and natural gas (in P. A. Witherspoon and W. D, Romey, eds., English translation : Berkeley, Univ. Calif. Press, 1959, 238p.).
  • Kurchikov, A.R., Plavnik, A.G. 2009. Clustering of groundwater chemistry data with implications for reservoir appraisal in West Siberia. Russian Geology and Geophysics 50, pp.943-949.
  • Kudel’sky, A.V. 1977. Prediction of oil and gas properties on a basis of iodine content of subsurface waters. Geologiya Nefti i Gaza, 4, pp.45-49.
  • Land, L.S. 1991. Evidence for vertical movement of fluids, Gulf Coast Sedimentary Basin: Geophys. Res. Lett., 18(5), pp.919-922.
  • Land, L.S. 1995. Na-Ca-Cl saline formation waters, Frio Formation (Oligocene), south Texas, USA: Products of diagenesis. Geochimica et Cosmochimica Acta, 59, 11, pp.2163-2174.
  • Leaver, J.S., Thomasson, M.R. 2002. Case studies relating soil-iodine geochemistry to subsequent drilling results. in Schumacher, D., and LeSchack, L. D., eds., Surface Exploration Case Histories: Application of Geochemistry, Magnetics and Remote Sensing, AAPG Studies in Geology no. 48, and SEG Geophysical References Series no. 11, pp.41-57.
  • Lee, R., Seright, R., Hightower, M., Sattler, A., Cather, M., McPherson, B., Wrotenbery, L., Martin, D., Whitworth, M. 2002. Strategies for Produced Water Handling in New Mexico. Groundwater Protection Council Produced Water Conference, http://www.gwpc.org/meetings/special/PW%20 2002/Papers/ Robert_Lee_PWC2002.pdf.
  • Lemay, T.G., Konhauser, K.O. 2006. Water Chemistry of Coalbed Methane Reservoirs. Alberta Geological Survey. Special Report 081. 354p.
  • Levinson, A.A. 1980. Introduction to Exploration Geochemistry. Applied Publishing, IL, 924p.
  • Liu, X., Fehn, U., Teng, R.T.D. 1997. Oil formation and fluid convection in Railroad Valley, NV: a study using cosmogenic isotopes to determine the onset of hydrocarbon migration. Nuclear Instruments and Methods in Physics Research B 123 (1997), pp.356-360.
  • Lloyd, J.W., Howard, K.W.F., Pacey, N.R., Tellam, J.H. 1982. The value of iodide as a parameter in the chemical characterization of groundwaters, Journal of Hydrology, 57, pp.247-265.
  • Lu, Z., Hensen, C., Fehn, U., Wallmann, K. 2008. Halogen and 129I systematics in gas hydrate fields at the northern Cascadia margin (IODP Expedition 311): Insights from numerical modeling. Geochem. Geophys. Geosyst., 9, Q10006, doi:10.1029/2008GC002156.
  • Macpherson, G.L. 1992. Regional variations in formation water chemistry: major and minor elements, Frio formation fluids, Texas. AAPG Bulletin, 76(5), pp.740-757.
  • Mani, D., Kumar, T.S., Rasheed, M.A., Patil, D.J., Dayal, A.M., Rao, T.G., Balaram, V. 2011. Soil iodine determination in Deccan Syneclise, India: Implications for near surface geochemical hydrocarbon prospecting. Natural Resources Research, 20(1), pp.75-88.
  • Mann, P., Gahagan, L., Gordon, M.B. 2003. Tectonic setting of the world’s giant oil and gas fields, in M. T. Halbouty, ed., Giant oil and gas fields of the decade 1990-1999, AAPG Memoir 78, pp.15-105.
  • Martin, J.B., Gieskes, J.M., Torres, M., Kastner, M. 1993. Bromine and iodine in Peru margin sediments and pore fluids: Implications for fluid origins. Geochimico et Cosmochlmica Acta, 51, pp.4377- 4389.
  • Mirnejad, H., Sisakht, V., Mohammadzadeh, H., Amini, A.H., Rostron, B.R., G. Haghparast, G. 2011. Major, minor element chemistry and oxygen and hydrogen isotopic compositions of Marun oil-field brines, SW Iran: Source history and economic potential. Geological Journal, 46, pp.1-9.
  • Moran, J. E. 1996. Origin of iodine in the Anadarko Basin, Oklahoma: an 129I study. Am. Assoc. Petrol. Geol. Bull., 80(5), pp.685-694.
  • Moran, J.E., Fehn, U., Hanor, J.S. 1995. Determination of source ages and migration of brines from the U.S. Gulf Coast basin using 129 I. Geochim. Cosmochim. Acta 59, pp.5055-5069.
  • Moran, J.E., Fehn, U., Ray, T.D. 1998. Variations in 129I/127I in recent marine sediments: evidence for a fossil organic component. Chemical Geology, 152, pp.193-203.
  • Muramatsu, Y., Wedepohl, K.H. 1998. The distribution of iodine in the earth’s crust. Chemical Geology, 147, pp.201-216.
  • Muramatsu, Y., Doi, T., Tomaru, H., Fehn, U., Takeuchi, R., Matsumoto, R. 2007. Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: implications for the origin of gas hydrates. Appl. Geochem., 22, pp.534-556.
  • Novikov, D.A. 2012. Hydrogeology of oil-and-gas bearing deposits of the Severnyi arch (Northern areas of the West Siberian Megabasin (WSMB). Oil and Gas Business, 4, pp.521-535.
  • Novikov, D.A. 2013a. Hydrogeochemical features of petroleum-bearing deposits of the Yamal Peninsula. Oil and Gas Business, 1, pp.114-143.
  • Novikov, D.A. 2013b. Hydrogeology of the western part of the Yenisei-Khatanga regional trough. Neftegazovaya Geologiya, Teoriya I Praktika, 8(1), www.ngtp.ru/rub/4/2_2013.eng.pdf.
  • Novikov, D.A., Shvartsev, S.L. 2009. Hydrogeological conditions of the Pre-Yenisei petroleum subprovince. Russian Geology and Geophysics, 50, pp.873-883.
  • Okandan, E., Mehmetoğlu, T., Doyuran, V., Demiral, B., Parlaktuna, M., Gümrah, F., Kuru, E., Behlülgil, K., Karacan, Ö. ve Karaaslan, U. 1994. Petrol Arama ve Üretim Faaliyetlerinin Çevre Üzerindeki Etkisi, Proje No.YBAG-0057, 92p. (unpublished).
  • Oppo, D., Capozzi, R. 2015. Spatial association of mud volcano and sandstone intrusions, Boyadag anticline, western Turkmenistan. Basin Research, 1-13, doi: 10.1111/bre.12136.
  • Oppo, D., Capozzi, R., Nigarov, A., Esenov, P. 2014. Mud volcanism and fluid geochemistry in the Cheleken Peninsula, western Turkmenistan, Marine and Petroleum Geology, 57, pp.122-134.
  • Osborn, S.G., Mcintosh, J.C., Hanor, J.S., Biddulph, D. 2012. Iodine-129, 87Sr/86Sr, and trace elemental geochemistry of northern Appalachian basin brines: evidence for basinal-scale fluid migration and clay mineral diagenesis. American Journal of Science, 312, pp.263-287.
  • Özdemir, A. 2009. İyot üretimi amaçlı yapılan sondaj çalışmaları. Madencilik Türkiye Dergisi, 1, 26-28 . Pavlova, G.A., Shisekina O.V. 1973. Accumulation of iodine in interstitial water during metamorphism in relation to the iodine distribution in Pacific sediments. Geochem. Int. 10, pp.804-813.
  • Peterson, T.F. 1979. The geochemistry of sediments of the Panama Basin, Eastern Equatorial Pacific Ocean. PhD. Thesis, University of Edinburgh, 235 p.
  • Plavnik, A.G., Plavnik, G.I., Itskovich, M.V., Oleinik, E.V. 2007. Water chemistry of clinoform reservoirs BV4-5, BV6–7, and BV8–9, in: Karasev, V.I., Shpilman, A.V., Volkov, V.A. (Eds.), Development of the Petroleum Potential of the Khanty-Mansi Autonomous Area [in Russian]. Izdatnaukaservis, Khanty-Mansiisk, Book 1 (1), pp.205-212.
  • PİGM (Petrol İşleri Genel Müdürlüğü), 2008. 2005-2006- 2007 Türkiye Petrol Faaliyetleri, 288p.
  • Pirson, S.J. 1942. Theoretical and economic significance of geodynamic prospecting. World Petrol., 13, pp.38-42.
  • Pogodaeva, T.V., Zemskaya, T.I., Golobokova, L.P., Khlystov, O.M., Minami, H., Sakagami, H. 2007. Chemical composition of pore waters of bottom sediments in different Baikal basins. Russian Geology and Geophysics (Geologiya i Geofizika) 48 (11), pp.886-900 (1144-1160).
  • Price, N. B., Calvert, S.E. 1973. The geochemistry of iodine in oxidized and reduced recent marine sediments: Geochim. Cosmochim. Acta, 37, pp.2149-2158.
  • Price, N.B., Calvert, S.E. 1977. The contrasting geochemical behaviors of iodine and bromine in recent sediments from the Namibian shelf. Geochimica et Cosmochimica Acta 41, pp.1769-1775.
  • Price, N.B., Calvert, S.E., Jones P.G.W. 1970. The distribution of iodine and bromine in the sediments of the South Western Barents Sea. J. Mar. Res. 28, pp.22-34.
  • Qiao, X., Zhang, Z., Yu, J., Ye, X. 2008. Performance characteristics of a hybrid membrane pilot- scale plant for oilfield-produced wastewater. Desalination, 225(1-3), pp.113-122.
  • Rachinsky, M.Z., Kerimov, V.Y. 2015. Fluid Dynamics of Oil and Gas Reservoirs. Scrivener Publishing LLC - John Wiley and Sons, Inc., 613p.
  • Rebary, B., Raichura, M., Mangukia, S.R., Patidar, R. 2014. Mapping of iodine, lithium and strontium in oilfield water of Cambay basin, Gujarat. Journal Geological Society of India. 83, pp.669-675.
  • Rowan, E.L., Engle, M.A., Kraemer, T.F., Schroeder, K.T., Hammack, R.W., Doughten, M.W. 2015. Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian basin, Pennsylvania. AAPG Bulletin, 99(2), pp.181-206.
  • Santschi, P.H., Xu, C., Zhang, S., Schwehr, K.A., Grandbois, R., Kaplan, D.I., Yeager, C. 2016. Iodine and plutonium association with natural organic matter: A review of recent advances. Applied Geochemistry (2016), doi: 10.1016/j. apgeochem.2016.11.009.
  • Schoeneich, K. 1971. Indices of oil bearing deposits as based on the formation waters of Poland. Nafta (Pol.), 27, 154-157 (in Coustau, H. 1977. Formation waters and hydrodynamics. Journal of Geochemical Exploration, 7, pp.213-241).
  • Shishkina, O.V., Pavlova, G.A. 1965. Iodine distribution in marine and oceanicbottom muds and in their pore fluids. Geochemical Internatioal, 2, pp.559-565.
  • Shvartsev, C.L., Novikov, D.A. 2004. The nature of vertical hydrogeochemical zoning of petroleum deposits (exemplified by the Nadym-Taz interfluve, West Siberia). Geologiya i Geofizika (Russian Geology and Geophysics) 45 (8), pp.1008-1020 (960-972).
  • Singh, R.R. Saxena, J.G. Sahota, S.K., Chandra, K. 1987. On the use of iodine as an indicator of petroleum in Indian basins. 1st India Oil and Natural Gas Comm. Petroleum Geochemistry and Exploration in the Afro-Asian Region International Conference Proceedings, pp. 105-107.
  • Snyder, G.T., Fabryka-Martin, J.T. 2007. 129I and 36Cl in dilute hydrocarbon waters: Marine-cosmogenic, in situ, and anthropogenic sources. In: G.T. Snyder and J.E. Moran (Eds.), special issue: The halogens and their isotopes in marine and terrestrial aqueous systems, Applied Geochemistry, 22, pp.692-704.
  • Stueber, A.M., Walter, L.M. 1991. Origin and chemical evolution of formation waters from Silurian- Devonian strata in the Illinois basin, USA. Geochimica et Cosmochimica Acta, 55, pp.309- 325.
  • Stueber, A.M., Walter, L.M., Huston, T.J., Pushkar, P. 1993. Formation waters from Mississippian- Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration. Geochimica et Cosmochimica Acta, 57, pp.163-784.
  • Sudo, Y. 1967. Geochemical study of brine from oil and gas fields in Japan. Journal of The Japanese Association of Petroleum Technologists. 32, 5, pp.286-296.
  • Sukharev, G.M. 1948. Hydrogeological conditions of formation of oil and gas deposits in Tersk-Dagestan oil province. Groz. obi. izd-vo (in Kartsev, A. A., Tabasaranskii, S. A., Subbota, M. I., Mogilevsky,G. A., 1954. Geochemical methods of prospecting and exploration for petroleum and natural gas. P. A. Witherspoon and W. D, Romey, eds., English translation, Berkeley, Univ. Calif. Press, 1959, 238p.).
  • Surkov, V.S., Kazakov, A.M., Devyatov, V.P., Smirnov, L.V., Shiganova, O.V., Ekhanin, A.E., Zaitsev, S.P., Serebrennikova, O.V., Gulaya, E.V. 1999. Lower-Middle Jurassic strata of the southern West Siberia (geochemistry, groundwater geology, and petroleum potential). Geologiya Nefti i Gaza, 3-4, pp.3-11.
  • Tedesco, S.A. 1995. Surface Geochemistry in Petroleum Exploration. Springer-Science+Business Media, BV., 206p.
  • Tedesco, S., Goudge, C. 1989. Application of iodine surface geochemistry in the Denver-Julesburg Basin, Association of Petroleum Geochemical Explorationists Bulletin, 5(I), pp.49-72.
  • Tedesco, S.A., Goudge, C., Fausnaugh, J., Alexon, S. 1987. Iodine-an exploration tool for oil and gas: Oil & Gas Journal, 85(26), pp.74-77.
  • Togo, Y.S., Kazahaya, K., Tosaki, Y., Morikawa, N., Matsuzaki, H., Takahashi, M., Sato, T. 2014. Groundwater, possibly originated from subducted sediments, in Joban and Hamadori areas, southern Tohoku, Japan. Earth, Planets and Space, 66, 131p.
  • Tomaru, H., Lu, Z., Fehn, U., Muramatsu, Y. 2009a. Origin of hydrocarbons in the Green Tuff region of Japan: 129I results from oil field brines and hot springs in the Akita and Niigata Basins. Chemical Geology, 264, pp.221-231.
  • Tomaru, H., Fehn, U., Lu, Z., Takeuchi, R., Inagaki, F., Imachi, H., Kotani, R., Matsumoto, R., Aoike, K. 2009b. Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita Peninsula, Japan: 129I results from the D/V Chikyu Shakedown Cruise. Resource Geology, 59(4), pp.359-373
  • Tooth, J. 1987. Petroleum hydrogeology: a potential application of groundwater science. Journal of Geological Survey of India, 29(1), pp.172-179.
  • Tsunogai, S. 1971. Iodine in the deep water of the ocean. Deep Sea Research and Oceanographic Abstracts 18, pp.913-919. Tullai, S., Tubbs, L. E., Fehn, U. 1987. Iodine extraction from petroleum for analysis of 129I/I ratios by AMS: Nucl. Instrum. Methods Phys. Res. B, 29, pp.383-386.
  • U.S. Geological Survey National Produced Waters Geochemical Database v2.2.
  • Veil, J.A. 2006. Comparison of two international approaches to controlling risk from produced water discharges. Paper presented at the 70th PERF meeting, Paris, France.
  • Vinogradov A.P. 1939. Iodine in marine muds. To the problem of the origin of iodine-bromine waters in petroliferous regions (In Russian). Tr. Biogeokhim. Lab. Akad. Nauk SSSR 5, 19-32 (English pp.33-46).
  • Voutchkova, D.D., Ernstsen, V., Hansen, B., Sørensen, B.L., Zhang, C., Kristiansen, S.M. 2014. Assessment of spatial variation in drinking water iodine and its implications for dietary intake: A new conceptual model for Denmark. Science of the Total Environment, 493, pp.432-444.
  • Wallace, M.M., Middleton, H., Basil, J., Marshallsea, S. 2002. Hydrocarbons and Mississippi Valley type sulfides in the Devonian reef complexes of the eastern Lennard Shelf, Canning Basin, Western Australia. In: Keep, M., Moss, S.J. Eds. The Sedimentary Basins of Western Australia III: Procedings of the West Australasian Basins Symposium (WABS) III.; pp.795-816.
  • Warren, J.K. 2006. Evaporites: Sediments, Resources and Hydrocarbons. Springer-Verlag Berlin Heidelberg. 1035p.
  • Whittemore, D.O., Basel, C.L., Galle, O.K., Waugh, T.C. 1981. Geochemical Identification of Saltwater Sources in the Smoky Hill River Valley, McPherson, Saline, and Dickson Countries, Kansas, Kansas Geological Survey, Open-file Report 81-6, 78p.
  • Wilke-Dörfurt, E. 1927. Über den Jodgehalt einiger Gesteine und seine Beziehungen zum chemischen Teil des Kropfproblems. Ann. Chem., 453, 288 (in Correns, C.W. 1956. The geochemistry of the halogens. Physics and Chemistry of the Earth, 1, pp.181-233).
  • Worden, R.H. 1996. Controls on halogen concentrations in sedimentary formation waters. Mineralogical Magazine, 60, pp.259-274.
  • Xuejing, X., Binzhong, Y. 1989. Application of multiparametric geochemical methods in the search for oil in the Qinggang region near Daqing Oil Field: J. Geochem. Explor., 33, pp.203-213.
  • Xun, Z., Cijun, L., Xiumin, J., Qiang, D., Lihomg, T. 1997. Origin of subsurface brines in the Sichuan basin, Groundwater, 35(1), pp.53-58.
  • Yang, S. 2017. Fundamentals of Petrophysics. Springer- Verlag GmbH, 502p.
  • Zherebtsova, I.K., Volkova, N.N. 1966. Experimental study of behavior of trace elements in the process of natural solar evaporation of Black Sea water and Sasyk-Sivash brine. Geochemical International, 3, pp.656-670.
There are 136 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Adil Özdemir 0000-0002-3975-2846

Publication Date August 15, 2019
Published in Issue Year 2019 Volume: 159 Issue: 159

Cite

APA Özdemir, A. (2019). Relationship between petroleum and iodine in Southeastern Anatolia Basin. Bulletin of the Mineral Research and Exploration, 159(159), 145-183. https://doi.org/10.19111/bulletinofmre.501519
AMA Özdemir A. Relationship between petroleum and iodine in Southeastern Anatolia Basin. Bull.Min.Res.Exp. August 2019;159(159):145-183. doi:10.19111/bulletinofmre.501519
Chicago Özdemir, Adil. “Relationship Between Petroleum and Iodine in Southeastern Anatolia Basin”. Bulletin of the Mineral Research and Exploration 159, no. 159 (August 2019): 145-83. https://doi.org/10.19111/bulletinofmre.501519.
EndNote Özdemir A (August 1, 2019) Relationship between petroleum and iodine in Southeastern Anatolia Basin. Bulletin of the Mineral Research and Exploration 159 159 145–183.
IEEE A. Özdemir, “Relationship between petroleum and iodine in Southeastern Anatolia Basin”, Bull.Min.Res.Exp., vol. 159, no. 159, pp. 145–183, 2019, doi: 10.19111/bulletinofmre.501519.
ISNAD Özdemir, Adil. “Relationship Between Petroleum and Iodine in Southeastern Anatolia Basin”. Bulletin of the Mineral Research and Exploration 159/159 (August 2019), 145-183. https://doi.org/10.19111/bulletinofmre.501519.
JAMA Özdemir A. Relationship between petroleum and iodine in Southeastern Anatolia Basin. Bull.Min.Res.Exp. 2019;159:145–183.
MLA Özdemir, Adil. “Relationship Between Petroleum and Iodine in Southeastern Anatolia Basin”. Bulletin of the Mineral Research and Exploration, vol. 159, no. 159, 2019, pp. 145-83, doi:10.19111/bulletinofmre.501519.
Vancouver Özdemir A. Relationship between petroleum and iodine in Southeastern Anatolia Basin. Bull.Min.Res.Exp. 2019;159(159):145-83.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en