Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 176 Sayı: 176, 1 - 2
https://doi.org/10.19111/bulletinofmre.1652439

Öz

Kaynakça

  • Asadi, R. 2017. Investigation of the consolidation coefficient of fine-grained soils with an alternative method. PhD Thesis, Graduate School of Ankara University, 155, Ankara (unpublished).
  • American Society for Testing Materials, 2005. Standard test methods for liquid limit, plastic limit, and plasticity index of soils: ASTM D4318-05, West Conshohocken, PA.
  • American Society for Testing Materials, 2006a. Standard test methods for specific gravity of soil solids by water pycnometer: ASTM D854-06, West Conshohocken, PA.
  • American Society of Testing Materials, 2006b. One dimensional consolidation properties of soils using incremental loading, ASTM D2435-04, West Conshohocken, PA.
  • Azzouz, A. S., Krizek, R. J., Corotis, R. B. 1976. Regression analysis of soil compressibility. Soils and Foundations, 16(2), 19-29.
  • Balci, M. C., Kayabali, K., Asadi, R. 2018. Miniature centrifuge modeling for conventional consolidation test. Geotechnical Testing Journal, 41(3), 590-600.
  • Barden, L. 1965. Consolidation of compacted and unsaturated clays. Geotechnique, 15(3), 267-286.
  • Biot, M. A. 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155-164.
  • Biot, M. A. 1956. Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range. The Journal of the acoustical Society of america, 28(2), 179-191.
  • Bishop, A. W. 1959. The principal of effective stress. Teknisk ukeblad, 39, 859-863.
  • Boone, S. J. 2010. A critical reappraisal of “preconsolidation pressure” interpretations using the oedometer test. Canadian Geotechnical Journal, 47(3), 281-296.
  • British Standards Institution, 1990. British standard methods of test for soils for engineering purposes, BS 1377: Milton Keynes, British Standards Institution.
  • Cai, Y. Q., Geng, X. Y., Xu, C. J. 2007. Solution of one-dimensional finite-strain consolidation of soil with variable compressibility under cyclic loadings. Computers and Geotechnics, 34(1), 31-40.
  • Casagrande, A., Fadum, R. E. 1940. Notes on soil testing for engineering purposes. Harvard Soil Mechanics, Series No. 8, Cambridge, MA.
  • Cortellazzo, G. 2002. Comparison between laboratory and in situ values of the coefficient of primary consolidation cv. Canadian Geotechnical Journal, 39(1), 103-110.
  • Davis, E. H., Raymond, G. P. 1965. A non-linear theory of consolidation. Geotechnique, 15(2), 161-173.
  • Dipova, N., Cangir. B. 2010. Determination of compressibility properties in Lagoon originated clay-silt soils by regression and artificial neural network methods. IMO Teknik Dergi, 5069-5086.
  • Elsharief A. M., Zumrawi M. M. E., Salam A. M. 2014. Experimental Study of Some Factors Affecting Swelling Pressure. University Of Khartoum Engineering Journal (UofKEJ), 4, 2, 1-7.
  • Fox, P. J., Berles, J. D. 1997. CS2: a piecewise-linear model for large strain consolidation. International Journal of Numerical and Analytical Methods in Geomechanics, 21(7), 453-475.
  • Fredlund, G. 1977. Stress state variables for unsaturated soils. ASCE Journal of the Geotechnical Engineering Division, 103 (GT5), 447-466.
  • Fredlund, G., Morgenstern, R. 1976. Constitutive relations for volume change in unsaturated soils. Canadian Geotechnical Journal, 13, 261-276.
  • Geng, X., Xu, C., Cai, Y. 2006. Non‐linear consolidation analysis of soil with variable compressibility and permeability under cyclic loadings. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8), 803-821.
  • Geng, X. 2008. Non-linear consolidation of soil with vertical and horizontal drainage under time-dependent loading. Advanced Computer Theory and Engineering, 2008. ICACTE ‘08. International Conference on Australia: IEEE. 800-804.
  • Gibson, R. E., England, G. L., Hussey, M. J. L. 1967. The theory of one-dimensional consolidation of saturated clays: 1. Finite non-linear consildation of thin homogeneous layers. Geotechnique, 17(3), 261-273.
  • Hansbo, S. 1960. Consolidation of clay, with special reference to influence of vertical sand drains a study made in connection with Full-Scale investigations at Skå-Edeby. Chalmers Tekniska Hogskola (Sweden).
  • Herrero, O. R. 1983a. Universal compression index equation. Journal of the Geotechnical Engineering Division, 106(11), 1179-1200.
  • Holtz, R. D., Kovacs, W. D. 1981. Introduction to geotechnical engineering, Prentice Hall, 733.
  • Kayabali, K., Ozdemir, A. 2010. Evaluation of the centrifuge technique as an alternative and fast method for oedometer test on soils: In: Geologically Active: Proceedings of the 11th IAEG Congress, Auckland, New Zealand, 5-10 September 2010, A. L. Williams, G. M. Pinches, C. Y. Chin, T. J. Mc Morran, C. I. Massey, Eds., 1989-1994.
  • Kalantary, F., Kordnaeij, A. 2012. Prediction of compression index using artificial neural Network, Scientific Research and Essays, 7(31), 2835-2848.
  • Kayabali, K., Yaldiz, O. 2014. Estimation of swelling pressure using simple soil indices. Bulletin of the Mineral Research and Exploration, 149, 175-178.
  • Keskin, İ., Salimi, M., Ateyşen, E. Ö., Kahraman, S., Vakili, A. H. 2023. Comparative study of swelling pressure in expansive soils considering different initial water contents and BOFS stabilization. Advances in Civil Engineering, 2023(1), 4823843.
  • Mesri G., Rokhsar A., Bohor B. F. 1975. Géotechnique. Composition and compressibility of typical samples of Mexico City clay. 25:3, 527-554.
  • Muntohar, A. S. 2009. Reliability of the method for determination of coefficient of consolidation (cv). 13rd Annual Scientific Meeting of Indonesian Society for Geotechnical Engineering, Denpasar, Bali, 5-6 November 2009.
  • Naser, A. H. 2013. Finite difference analysis of one dimensional consolidation of homogeneous clay layer. Journal of Babylon University, 21, 1661-1674.
  • Phanikumar, B. R., Amrutha, K. 2014. Effect of overburden pressure and degree of saturation on compressibility characteristics. Geomechanics and Geoengineering, 9:1, 52-62.
  • Sunnetci, M. O., Ersoy, H. 2016. Investigation of the relations between the consolidation and plastic properties of Unye (Ordu) clays. Turkish Journal of Geological Engineering, 40, 89-102.
  • Taylor, D. W. 1942. Research on consolidation of clays. Massachusetts Institute of Technology.
  • Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer Grundlage. F. Deuticke.
  • Villar, M. V., Lloret A. 2008. Influence of dry density and water content on the swelling of a compacted bentonite. Applied Clay Science 39, 38–49.
  • Xie, K. H., Xie, X. Y., Jiang, W. 2002. A study on one-dimensional nonlinear consolidation of double-layered soil. Computers and Geotechnics, 29(2), 151-168.
  • Yong, R. N., Siu, S. K., Sheeran, D. E. 1983. On the stability and settling of suspended solids in settling ponds. Part I. Piece-wise linear consolidation analysis of sediment layer. Canadian Geotechnical Journal, 20(4), 817-826.
  • Yurtcu, S., Ozocak, A. 2016. Estimation of compression index in fine-grained soils by statistical and artificial intelligence methods, Journal of the Faculty of Engineering and Architecture of Gazi University 31:3, 597-608.
  • Wroth, C. P., Wood, D. M. 1978. The correlation of index properties with some basic engineering properties of soils. Canadian Geotechnical Journal. 15(2): 137-145.

Effect of Degree of Saturation on Consolidation Parameters of Fine-Grained Soils

Yıl 2025, Cilt: 176 Sayı: 176, 1 - 2
https://doi.org/10.19111/bulletinofmre.1652439

Öz

Terzaghi (1943)'s theory of consolidation phenomenon has some limitations for unsaturated geological environments in nature. Additionally, soils are subjected to consolidation tests under partially saturation conditions. The scope of this study is to illustrate the effect of degree of saturation (Sr) on the consolidation parameters using remolded soil samples. For this purpose, swelling pressure, compression index (cc), re-compression index (cr), coefficient of consolidation (cv), and pre-consolidation stress (σp') were determined for the samples having different degrees of saturation and plasticity (PI). The consolidation parameters obtained from “undersaturated” remolded samples with varying degrees of saturation were compared with the consolidation parameters obtained from “fully saturated” remolded samples to illustrate which parameters of consolidation are affected most by the degree of saturation. The effect of swelling of partially saturated samples was eliminated prior to conducting oedometer tests.
Results indicated a meaningful relationship between the compression index and the degree of saturation, though the relationship with the recompression index was less certain. Pre-consolidation stress generally decreased as saturation increased, while no definitive trend was observed between the degree of saturation and the consolidation coefficient. Overall, most consolidation parameters were found to be somewhat affected by the degree of saturation.

Kaynakça

  • Asadi, R. 2017. Investigation of the consolidation coefficient of fine-grained soils with an alternative method. PhD Thesis, Graduate School of Ankara University, 155, Ankara (unpublished).
  • American Society for Testing Materials, 2005. Standard test methods for liquid limit, plastic limit, and plasticity index of soils: ASTM D4318-05, West Conshohocken, PA.
  • American Society for Testing Materials, 2006a. Standard test methods for specific gravity of soil solids by water pycnometer: ASTM D854-06, West Conshohocken, PA.
  • American Society of Testing Materials, 2006b. One dimensional consolidation properties of soils using incremental loading, ASTM D2435-04, West Conshohocken, PA.
  • Azzouz, A. S., Krizek, R. J., Corotis, R. B. 1976. Regression analysis of soil compressibility. Soils and Foundations, 16(2), 19-29.
  • Balci, M. C., Kayabali, K., Asadi, R. 2018. Miniature centrifuge modeling for conventional consolidation test. Geotechnical Testing Journal, 41(3), 590-600.
  • Barden, L. 1965. Consolidation of compacted and unsaturated clays. Geotechnique, 15(3), 267-286.
  • Biot, M. A. 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155-164.
  • Biot, M. A. 1956. Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range. The Journal of the acoustical Society of america, 28(2), 179-191.
  • Bishop, A. W. 1959. The principal of effective stress. Teknisk ukeblad, 39, 859-863.
  • Boone, S. J. 2010. A critical reappraisal of “preconsolidation pressure” interpretations using the oedometer test. Canadian Geotechnical Journal, 47(3), 281-296.
  • British Standards Institution, 1990. British standard methods of test for soils for engineering purposes, BS 1377: Milton Keynes, British Standards Institution.
  • Cai, Y. Q., Geng, X. Y., Xu, C. J. 2007. Solution of one-dimensional finite-strain consolidation of soil with variable compressibility under cyclic loadings. Computers and Geotechnics, 34(1), 31-40.
  • Casagrande, A., Fadum, R. E. 1940. Notes on soil testing for engineering purposes. Harvard Soil Mechanics, Series No. 8, Cambridge, MA.
  • Cortellazzo, G. 2002. Comparison between laboratory and in situ values of the coefficient of primary consolidation cv. Canadian Geotechnical Journal, 39(1), 103-110.
  • Davis, E. H., Raymond, G. P. 1965. A non-linear theory of consolidation. Geotechnique, 15(2), 161-173.
  • Dipova, N., Cangir. B. 2010. Determination of compressibility properties in Lagoon originated clay-silt soils by regression and artificial neural network methods. IMO Teknik Dergi, 5069-5086.
  • Elsharief A. M., Zumrawi M. M. E., Salam A. M. 2014. Experimental Study of Some Factors Affecting Swelling Pressure. University Of Khartoum Engineering Journal (UofKEJ), 4, 2, 1-7.
  • Fox, P. J., Berles, J. D. 1997. CS2: a piecewise-linear model for large strain consolidation. International Journal of Numerical and Analytical Methods in Geomechanics, 21(7), 453-475.
  • Fredlund, G. 1977. Stress state variables for unsaturated soils. ASCE Journal of the Geotechnical Engineering Division, 103 (GT5), 447-466.
  • Fredlund, G., Morgenstern, R. 1976. Constitutive relations for volume change in unsaturated soils. Canadian Geotechnical Journal, 13, 261-276.
  • Geng, X., Xu, C., Cai, Y. 2006. Non‐linear consolidation analysis of soil with variable compressibility and permeability under cyclic loadings. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8), 803-821.
  • Geng, X. 2008. Non-linear consolidation of soil with vertical and horizontal drainage under time-dependent loading. Advanced Computer Theory and Engineering, 2008. ICACTE ‘08. International Conference on Australia: IEEE. 800-804.
  • Gibson, R. E., England, G. L., Hussey, M. J. L. 1967. The theory of one-dimensional consolidation of saturated clays: 1. Finite non-linear consildation of thin homogeneous layers. Geotechnique, 17(3), 261-273.
  • Hansbo, S. 1960. Consolidation of clay, with special reference to influence of vertical sand drains a study made in connection with Full-Scale investigations at Skå-Edeby. Chalmers Tekniska Hogskola (Sweden).
  • Herrero, O. R. 1983a. Universal compression index equation. Journal of the Geotechnical Engineering Division, 106(11), 1179-1200.
  • Holtz, R. D., Kovacs, W. D. 1981. Introduction to geotechnical engineering, Prentice Hall, 733.
  • Kayabali, K., Ozdemir, A. 2010. Evaluation of the centrifuge technique as an alternative and fast method for oedometer test on soils: In: Geologically Active: Proceedings of the 11th IAEG Congress, Auckland, New Zealand, 5-10 September 2010, A. L. Williams, G. M. Pinches, C. Y. Chin, T. J. Mc Morran, C. I. Massey, Eds., 1989-1994.
  • Kalantary, F., Kordnaeij, A. 2012. Prediction of compression index using artificial neural Network, Scientific Research and Essays, 7(31), 2835-2848.
  • Kayabali, K., Yaldiz, O. 2014. Estimation of swelling pressure using simple soil indices. Bulletin of the Mineral Research and Exploration, 149, 175-178.
  • Keskin, İ., Salimi, M., Ateyşen, E. Ö., Kahraman, S., Vakili, A. H. 2023. Comparative study of swelling pressure in expansive soils considering different initial water contents and BOFS stabilization. Advances in Civil Engineering, 2023(1), 4823843.
  • Mesri G., Rokhsar A., Bohor B. F. 1975. Géotechnique. Composition and compressibility of typical samples of Mexico City clay. 25:3, 527-554.
  • Muntohar, A. S. 2009. Reliability of the method for determination of coefficient of consolidation (cv). 13rd Annual Scientific Meeting of Indonesian Society for Geotechnical Engineering, Denpasar, Bali, 5-6 November 2009.
  • Naser, A. H. 2013. Finite difference analysis of one dimensional consolidation of homogeneous clay layer. Journal of Babylon University, 21, 1661-1674.
  • Phanikumar, B. R., Amrutha, K. 2014. Effect of overburden pressure and degree of saturation on compressibility characteristics. Geomechanics and Geoengineering, 9:1, 52-62.
  • Sunnetci, M. O., Ersoy, H. 2016. Investigation of the relations between the consolidation and plastic properties of Unye (Ordu) clays. Turkish Journal of Geological Engineering, 40, 89-102.
  • Taylor, D. W. 1942. Research on consolidation of clays. Massachusetts Institute of Technology.
  • Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer Grundlage. F. Deuticke.
  • Villar, M. V., Lloret A. 2008. Influence of dry density and water content on the swelling of a compacted bentonite. Applied Clay Science 39, 38–49.
  • Xie, K. H., Xie, X. Y., Jiang, W. 2002. A study on one-dimensional nonlinear consolidation of double-layered soil. Computers and Geotechnics, 29(2), 151-168.
  • Yong, R. N., Siu, S. K., Sheeran, D. E. 1983. On the stability and settling of suspended solids in settling ponds. Part I. Piece-wise linear consolidation analysis of sediment layer. Canadian Geotechnical Journal, 20(4), 817-826.
  • Yurtcu, S., Ozocak, A. 2016. Estimation of compression index in fine-grained soils by statistical and artificial intelligence methods, Journal of the Faculty of Engineering and Architecture of Gazi University 31:3, 597-608.
  • Wroth, C. P., Wood, D. M. 1978. The correlation of index properties with some basic engineering properties of soils. Canadian Geotechnical Journal. 15(2): 137-145.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Deniz Yılmaz 0000-0003-2860-6154

Kamil Kayabalı 0000-0002-0228-0777

Erken Görünüm Tarihi 6 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 12 Şubat 2024
Kabul Tarihi 6 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 176 Sayı: 176

Kaynak Göster

APA Yılmaz, D., & Kayabalı, K. (2025). Effect of Degree of Saturation on Consolidation Parameters of Fine-Grained Soils. Bulletin of the Mineral Research and Exploration, 176(176), 1-2. https://doi.org/10.19111/bulletinofmre.1652439
AMA Yılmaz D, Kayabalı K. Effect of Degree of Saturation on Consolidation Parameters of Fine-Grained Soils. Bull.Min.Res.Exp. Mart 2025;176(176):1-2. doi:10.19111/bulletinofmre.1652439
Chicago Yılmaz, Deniz, ve Kamil Kayabalı. “Effect of Degree of Saturation on Consolidation Parameters of Fine-Grained Soils”. Bulletin of the Mineral Research and Exploration 176, sy. 176 (Mart 2025): 1-2. https://doi.org/10.19111/bulletinofmre.1652439.
EndNote Yılmaz D, Kayabalı K (01 Mart 2025) Effect of Degree of Saturation on Consolidation Parameters of Fine-Grained Soils. Bulletin of the Mineral Research and Exploration 176 176 1–2.
IEEE D. Yılmaz ve K. Kayabalı, “Effect of Degree of Saturation on Consolidation Parameters of Fine-Grained Soils”, Bull.Min.Res.Exp., c. 176, sy. 176, ss. 1–2, 2025, doi: 10.19111/bulletinofmre.1652439.
ISNAD Yılmaz, Deniz - Kayabalı, Kamil. “Effect of Degree of Saturation on Consolidation Parameters of Fine-Grained Soils”. Bulletin of the Mineral Research and Exploration 176/176 (Mart 2025), 1-2. https://doi.org/10.19111/bulletinofmre.1652439.
JAMA Yılmaz D, Kayabalı K. Effect of Degree of Saturation on Consolidation Parameters of Fine-Grained Soils. Bull.Min.Res.Exp. 2025;176:1–2.
MLA Yılmaz, Deniz ve Kamil Kayabalı. “Effect of Degree of Saturation on Consolidation Parameters of Fine-Grained Soils”. Bulletin of the Mineral Research and Exploration, c. 176, sy. 176, 2025, ss. 1-2, doi:10.19111/bulletinofmre.1652439.
Vancouver Yılmaz D, Kayabalı K. Effect of Degree of Saturation on Consolidation Parameters of Fine-Grained Soils. Bull.Min.Res.Exp. 2025;176(176):1-2.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en