Research Article
BibTex RIS Cite

Semi-Invariant Submanifolds A Lorentzian Kenmotsu Manifold With Semi-Symmetric Metric Connection

Year 2021, Volume: 2 Issue: 1, 36 - 42, 09.07.2021

Abstract

In this paper, semi-invariant submanifolds of a lorentzian Kenmotsu manifold endowed with a semi-symmetric metric connection are studied. Necessary and sufficient conditions are given on a submanifold of a lorentzian Kenmotsu manifold to be semi-invarinat submanifold with the semi-symmetric metric connection. Moreover, the parallel conditions of the distribution on semi-invariant submanifolds of a lorentzian Kenmotsu manifold with the semi-symmetric metric.

References

  • Bishop RL, O'Neill B. Manifolds of negative curvature. Trans. Amer. Math. Soc.1969. 145: 1-50.
  • Duggal KL. Speace time manifold and contact Manifolds. Int. J. of math. And mathematical science. 1990. 13: 545-554.
  • Friedmann A, Schouten JA. Uber die Geometric der halbsymmetrischen Ubertragung. Math. Z. 1924. 21: 211-223.
  • Kenmotsu K. A class of almost contact Riemannian manifolds. TohokuMath. J. II Ser. 1972. 24: 93-103.
  • Kobayashi M. Semi-invariant submanifolds of a certain class of almost contact manifolds. Tensor N. S. 1986. 43: 28-36.
  • Nirmala SA, Mangala RC. A semi-symmetric non-metric connection on Riemannian manifold. Indiana J. Pure Appl. Math. 1992. 23: 399-40.
  • Roşca R. On Lorentzian Kenmotsu manifolds. Atti Accad. Peloritana Pericolanti, Cl. Sci. 1991. 69: 15-30.
  • Sarı R, Vanlı A. Slant submanifolds of a Lorentz Kenmotsu manifold. Mediterr. J. Math. 2019. 16:129.
  • Sarı R. Some Properties Curvture of Lorentzian Kenmotsu Manifolds. Applied Mathematics and Nonlinear Sciences. 2020. 5(1): 283–292.
  • Sinha BB, Srivastava AK. Semi-invariant submanifolds of a Kenmotsu manifold with constant φ-holomorphic sectional curvature. Indian J. pure appl. Math. 1992. 23(11): 783-789.
  • Takahashi T. Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J. 1969. 21(2): 271-290.
  • Turgut Vanli A, Sari R. On semi invariant submanifolds of generalized Kenmotsu manifolds with semi symmetric metric connection. Acta Universitatis Apulensis. 2015. 43: 79-92.
  • Yano K. On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 1970. 15: 1579-1586.

Semi-Invariant Submanifolds A Lorentzian Kenmotsu Manifold With Semi-Symmetric Metric Connection

Year 2021, Volume: 2 Issue: 1, 36 - 42, 09.07.2021

Abstract

In this paper, semi-invariant submanifolds of a lorentzian Kenmotsu manifold endowed with a semi-symmetric metric connection are studied. Necessary and sufficient conditions are given on a submanifold of a lorentzian Kenmotsu manifold to be semi-invarinat submanifold with the semi-symmetric metric connection. Moreover, the parallel conditions of the distribution on semi-invariant submanifolds of a lorentzian Kenmotsu manifold with the semi-symmetric metric.

References

  • Bishop RL, O'Neill B. Manifolds of negative curvature. Trans. Amer. Math. Soc.1969. 145: 1-50.
  • Duggal KL. Speace time manifold and contact Manifolds. Int. J. of math. And mathematical science. 1990. 13: 545-554.
  • Friedmann A, Schouten JA. Uber die Geometric der halbsymmetrischen Ubertragung. Math. Z. 1924. 21: 211-223.
  • Kenmotsu K. A class of almost contact Riemannian manifolds. TohokuMath. J. II Ser. 1972. 24: 93-103.
  • Kobayashi M. Semi-invariant submanifolds of a certain class of almost contact manifolds. Tensor N. S. 1986. 43: 28-36.
  • Nirmala SA, Mangala RC. A semi-symmetric non-metric connection on Riemannian manifold. Indiana J. Pure Appl. Math. 1992. 23: 399-40.
  • Roşca R. On Lorentzian Kenmotsu manifolds. Atti Accad. Peloritana Pericolanti, Cl. Sci. 1991. 69: 15-30.
  • Sarı R, Vanlı A. Slant submanifolds of a Lorentz Kenmotsu manifold. Mediterr. J. Math. 2019. 16:129.
  • Sarı R. Some Properties Curvture of Lorentzian Kenmotsu Manifolds. Applied Mathematics and Nonlinear Sciences. 2020. 5(1): 283–292.
  • Sinha BB, Srivastava AK. Semi-invariant submanifolds of a Kenmotsu manifold with constant φ-holomorphic sectional curvature. Indian J. pure appl. Math. 1992. 23(11): 783-789.
  • Takahashi T. Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J. 1969. 21(2): 271-290.
  • Turgut Vanli A, Sari R. On semi invariant submanifolds of generalized Kenmotsu manifolds with semi symmetric metric connection. Acta Universitatis Apulensis. 2015. 43: 79-92.
  • Yano K. On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 1970. 15: 1579-1586.
There are 13 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ramazan Sarı This is me

İnan Ünal

Publication Date July 9, 2021
Submission Date May 21, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

Vancouver Sarı R, Ünal İ. Semi-Invariant Submanifolds A Lorentzian Kenmotsu Manifold With Semi-Symmetric Metric Connection. BUTS. 2021;2(1):36-42.
This journal is prepared and published by the Bingöl University Technical Sciences journal team.